首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The effect of mechanical stress (centrifugation) on the inductionof nitric oxide (NO) formation and DNA fragmentation was investigatedin leaf cells of Arabidopsis thaliana. Centrifuged and non-centrifugedleaves from wild-type and nitrate reductase (NR)nia1, nia2 doublemutant, defective in the assimilation of nitrate, were labelledwith 4,5-diaminofluorescein diacetate (DAF-2 DA) to visualizein vivo NO production. After these treatments, DNA fragmentationwas detected by the terminal deoxynucleotidyl transferase-mediateddUTP nick end in situ labelling (TUNEL) method. Exposure toan NO-releasing compound, sodium nitroprusside (SNP) mimickedthe cell response to centrifugation (20 g). The involvementof endogenous NO as a signal in mechanical stress and in DNAfragmentation was confirmed by inhibition of NO production usinga nitric oxide synthase (NOS) inhibitor viz. NG-monomethyl-L -arginine (L -NMMA). These results indicate that NOS-likeactivity was present in A. thaliana leaves and was increasedby mechanical stress. The effect of leaf-wounding on nitricoxide production was identical to that of centrifugation. Experimentswith A. thaliana NR mutant also showed that NO bursts were inducedby mechanical and wounding stresses and that NO was not a by-productof NR activity. A positive and significant correlation betweenNO production and DNA fragmentation was recorded for both centrifugedand non-centrifuged cells. Our results suggest that factorsother than NO contribute to DNA damage and cell death, and furthermore,that an inducible form of NOS is present in A. thaliana. Copyright2001 Annals of Botany Company Arabidopsis thaliana, cell death, DNA fragmentation, NO, plant stress, wounding  相似文献   

2.
We tested the hypothesis that mechanical tension in thecytoskeleton (CSK) is a major determinant of cell deformability. To confirm that tension was present in adherent endothelial cells, weeither cut or detached them from their basal surface by a microneedle. After cutting or detachment, the cells rapidly retracted. This retraction was prevented, however, if the CSK actin lattice was disrupted by cytochalasin D (Cyto D). These results confirmed thatthere was preexisting CSK tension in these cells and that the actinlattice was a primary stress-bearing component of the CSK. Second, todetermine the extent to which that preexisting CSK tension could altercell deformability, we developed a stretchable cell culture membranesystem to impose a rapid mechanical distension (and presumably a rapidincrease in CSK tension) on adherent endothelial cells. Altered celldeformability was quantitated as the shear stiffness measured bymagnetic twisting cytometry. When membrane strain increased 2.5 or 5%,the cell stiffness increased 15 and 30%, respectively. Disruption ofactin lattice with Cyto D abolished this stretch-induced increase instiffness, demonstrating that the increased stiffness depended on theintegrity of the actin CSK. Permeabilizing the cells with saponin andwashing away ATP and Ca2+ did notinhibit the stretch-induced stiffening of the cell. These resultssuggest that the stretch-induced stiffening was primarily due to thedirect mechanical changes in the forces distending the CSK but not toATP- or Ca2+-dependent processes.Taken together, these results suggest preexisting CSK tension is amajor determinant of cell deformability in adherent endothelial cells.

  相似文献   

3.
Acute cessation of flow (ischemia) leads to depolarization of the endothelial cell (EC) membrane mediated by KATP channels and followed by production of reactive oxygen species (ROS) from NADPH oxidase. We postulated that ROS are a signal for initiating EC proliferation associated with the loss of shear stress. Flow cytometry was used to identify proliferating CD31-positive pulmonary microvascular endothelial cells (mPMVECs) from wild-type, Kir6.2–/–, and gp91phox–/– mice. mPMVECs were labeled with PKH26 and cultured in artificial capillaries for 72 h at 5 dyn/cm2 (flow adaptation), followed by 24 h of stop flow or continued flow. ROS production during the first hour of ischemia was markedly diminished compared with wild-type mice in both types of gene-targeted mPMVECs. Cell proliferation was defined as the proliferation index (PI). After 72 h of flow, >98% of PKH26-labeled wild-type mPMVECs were at a single peak (PI 1.0) and the proportion of cells in the S+G2/M phases were at 5.8% on the basis of cell cycle analysis. With ischemia (24 h), PI increased to 2.5 and the ratio of cells in S+G2/M phases were at 35%. Catalase, diphenyleneiodonium, and cromakalim markedly inhibited ROS production and cell proliferation in flow-adapted wild-type mPMVECs. Significant effects of ischemia were not observed in Kir6.2–/– and gp91phox–/– cells. ANG II activation of NADPH oxidase was unaffected by KATP gene deletion. Thus loss of shear stress in flow-adapted mPMVECs results in cell division associated with ROS generated by NADPH oxidase. This effect requires a functioning cell membrane KATP channel. cell signaling; ischemia; mechanotransduction; KATP channels; NADPH oxidase  相似文献   

4.
Increasing evidence suggests that mechanical factors play a critical role in fate decisions of stem cells. Recently we have demonstrated that a local force applied via Arg-Gly-Asp (RGD) peptides coated magnetic beads to mouse embryonic stem (ES) cells increases cell spreading and cell stiffness and decreases Oct3/4 (Pou5f1) gene expression. However, it is not clear whether the effects of the applied stress on these functions of ES cells can be extended to natural extracellular matrix proteins or cell–cell adhesion molecules. Here we show that a local cyclic shear force applied via fibronectin or laminin to integrin receptors increased cell spreading and stiffness, downregulated Oct3/4 gene expression, and decreased cell proliferation rate. In contrast, the same cyclic force applied via cell–cell adhesion molecule E-cadherin (Cdh1) had no effects on cell spreading, Oct3/4 gene expression, and the self-renewal of mouse ES cells, but induced significant cell stiffening. Our findings demonstrate that biological responses of ES cells to force applied via integrins are different from those to force via E-cadherin, suggesting that mechanical forces might play different roles in different force transduction pathways to shape early embryogenesis.  相似文献   

5.
Inlysinuric protein intolerance (LPI), impaired transport of cationicamino acids in kidney and intestine is due to mutations of theSLC7A7 gene. To assess the functional consequences of the LPI defect in nonepithelial cells, we have characterized cationic aminoacid (CAA) transport in human fibroblasts obtained from LPI patientsand a normal subject. In both cell types the bidirectional fluxes ofarginine are due to the additive contributions of two Na+-independent, transstimulated transport systems. One ofthese mechanisms, inhibited by N-ethylmaleimide (NEM) andsensitive to the membrane potential, is identifiable with systemy+. The NEM- and potential-insensitive component,suppressed by L-leucine only in the presence ofNa+, is mostly due to the activity of systemy+L. The inward and outward activities of the two systemsare comparable in control and LPI fibroblasts. Both cell types expressSLC7A1 (CAT1) and SLC7A2 (CAT2B and CAT2A) aswell as SLC7A6 (y+LAT2) and SLC7A7 (y+LAT1). Weconclude that LPI fibroblasts exhibit normal CAA transport throughsystem y+L, probably referable to the activity ofSLC7A6/y+LAT2.

  相似文献   

6.
Transgenic Arabidopsis plants overexpressing the wheat vacuolarNa+/H+ antiporter TNHX1 and H+-PPase TVP1 are much more resistantto high concentrations of NaCl and to water deprivation thanthe wild-type strains. These transgenic plants grow well inthe presence of 200 mM NaCl and also under a water-deprivationregime, while wild-type plants exhibit chlorosis and growthinhibition. Leaf area decreased much more in wild-type thanin transgenic plants subjected to salt or drought stress. Theleaf water potential was less negative for wild-type than fortransgenic plants. This could be due to an enhanced osmoticadjustment in the transgenic plants. Moreover, these transgenicplants accumulate more Na+ and K+ in their leaf tissue thanthe wild-type plants. The toxic effect of Na+ accumulation inthe cytosol is reduced by its sequestration into the vacuole.The rate of water loss under drought or salt stress was higherin wild-type than transgenic plants. Increased vacuolar soluteaccumulation and water retention could confer the phenotypeof salt and drought tolerance of the transgenic plants. Overexpressionof the isolated genes from wheat in Arabidopsis thaliana plantsis worthwhile to elucidate the contribution of these proteinsto the tolerance mechanism to salt and drought. Adopting a similarstrategy could be one way of developing transgenic staple cropswith improved tolerance to these important abiotic stresses. Key words: H+-pyrophosphatase, Na+/H+ antiporter, salt and drought tolerance, sodium sequestration, transgenic Arabidopsis plants  相似文献   

7.
The CO2-, H2O- and 16O2/18O2 isotopic-gas exchange and the fluorescencequenching by attached leaves of the wild-type and of the phytochrome-deficienttomato aurea mutant was compared in relation to water stressand the photon fluence rate. The chlorophyll content of aurealeaves was reduced and the ultra-structure of the chloroplastswas altered. Nevertheless, the maximum rate of net CO2 uptakein air by the yellow-green leaves of the aurea mutant was similarto that by the dark-green wild-type leaves. However, less O2was produced by the leaves of the aurea mutant than by leavesof the wild-type. This result indicates a reduced rate of photosyntheticelectron flux in aurea mutant leaves. No difference in bothphotochemical and non-photochemical fluorescence quenching wasfound between wild-type and aurea mutant leaves. Water stresswas correlated with a reversible decrease in the rates of bothnet CO2 uptake and transpiration by wild-type and aurea mutantleaves. The rate of gross 16O2 evolution by both wild-type andaurea mutant leaves was fairly unaffected by water stress. Thisresult shows that in both wild-type and aurea leaves, the photochemicalprocesses are highly resistant to water stress. The rate ofgross 18O2 uptake by wild-type leaves increased during waterstress when the photon fluence rate was high. Under the sameconditions, the rate of gross 18O2 uptake by aurea mutant leavesremained unchanged. The physiological significane of this differencewith respect to the (presumed) importance of oxygen reductionin photoprotection is discussed. Key words: Water stress, gas exchange, fluorescence quenching, Lycopersicon esculentum, mutant (tomato, aurea), energy dissipation  相似文献   

8.
Callus cultures were initiated from seedling root segments ofmungbean (Vigna radiata (L.) Wilczek var. radiata) cv. K 851on modified PC-L2 basal medium. Growing cells were exposed toincreasing concentrations of NaCl in the medium. A concentrationof 300 mol m–3 NaCl proved completely inhibitory to growthof the calli. On incubation for 25 d, cells which could toleratethis concentration of NaCl grew to form cell clones. Selectedclones were characterized with regard to their growth behaviour,K+, Na+ and free proline content when grown under stress aswell as on normal media and were compared with the normal sensitivecallus. The selected callus was capable of growing on mediumcontaining NaCl at the inhibitory concentration. The K+ contentof the selected callus was lower in the case of the NaCl mediumthan for the normal medium. However, the selected clones maintainedhigher K+ and Na+ levels, with increased salinization comparedwith the wild-type cells. Salt-selected cells accumulated higherlevels of free proline under NaCl stress compared to wild-typecells. Under normal conditions, however, the amounts of freeproline in selected and non-selected calli were comparable. Key words: Vigna radiata, callus culture, NaCl stress  相似文献   

9.
Distinct Cellular and Organismic Responses to Salt Stress   总被引:18,自引:0,他引:18  
We have compared metabolic effects of high salinity betweenplants and cell suspension cultures from the facultative halophyteMesembryanthemum crystallinum (common ice plant). This plantshows developmentally-programmed inducibility for a switch fromC3-photosynthesis to CAM (Crassulacean Acid Metabolism). Themetabolic switch is enhanced by environmental factors such asdrought, low temperature, and, most effectively, soil salinity.CAM induction is dependent on organized leaf tissue and cannotbe elicited by salt stress in suspension culture cells. In contrast,the accumulation of proline [Thomas et al. (1992) Plant Physiol.98: 626] is induced by NaCl in cultured cells as well as inplants and must be considered a cellular response to stress.We have extended our observations to include another trait ofsalt- and low-temperature-stress responses in the ice plant,the accumulation of putative osmoprotective sugars and sugaralcohols. In whole plants the cyclic sugar alcohol, pinitol,accumulates to amounts that approach 1 M during stress, whilein suspension cells no increase in sugar alcohols is observed.The distribution of carbon to different sugars is markedly differentbetween cells and plants under stress. Particularly obviousis the distinction between cell types in the different compositionof sugars and polyols, as exemplified by the epidermal bladdercells of ice plants. Ion contents and the content of sugarsand sugar alcohols of bladder cells indicate that Na+, Cl,pinitol and an unknown carbohydrate compound provide osmoticpressure in these cells, while organic anion concentrationsare low. With the ice plant, we conclude that cells in culturemimic only partly the stress response mechanisms of intact plantsand we hypothesize that communication between different tissuesis required to mount a complete environmental stress response. 4 Present address: Department of Botany Oklahoma State University,Stillwater, OK, 74078, U.S.A.  相似文献   

10.
While nitric oxide (NO)-mediated biological interactions have been intensively studied, the underlying mechanisms of nitrosative stress with resulting pathology remain unclear. Previous studies have demonstrated that NO exposure increases free zinc ions (Zn2+) within cells. However, the resulting effects on endothelial cell survival have not been adequately resolved. Thus the purpose of this study was to investigate the role of altered zinc homeostasis on endothelial cell survival. Initially, we confirmed the previously observed significant increase in free Zn2+ with a subsequent induction of apoptosis in our pulmonary artery endothelial cells (PAECs) exposed to the NO donor N-[2-aminoethyl]-N-[2-hydroxy-2-nitrosohydrazino]-1,2-ethylenediamine. However, NO has many effects upon cell function and we wanted to specifically evaluate the effects mediated by zinc. To accomplish this we utilized the direct addition of zinc chloride (ZnCl2) to PAEC. We observed that Zn2+-exposed PAECs exhibited a dose-dependent increase in superoxide (O2·) generation that was localized to the mitochondria. Furthermore, we found Zn2+-exposed PAECs exhibited a significant reduction in mitochondrial membrane potential, loss of cardiolipin from the inner leaflet, caspase activation, and significant increases in TdT-mediated dUTP nick end labeling-positive cells. Furthermore, using an adenoviral construct for the overexpression of the Zn2+-binding protein, metallothionein-1 (MT-1), we found either MT-1 overexpression or coincubation with a Zn2+-selective chelator, N,N,N',N'-tetrakis(2-pyridylmethyl)ethylene-diamide, in PAECs significantly protected the mitochondria from both NO and Zn2+-mediated disruption and induction of apoptosis and cell death. In summary, our results indicate that a loss of Zn2+ homeostasis produces mitochondrial dysfunction, increased oxidative stress, and apoptotic cell death. We propose that regulation of Zn2+ levels may represent a potential therapeutic target for disease associated with both nitrosative and oxidative stress. reactive nitrogen species; apoptosis mitochondrial dysfunction  相似文献   

11.
It is proposed that surface scums of densely packed planktoniccyanobacteria (blue-green algae) which exist for weeks to months,measure several decimeters in thickness and are covered by acrust of photo-oxidized cells, be called hyperscums. Hyperscumsof Microcystis aeruginosa formed during prolonged periods ofcalm weather in wind-protected sites in a hypertrophic lakesubject to low wind speeds (Hart beespoort Dam, South Africa).A hyperscum that extended over 1–2 hectares and persistedfor 103 days during winter 1983 was studied. Chlorophyll a concentrationsranged from 100 to 300 mg l–2 Microcystis cell concentrationsreached 1.76x109 cells ml–1 or 116 cm3l–1. The hyperscumenvironment was anoxic, aphotic, with a fluctuating temperatureregime and low pH values. The densely packed Microcystis cellssurvived these conditions for more than 2 months. This was shownby comparing the potential photosynthetic capacity of Microcystisfrom the hyperscum with that of Microcystis from the main basinof the lake. However, after 3 months the hyperscum algae losttheir photosynthetic capacity and decomposition processes prevailed.The hyperscum gradually shrank in size until a storm causedits complete disintegration.  相似文献   

12.
Intact wild-type tomato (Lycopersicon esculentum cv. Moneymaker)seeds do not complete germination to the same percentage orat the same speed as intact ABA-deficient sitiens (sitw) mutantseeds when seeds of both genotypes are imbibed on polyethyleneglycol (PEG) solutions of –0.3 to –1.5 MPa osmoticpotential. However, if the thicker testas of wild-type seedsare removed (stripped) from the micropyle without damaging theendosperm, both the percentage and speed of germination at lowexternal water potential are similar to that of sitw mutantseeds. Removing the micropylar end of the testa from sitw seedsdid not enhance either the speed or percentage of germinationon PEG solution. Despite similar germination percentage and speed between strippedwild-type seeds and either stripped or intact sitw seeds underosmotic stress, some differences in seed metabolism are evidentbetween genotypes. The activity of endo-ß-mannanasewas greater in the endosperm of sitw mutant seeds compared tothe endosperm of wild-type seeds when seeds were exposed toosmotic stress. Although  相似文献   

13.
Regulatory volume decrease (RVD) is a protective mechanism that allows mammalian cells to restore their volume when exposed to a hypotonic environment. A key component of RVD is the release of K+, Cl, and organic osmolytes, such as taurine, which then drives osmotic water efflux. Previous experiments have indicated that caveolin-1, a coat protein of caveolae microdomains in the plasma membrane, promotes the swelling-induced Cl current (ICl,swell) through volume-regulated anion channels. However, it is not known whether the stimulation by caveolin-1 is restricted to the release of Cl or whether it also affects the swelling-induced release of other components, such as organic osmolytes. To address this problem, we have studied ICl,swell and the hypotonicity-induced release of taurine and ATP in wild-type Caco-2 cells that are caveolin-1 deficient and in stably transfected Caco-2 cells that express caveolin-1. Electrophysiological characterization of wild-type and stably transfected Caco-2 showed that caveolin-1 promoted ICl,swell, but not cystic fibrosis transmembrane conductance regulator currents. Furthermore, caveolin-1 expression stimulated the hypotonicity-induced release of taurine and ATP in stably transfected Caco-2 cells grown as a monolayer. Interestingly, the effect of caveolin-1 was polarized because only the release at the basolateral membrane, but not at the apical membrane, was increased. It is therefore concluded that caveolin-1 facilitates the hypotonicity-induced release of Cl, taurine, and ATP, and that in polarized epithelial cells, the effect of caveolin-1 is compartmentalized to the basolateral membrane. caveolae; osmolyte; epithelial cell; chloride channel  相似文献   

14.
Cell shrinkageis an early prerequisite in programmed cell death, and cytoplasmicK+ is a dominant cation that controls intracellular ionhomeostasis and cell volume. Blockade of K+ channelsinhibits apoptotic cell shrinkage and attenuates apoptosis. We examined whether apoptotic repressor with caspase recruitment domain (ARC), an antiapoptotic protein, inhibits cardiomyocyte apoptosis by reducing K+ efflux throughvoltage-gated K+ (Kv) channels. In heart-derived H9c2cells, whole cell Kv currents (IK(V)) wereisolated by using Ca2+-free extracellular (bath) solutionand including 5 mM ATP and 10 mM EGTA in the intracellular (pipette)solution. Extracellular application of 5 mM 4-aminopyridine (4-AP), ablocker of Kv channels, reversibly reduced IK(V)by 50-60% in H9c2 cells. The remaining currents during 4-APtreatment may be generated by K+ efflux through4-AP-insensitive K+ channels. Overexpression of ARC inheart-derived H9c2 cells significantly decreasedIK(V), whereas treatment with staurosporine, apotent apoptosis inducer, enhanced IK(V)in wild-type cells. The staurosporine-induced increase inIK(V) was significantly suppressed and thestaurosporine-mediated apoptosis was markedly inhibited incells overexpressing ARC compared with cells transfected with thecontrol neomycin vector. These results suggest that theantiapoptotic effect of ARC is, in part, due to inhibition of Kvchannels in cardiomyocytes.

  相似文献   

15.
Previous experiments have revealed a relatively weak electrostatic binding capacity of in vitro reconstituted intermediate filaments (IFs) as well as of natural IFs of whole cell mount preparations for purified ribosomal particles of mammalian origin. In order to demonstrate that such associations also occur in vivo, intact cells were subjected to double immunofluorescence microscopy using antibodies directed against vimentin and ribosomal protein S17. Since in proliferating cells the majority of the ribosomal particles are assembled into polyribosomes and these are to a great extent associated with microfilaments, in vitro cultured mouse embryo skin fibroblasts (MSF cells) were treated with puromycin to allow the formation of single ribosomes. Employing confocal laser scanning microscopy, the ribosomes were detected in colocalization with vimentin IFs. Disassembly of polyribosomes was also achieved by serum starvation of cultured cells. In this case, MSF cells of a low passage attained an extended and flattened appearance with the vimentin IFs being directly associated with the cell nuclei, radiating into the peripheral areas of the cells or showing a stress fiber-like distribution. In both cases, considerable quantities of ribosomal material were seen in close neighborhood to vimentin IFs. Frequently, these ribosome-IF associations were coaligned with microtubules and they also surrounded myosin I-decorated stress fibers. Double labeling with the vital, RNA-specific fluorochrome SYTO 14 produced a fluorescence pattern largely super-imposable on that of ribosomal protein S17. Treatment of the starved cells with either demecolcine or cytochalasin D had an only moderately disturbing effect on vimentin IF distribution and the ribosomes stayed in contact with the vimentin IFs. On the basis of these results, it is conceivable that IFs play a role in the storage of ribonucleoprotein particles in general and non-translating ribosomes in particular in the cytoplasm of animal cells. In addition, the often seen coalignment of IFs with microtubules and microfilaments might serve facilitated and directional transport of ribonucleoprotein particles from the nucleus to peripheral areas of the cell.  相似文献   

16.
程东美  张志祥  胡美英 《昆虫学报》2007,50(10):1022-1026
研究了闹羊花素Ⅲ对斜纹夜蛾Spodoptera litura离体培养细胞(SL细胞)的活性,并测定了对SL细胞Na+、K+和葡萄糖吸收以及对4龄幼虫血细胞数量的影响。结果表明:以400 µg/mL 和200µg/mL闹羊花素Ⅲ处理SL细胞,24 h后细胞的相对死亡率为79.00% 和56.69%,处理后8 h,16 h,24 h和48 h的LC50分别为240.09 µg/mL,173.45 µg/mL,113.56 µg/mL和73.40 µg/mL;闹羊花素Ⅲ处理SL细胞后10 min,细胞对离子的吸收迅速增加,30 min后吸收作用逐渐减弱;处理后3天内细胞对葡萄糖的吸收迅速增加,4~5 天后,细胞对葡萄糖的吸收基本停止。以叶碟法和注射法处理4龄幼虫,8 h后幼虫血细胞数量显著降低,随处理时间增加,幼虫血细胞数量又逐渐增加。  相似文献   

17.
ATP Binding Cassette (ABC) transporter, ABCA1, plays a pivotal role in reverse cholesterol transport by mediating the cellular efflux of phospholipid and cholesterol. Studies using intact cells strongly suggest that ABCA1 acts as a phospholipid floppase, but there has been no direct demonstration that the protein is a primary active sterol transporter. Using membrane vesicles from insect Sf21 cells, we found that ABCA1 mediated ATP-dependent uptake of [3H]25-hydroxycholesterol with an apparent Km of 0.7 µM. Consistent with this high apparent affinity, expression of ABCA1 in human embryonic kidney cells both increased rapid efflux of 25-hydroxcholesterol and prevented oxysterol-mediated repression of low-density lipoprotein (LDL) receptor and 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase mRNAs. Comparison of wild-type and ABCA1–/– murine fibroblasts indicates that 25-hydroxycholesterol is effluxed 5-fold more rapidly by wild-type cells. In addition, the rate of efflux from the wild-type but not the ABCA1–/– fibroblasts is increased a further twofold by inducers of ABCA1 expression. Thus under the experimental conditions employed, endogenous ABCA1 is a major contributor to 25-hydroxycholesterol efflux from wild-type fibroblasts. Evidence from in vitro studies indicates that oxysterols are potent inducers of genes involved in cellular cholesterol efflux and metabolism, including the ABCA1 gene, and repressors of genes involved in cholesterol synthesis or uptake. Our observations raise the possibility that efflux of oxysterols by ABCA1 could contribute to a homeostatic mechanism, which both attenuates oxysterol-induced expression of its cognate gene and alleviates repression of genes encoding proteins, such as HMG-CoA reductase and LDL receptor. active transport; cholesterol homeostasis  相似文献   

18.
The response ofH+-ATPase to lethal acid stress isunknown. A mutant strain (called NHE2d) was derived from cultured inner medullary collecting duct cells (mIMCD-3 cells) following three cyclesof lethal acid stress. Cells were grown to confluence on coverslips,loaded with2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein, andmonitored for intracellular pH(pHi) recovery from an acid load. The rate of Na+-independentpHi recovery from an acid load inmutant cells was approximately fourfold higher than in parent cells(P < 0.001). TheNa+-independentH+ extrusion was ATP dependent and K+ independent and wascompletely inhibited in the presence of diethylstilbestrol, N, N'-dicyclohexylcarbodiimide,or N-ethylmaleimide. Theseresults indicate that theNa+-independentH+ extrusion in cultured medullarycells is mediated via H+-ATPaseand is upregulated in lethal acidosis. Northern hybridization experiments demonstrated that mRNA levels for the 16- and 31-kDa subunits of H+-ATPase remainedunchanged in mutant cells compared with parent cells. We propose thatlethal acid stress results in increased H+-ATPase activity in innermedullary collecting duct cells. Upregulation ofH+-ATPase could play a protectiverole against cell death in severe intracellular acidosis.

  相似文献   

19.
Mechanical stress (MS) causes cytoskeletal (CSK) and phenotypic changes in cells. Such changes in airway smooth muscle (ASM) cells might contribute to the pathophysiology of asthma. We have shown that periodic mechanical strain applied to cultured ASM cells alters the structure and expression of CSK proteins and increases cell stiffness and contractility (Smith PG, Moreno R, and Ikebe M. Am J Physiol Lung Cell Mol Physiol 272: L20–L27, 1997; and Smith PG, Deng L, Fredberg JJ, and Maksym GN. Am J Physiol Lung Cell Mol Physiol 285: L456–L463, 2003). However, the mechanically induced CSK changes, altered cell function, and their time courses are not well understood. Here we applied MS to the CSK by magnetically oscillating ferrimagnetic beads bound to the CSK. We quantified CSK remodeling by measuring actin accumulation at the sites of applied MS using fluorescence microscopy. We also measured CSK stiffness using optical magnetic twisting cytometry. We found that, during MS of up to 120 min, the percentage of beads associated with actin structures increased with time. At 60 min, 68.1 ± 1.6% of the beads were associated with actin structures compared with only 6.7 ± 2.8% before MS and 38.4 ± 5.5% in time-matched controls (P < 0.05). Similarly, CSK stiffness increased more than twofold in response to the MS compared with time-matched controls. These changes were more pronounced than observed with contractile stimulation by 80 mM KCl or 10–4 M acetylcholine. Together, these findings imply that MS is a potent stimulus to enhance stiffness and contractility of ASM cells through CSK remodeling, which may have important implications in airway narrowing and dilation in asthma. mechanical stress; actin cytoskeleton; stiffness; airway smooth muscle cell; optical magnetic twisting cytometry; airway constriction and dilation; asthma  相似文献   

20.
Cancalon  Paul 《Chemical senses》1978,3(4):381-396
A preparation enriched in olfactory receptor cells has beenobtained from the olfactory mucosa of the catfish (Ictaluruspunctatus). The tissue was treated successively with trypsin,DNase, trypsin inhibitor, EDTA in Ca+ + , Mg+ + free mediumaccording to a method derived from that of Cohen, et al.(1).After mechanical disruption of the isolated olfactory lamellae,the cells were isolated by centrifugation on a Ficoll gradient.Each type of cell was morphologically identified by comparingin situ and in vitro preparations by SEM. Small round cellswere collected on 10% Ficoll. The nature of these cells is notknown but part of them are certainly basal cells which havebeen shown(2) to be the precursors of the constantly regeneratingolfactory neurons. Respiratory cells settled mainly on 20% Ficoll.A fraction containing 60% sustentacular cells was collectedon 33% Ficoll. Olfactory cells characterized by an axon, a dendriteand several cilia, were found on 37% Ficoll. This fraction alsocontains up to 40% sustentacular cells. A yield of 20% was measuredfor olfactory cell isolation. Vital staining and ability tosynthesize RNA indicate a viability of the final preparationof 70% to 80%. Further identification of the cells was performedby measuring the binding activity of a series of amino acidsto a preparation enriched in olfactory cells. A good correlationwas determined between the extent of the binding and the reportedelectrophysiological activities of these amino acids recordedin vivo. Although the final olfactory cell suspension is notpure, it constitutes the first step in the study of the olfactoryreceptor sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号