首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to investigate the effects of moderate-intensity static magnetic field (SMF) on diabetic mice. We studied the effects of SMF on blood glucose of normal mice by starch tolerance and glucose tolerance tests. Then, we evaluated the effects of SMF on blood glucose of diabetic mice by establishing alloxan-induced type 1 diabetic mice and high-fat diet + streptozotocin (STZ)-induced type 2 diabetic mice. The results showed that different magnetic field intensities and blank control did not affect the blood glucose of normal mice. After starch and glucose administration, different magnetic fields could improve the glucose tolerance of normal mice, and this was obvious in the 600 mT group. In the experiment of type 1 diabetic mice induced by alloxan, the results showed that different magnetic field intensities could improve the starch tolerance of mice, and that in the 400 mT group was obvious. In the experiment of type 2 diabetic mice induced by a high-fat diet + STZ, the 400 mT group could reduce food intake and water consumption in the later period. The 600 mT group could improve the starch tolerance of mice. The 400 and 600 mT groups could reduce fasting blood glucose. At the same time, total cholesterol and triglyceride decreased in different magnetic field intensities, and the 600 mT group could significantly increase the serum insulin content of mice. In summary, the results of this study suggest that SMF has a protective role in diabetic mice. Bioelectromagnetics. © 2020 Bioelectromagnetics Society  相似文献   

2.
To clarify whether oxidative stress is involved in the pathogenesis of islet lesions of diabetic animals, the effects of probucol (PB), an antioxidant and anti-hyperlipidemia agent, on the islets in streptozotocin (SZ)-induced diabetic APA hamsters in the acute and chronic phases of diabetes were examined. The control (CB group) and diabetic (SZ group) hamsters were treated with PB (1% in the diet) for 4 weeks from several days after SZ injection as the acute diabetic group, or 8 weeks from 6 weeks after SZ injection as the chronic diabetic group. Glucose tolerance test revealed that PB treatment decreased the high serum glucose level after glucose injection in the diabetic APA hamsters in the acute diabetic phase. Immunohistochemistry revealed that PB treatment significantly increased the percentage of the insulin positive area in the diabetic hamsters pancreata in both the acute and chronic phases. In addition, 4-hydroxy-2-nonenal (4HNE; an oxidative stress marker) positive cells were slightly reduced by PB treatment in the acute diabetic phase. Double-immunostaining for insulin and PCNA (proliferating cell nuclear antigen) revealed that elevation of the percentage of insulin and PCNA double-positive cells against insulin-positive cells was seen in the islets of PB-treated diabetic hamsters, but the difference was not significant compared with untreated diabetic hamsters (p = 0.07). In semi-quantitative RT-PCR, the expression of two genes, Reg (Regenerating gene) and INGAP (islet neogenesis associated protein), in the diabetic APA hamsters was significantly increased compared to the control groups in both diabetic phases. PB treatment significantly reduced Reg expression in the chronic diabetic phase. These data suggest that PB treatment in SZ-injected diabetic hamsters partially restored beta-cell function through acting as an antioxidant and induced higher expression of Reg and INGAP genes in the pancreas of hamsters.  相似文献   

3.
Neonatally streptozotocin-induced diabetic (n-STZ) rats were given food containing Lactobacillus GG cells (GG) or a control diet (control), from 9 to 18 weeks of age. The GG cells significantly lowered the blood hemoglobin A(1C) (HbA(1C)) level and improved glucose tolerance in n-STZ rats (p<0.05). In the GG group, the serum insulin level at 30 min after glucose loading was significantly higher than in the control group (p<0.05).  相似文献   

4.
Neonatally streptozotocin-induced diabetic (n-STZ) rats were given food containing Lactobacillus GG cells (GG) or a control diet (control), from 9 to 18 weeks of age. The GG cells significantly lowered the blood hemoglobin A1C (HbA1C) level and improved glucose tolerance in n-STZ rats (p<0.05). In the GG group, the serum insulin level at 30 min after glucose loading was significantly higher than in the control group (p<0.05).  相似文献   

5.
Glucagon-like peptide-1 (GLP-1) receptor agonists potentiate glucose-induced insulin secretion. In addition, they have been reported to increase pancreatic beta cell mass in diabetic rodents. However, the precise mode of action of GLP-1 receptor agonists still needs to be elucidated. Here we clarify the effects of the human GLP-1 analog liraglutide on beta cell fate and function by using an inducible Cre/loxP-based pancreatic beta cell tracing system and alloxan-induced diabetic mice. Liraglutide was subcutaneously administered once daily for 30 days. The changes in beta cell mass were examined as well as glucose tolerance and insulin secretion. We found that chronic liraglutide treatment improved glucose tolerance and insulin response to oral glucose load. Thirty-day treatment with liraglutide resulted in a 2-fold higher mass of pancreatic beta cells than that in vehicle group. Liraglutide increased proliferation rate of pancreatic beta cells and prevented beta cells from apoptotic cells death. However, the relative abundance of YFP-labeled beta cells to total beta cells was no different before and after liraglutide treatment, suggesting no or little contribution of neogenesis to the increase in beta cell mass. Liraglutide reduced oxidative stress in pancreatic islet cells of alloxan-induced diabetic mice. Furthermore, the beneficial effects of liraglutide in these mice were maintained two weeks after drug withdrawal. In conclusion, chronic liraglutide treatment improves hyperglycemia by ameliorating beta cell mass and function in alloxan-induced diabetic mice.  相似文献   

6.
目的研究表没食子儿茶素没食子酸酯(EGCG)对自发性2型糖尿病GK大鼠的胰岛素抵抗的影响及作用机制。方法 自发性2型糖尿病GK大鼠40只,同系健康对照Wistar大鼠10只,大鼠随机分为:正常对照组、2型糖尿病对照组、2型糖尿病低剂量EGCG(50 mg/kg)治疗组、中剂量(100 mg/kg)组、高剂量EGCG(300 mg/kg)组。干预6周后,分别检测葡萄糖耐量试验、胰岛素耐受试验、肝脏GcK、G6P以及PEPCKmRNA表达情况,以及骨骼肌细胞膜GLUT4含量的变化。结果各剂量治疗组的糖耐量均得到明显改善(P〈0.05),胰岛素耐量在240 min时较模型对照组有明显差异(P〈0.05)。与模型组比较,低剂量和中剂量治疗组均能提高肝脏葡萄糖激酶(GcK)mRNA的表达(P〈0.05),同时抑制葡萄糖-6-磷酸酶(G6P)和磷酸烯醇式丙酮酸激酶(PEPCK)mRNA的表达(P〈0.05);高剂量治疗组肝脏三类酶mRNA的表达与模型对照组相比无明显差异。各剂量治疗组GK大鼠的骨骼肌细胞膜GLUT4的含量较模型对照组均具有明显上调(P〈0.05)。结论中低剂量EGCG可以改善GK大鼠胰岛素抵抗,其作用机制可能与抑制肝脏糖异生作用以及骨骼肌GLUT4的转位水平有关,并且EGCG具有代偿胰岛素的作用。  相似文献   

7.
The aim of our study was to investigate the role of bone marrow cells in the phenotypic changes that occur in diabetic nephropathy. Bone marrow cells were obtained from either streptozotocin-induced diabetic or untreated control C3H/He mice and transplanted into control C3H/He mice. Eight weeks after bone marrow cell transplantation, renal morphologic changes and clinical parameters of diabetic nephropathy, including the urine albumin/creatinine ratio and glucose tolerance, were measured in vivo. Expression levels of the genes encoding α1 type IV collagen and transforming growth factor-β1 in the kidney were assayed. Our results demonstrated that glucose tolerance was normal in the recipients of bone marrow transplants from both diabetic and control donors. However, compared with recipients of the control bone marrow transplant, the urinary albumin/creatinine ratio, glomerular size, and the mesangial/glomerular area ratio increased 3.3-fold (p < 0.01), 1.23-fold (p < 0.01), and 2.13-fold (p < 0.001), respectively, in the recipients of the diabetic bone marrow transplant. Expression levels of the genes encoding glomerular α1 type IV collagen and transforming growth factor-β1 were also significantly increased (p < 0.01) in the recipients of the diabetic bone marrow transplant. Our data suggest that bone marrow cells from the STZ-induced diabetic mice can confer a diabetic phenotype to recipient control mice without the presence of hyperglycemia.  相似文献   

8.
For erection to take place, the penile arteries and sinusoids have to dilate, thereby increasing the blood flow into the penis. There is increasing evidence that release of l-arginine derived nitric oxide (NO) from nonadrenergic-noncholinergic (NANC) nerves and from the sinusoidal endothelium is a major event in penile smooth muscle relaxation and promotes the endogenous formation of cyclic guanosine monophosphate (cGMP). Nitrovasodilators can be attributed to the activation of soluble guanylate cyclase, resulting in an increase in intracellular level of cyclic guanosine monophosphate, but prolonged exposure to high levels of nitroglycerine and other organic nitroesters induces tolerance against the cardiovascular effect. In this study, the aim was to determine the effect of diabetes on the corporal smooth muscle relaxant effect of ISDN and the effect of diabetes on the process of tolerance to the drug. For this purpose, alloxan-induced diabetic rabbits were used to form diabetes group. The responses of the corpus cavernous strips obtained from control and alloxan-induced diabetic rabbit were studied in organ chamber. In conclusion, prolonged in vitro exposure of corpus cavernosum strips obtained from control and diabetic groups to high concentrations of ISDN caused significant desensitization to the relaxant effect the drug. So, prolonged exposure of corporal tissue to the agents like nitroglycerine, used for treatment of impotence, may render ineffective the therapy in diabetic erectile impotence. However, intolerance to nitric oxide provides a rationale for the concept of using nitro oxide agents (like SNP) in the treatment of diabetic erectile dysfunction.  相似文献   

9.
Insulinotropic peptide agents are regarded as potential candidates for anti‐diabetic treatment. In the present study, a novel insulinotropic peptide, termed OA‐A1, was purified from frog skin secretions of Odorrana andersonii. Mature OA‐A1 was determined to be a 1965.049 Da peptide with an amino acid sequence of LVGKLLKGAVGDVCGLLPIC, in which an intramolecular disulfide bridge was formed by two cysteine residues. At the cellular level, OA‐A1 exhibited potent proliferation promoting effects on mouse‐derived pancreatic β‐TC‐6 cells and significantly stimulated insulin release in β‐TC‐6 cells at a minimum concentration of 1 nM. In the animal model, OA‐A1 also showed a dose‐dependent insulin‐releasing role in mice. At concentrations ranging from 1 nmol/kg to 1 μmol/kg, OA‐A1 had a significant acute hypoglycemic effect on streptozotocin (STZ)‐induced diabetic mice. The pancreatic islet areas of diabetic mice increased dose‐dependently after 21 days of OA‐A1 treatment (1–100 nmol/kg) compared with those of the saline control group. Moreover, OA‐A1 significantly improved the oral glucose tolerance of STZ‐induced diabetic mice. Taken together, these results suggest that OA‐A1 provides an excellent template for the development of novel anti‐diabetic therapeutic agents. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
The growth hormone response during standard 5-hr oral glucose tolerance tests was studied in three groups: normals, hypoglycemia-prone diabetics, and an age-weight-matched stable diabetic group. The stable diabetic and normal groups had significant (P less than 0.02) growth hormone responses at the 4-hr and 5-hr determinations during the tests, while the hypoglycemiaphone diabetic group failed to respond. The 4-hr and 5-hr growth hormone levels in this group were significantly (P less than 0.05) below the levels in the stable diabetics and normals. These data suggest that growth hormone responses differ in subgroup within the diabetic population.  相似文献   

11.
The aim of this study was to evaluate the effect of insulin on the release of vWf in vivo during an oral glucose tolerance test (OGTT) performed in normal, glucose-intolerant and diabetic subjects and in vitro on human endothelial cells. Twenty-eight subjects exhibiting risk factors for diabetes underwent an OGTT: 11 subjects proved to be normal, 7 were glucose-intolerant and 10 diabetic. In each group, the vWf and PAI-1 plasmatic levels were measured at t = 0, 30 min and 180 min after the beginning of the test. Human endothelial cells from non-diabetic and diabetic subjects were incubated in the presence of human insulin at various concentrations (0.25, 2.5, 25 and 250 mUI/ml). After 1, 4, and 24 hours of incubation, the release of vWf and endothelin 1 was measured in the cell supernatant and the intracellular amount of vWf in the cell lysate. During the OGTT, the vWf levels in plasma were not affected despite a 4.5-, 6-, and 2.5-fold increase in insulin levels in normal, glucose-intolerant and diabetic subjects, respectively. Although raised in all three groups, PAI-1 plasmatic levels remained constant during the test. After 24 hours of exposure to insulin (0.25 mU/ml), the release of vWf by endothelial cells reached 35.94 +/- 23.08 % of the basal value for non-diabetic subjects, and 27.57 +/- 10.05 % for diabetic patients. Similar results were observed in non-stimulated cells. Insulin had no influence on intracellular vWf content, which remained comparable to control values. Regardless of its concentration, insulin failed to stimulate the release of vWf by endothelial cells of non-diabetic and diabetic subjects, while its ability to stimulate the release of endothelin 1 was preserved. In conclusion, hyperinsulinemia had no adverse effect on circulating vWf in normal or diabetic subjects. Neither release nor intracellular vWf content in non-diabetic or diabetic endothelial cells was influenced by insulin in vitro.  相似文献   

12.
The antidiabetic effect of dahi was observed on high-fructose-induced diabetic rats. The fasting blood glucose, glycosylated haemoglobin, insulin, free fatty acids and triglyceride levels of the dahi fed group animals were significantly lower than those of the control group (p<0.05). The imparity of the glucose tolerance test was also delayed by one week in the dahi-fed animals.  相似文献   

13.
Current therapy for type 1 diabetes mellitus involves a daily regimen of multiple subcutaneous or intramuscular injections of recombinant human insulin. To achieve long-term insulin delivery in vivo, we investigated the applicability of cytomedical therapy using beta TC6 cells or MIN6 cells, both of which are murine pancreatic beta cell lines that secrete insulin in a subphysiologically or physiologically regulated manner, respectively. We examined this therapy in the insulinopenic diabetic mice intraperitoneally injected with beta TC6 cells or MIN6 cells microencapsulated within alginate-poly(L)lysine-alginate membranes (APA-beta TC6 cells or APA-MIN6 cells). The diabetic mice treated with APA-beta TC6 cells fell into hypoglycemia, whereas those injected with APA-MIN6 cells maintained normal blood glucose concentrations for over 2 months without developing hypoglycemia. In addition, we also conducted an oral glucose tolerance test using these mice. The blood glucose concentrations of normal and of diabetic mice injected with APA-MIN6 cells similarly changed over time, although the blood insulin concentration increased later in the injected diabetic mice than in the former. These results suggest that cytomedicine utilizing microencapsulated pancreatic beta cell lines with a physiological glucose sensor may be a beneficial and safe therapy with which to treat diabetes mellitus.  相似文献   

14.
Mechanically prepared isolated islets of Langerhans were cryopreserved in liquid nitrogen for a period of 4 days. Intraportal autotransplantation studies were performed on two groups of six pigs rendered diabetic by total pancreatectomy (group 2) or by partial pancreatectomy combined with streptozotocin (group 4) and compared with two control groups (groups 1 and 3, respectively). The pigs were assessed for survival, weight gain, glycosuria, polyuria, systemic blood sugar and insulin, and, in selected pigs, intravenous glucose tolerance tests. Results showed that partial pancreatectomy with streptozotocin was the better tolerated experimental diabetes. Variable control of hyperglycemia was obtained over an experimental period of 3 months. Random blood glucose returned to normal in one of six pigs in the totally pancreatectomized group and three of six pigs in the partial pancreatectomy and streptozotocin group. Despite these normal circulating glucose levels, imperfect glucose homeostasis was achieved as shown by the response to glucose tolerance testing. These results report blood glucose control after cryopreserved islet autotransplants in diabetic pigs but further study is still necessary to achieve consistency.  相似文献   

15.
Our first aim was to determine the effects of secreted clusterin (sCLU) and nuclear clusterin (nCLU) in diabetic nephropathy. We also aimed to investigate the post-effects of angiotensin II blockage treatment on clusterin expression and to compare these with apoptosis. Five groups of Wistar albino rats were used: First group consisted of healthy controls; the second group included the untreated STZ-diabetics; 30 days of irbesartan or perindopril treated STZ-diabetics formed the third and the fourth groups, respectively; while the subjects receiving a combined treatment with irbesartan and perindopril for 30 days consisted the fifth group. TUNEL method for apoptosis and immunohistochemical staining for TGF-β1, α-SMA, clusterin-β and clusterin-α/β antibodies were performed. Apoptotic cells especially increased in the kidney tubuli of untreated diabetic group and on the contrary, a significant decrease was observed in the group that received a combined drug treatment. While sCLU was increased in the glomeruli and tubuli of the untreated diabetic group, it was decreased in all the treated groups. An increase in the nCLU immunoreactivity was observed in the podocytes, mesangial cells, and the injured tubule cells of the untreated diabetic group. nCLU immunopositive cells were decreased in all treated diabetic groups. In addition to this, the distribution of nCLU was similar to the distribution of apoptotic cells in the diabetic groups. Our results indicate that sCLU expression in diabetic nephropathy was induced due to renal tissue damage, and the nCLU expression increase in renal tubuli was related to apoptosis. Although irbesartan and perindopril prevented further renal injury in diabetes, a combined application of low-dose ACEI and AT1R blockers revealed more efficient measures, by means of renal damage prevention.  相似文献   

16.
The association of obesity with type 2 diabetes mellitus has been recognized for years. In type 2 diabetes, there is a possibility that an important part of the impaired insulin secretion is due to the gastric inhibitory polypeptide (GIP) hormone. This study investigated changes that occur in the pancreatic GIP receptors' (GIP-Rs) expression and in GIP secretion in obese and type 2 diabetic rats and its relation to plasma glucose and insulin levels during oral glucose tolerance test (OGTT) compared to control rats. During the first 20 min of the OGTT, both the obese and the diabetic rats had a significant increase in the glucose excursion and a significant decrease in early-insulin secretion compared to the control group, with more prominent changes in the diabetic group. The obese rats had a significant increase in fasting GIP level and in the incremental change of GIP from 0 to 20 min (GIP Delta 0-20: 60.1 + or - 6.66 pmol/l) compared to that of the control (33.96 + or - 4.69 pmol/l) and the diabetic (29.34 + or - 2.62 pmol/l) group, which were not significantly different from each other. However, there was a significant decrease in GIP-Rs expression in both the obese (88.07 + or - 10.36 microg/ml) and diabetic (87.51 + or - 4.72 microg/ml) groups compared to the control group (120.35 + or - 8.06 microg/ml). During the second hour of the OGTT, plasma GIP was decreasing in all groups, however, the obese group had a significant hyperinsulinemia compared to the other two groups. Moreover, the diabetic group had a significantly lower plasma insulin level until the 90 min interval and thereafter it showed a non-significant difference compared to the control group. In conclusion, both obese and diabetic rats had an impaired early-phase insulinotropic effect of GIP due to impaired gene expression of GIP-Rs which could be a potential target to prevent transition of obesity to diabetes and to improve insulin secretion in the latter.  相似文献   

17.
Twenty-two hypertensive diabetic patients were admitted to a double-blind, within-patient study, and treated with propranolol 80 mg and metoprolol 100 mg twice daily for 4 weeks according to a cross-over design. Dosages of the two drugs such as to induce comparable cardiovascular effects, did not induce relevant changes of fasting blood glucose levels in patients receiving the oral hypoglycaemic agent glibenclamide (group 1), insulin (group 2) or diet alone (group 3). Glucose tolerance, assessed with a 75 g oral load, was however decreased by propranolol, and not by metoprolol in the glibenclamide-treated group. Glucose-induced insulin secretion was reduced by propranolol and not by metoprolol both in the group treated by diet alone and in the glibenclamide-treated group. It is concluded that cardioselective metoprolol seems to be more suitable than the non-selective propranolol in the treatment of arterial hypertension in diabetic subjects, particularly when sulfonylureas are being used as hypoglycaemic agents.  相似文献   

18.
The purpose of this study was to assess the effects of low-dose ursolic acid (UA) on glycemic regulation and immune responses in streptozotocin–nicotinamide (STZ/NA)-induced diabetic mice. Diabetic mice were supplemented with two different doses of UA (0.01 and 0.05%, w/w) or metformin (0.5%, w/w) for 4 weeks. Compared with the untreated diabetic group, UA and metformin significantly improved blood glucose, glycosylated hemoglobin, glucose tolerance, insulin tolerance and plasma leptin levels as well as aminotransferase activity. The plasma and pancreatic insulin concentrations were significantly higher in both UA groups than in the untreated diabetic group. Supplementation with metformin increased the pancreatic insulin level without a change in the plasma insulin level. The relative thymus weights were lower in the untreated diabetic group compared to the non-diabetic group; however, the UA or metformin group had significantly improved thymus weights. Mice receiving UA or metformin supplementation had increased CD4+CD8+ subpopulations in the thymus compared to the untreated diabetic mice. Concanavalin A-stimulated splenic T-lymphocyte proliferation and single-positive (CD4+ and CD8+) subpopulations were significantly higher in the UA-supplemented diabetic groups than in the untreated diabetic group, but lipopolysaccharide-stimulated B-lymphocyte proliferation and the CD19+ subpopulation were not significantly different among the groups. In the STZ/NA-induced diabetic mice, metformin increased the splenic T-lymphocyte CD4+ and CD8+ cell numbers without any change in T-lymphocyte proliferation. Both doses of UA lowered splenic IL-6 levels, whereas metformin increased IFN-γ, IL-6 and TNF-α levels compared to the untreated diabetic mice. These results suggest that low-dose UA may be used as a hypoglycemic agent and immune modulator in non-obese type 2 diabetic mice.  相似文献   

19.
Type 1 diabetes is an autoimmune disorder caused by autoreactive T cells that mediate destruction of insulin-producing beta cells of the pancreas. Studies have shown that T cell tolerance can be restored by inducing a partial or altered signal through the TCR. To investigate the potential of bivalent peptide-MHC class II/Ig fusion proteins as therapeutics to restore Ag-specific tolerance, we have developed soluble peptide I-A(g7) dimers for use in the nonobese diabetic mouse model of diabetes. I-A(g7) dimers with a linked peptide specific for islet-reactive BDC2.5 TCR transgenic CD4(+) T cells were shown to specifically bind BDC2.5 T cells as well as a small population of Ag-specific T cells in nonobese diabetic mice. In vivo treatment with BDC2.5 peptide I-A(g7) dimers protected mice from diabetes mediated by the adoptive transfer of diabetogenic BDC2.5 CD4(+) T cells. The dimer therapy resulted in the activation and increased cell death of transferred BDC2.5 CD4(+) T cells. Surviving cells were hypoproliferative to challenge by Ag and produced increased levels of IL-10 and decreased levels of IFN-gamma compared with cells from control I-A(g7) dimer-treated mice. Anti-IL-10R therapy reversed the tolerogenic effects of the dimer. Thus, peptide I-A(g7) dimers induce tolerance of BDC2.5 TCR T cells through a combination of the induction of clonal anergy and anti-inflammatory cytokines.  相似文献   

20.
The aim of this study was to determine the effects of balanced deep-sea water (BDSW) on hyperglycemia and glucose intolerance in streptozotocin (STZ)-induced diabetic mice. BDSW was prepared by mixing DSW mineral extracts and desalinated water to yield a final hardness of 1000–4000 ppm. Male ICR mice were assigned to 6 groups; mice in each group were given tap water (normal and STZ diabetic groups) or STZ with BDSW of varying hardness (0, 1000, 2000, and 4000 ppm) for 4 weeks. The STZ with BDSW group exhibited lowered fasting plasma glucose levels than the STZ-induced diabetic group. Oral glucose tolerance tests showed that BDSW improves impaired glucose tolerance in STZ-induced diabetic mice. Histopathological evaluation of the pancreas showed that BDSW restores the morphology of the pancreatic islets of Langerhans and increases the secretion of insulin in STZ-induced diabetic mice. Quantitative real-time PCR assay revealed that the expression of hepatic genes involved in gluconeogenesis, glucose oxidation, and glycogenolysis was suppressed, while the expression of the genes involved in glucose uptake, β-oxidation, and glucose oxidation in muscle were increased in the STZ with BDSW group. BDSW stimulated PI3-K, AMPK, and mTOR pathway-mediated glucose uptake in C2C12 myotubes. BDSW increased AMPK phosphorylation in C2C12 myotubes and improved impaired AMPK phosphorylation in the muscles of STZ-induced diabetic mice. Taken together, these results suggest that BDSW is a potential anti-diabetic agent, owing to its ability to suppress hyperglycemia and improve glucose intolerance by modulating glucose metabolism, recovering pancreatic islets of Langerhans and increasing glucose uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号