首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report NMR studies of transient hydrogen bonding in a polysaccharide (PS) dissolved in water without cosolvent at ambient temperature. The PS portion of the Escherichia coli O142 lipopolysaccharide is comprised of repeating pentasaccharide units of GalNAc (N-acetyl galactosamine), GlcNAc (N-acetyl glucosamine), and rhamnose in a 3:1:1 ratio, respectively. A 105-ns molecular dynamics (MD) simulation on one pentasaccharide repeat unit predicts transient inter-residue hydrogen bonds from the GalNAc NH groups in the PS. To investigate these predictions experimentally, the PS was uniformly 13C,15N enriched and the NH, carbonyl, C2, C4, and methyl resonances of the GalNAc and GlcNAc residues assigned using through-bond triple-resonance NMR experiments. Temperature dependence of amide NH chemical shifts and one-bond NH J couplings support that NH groups on two of the GalNAc residues are donors in transient hydrogen bonds. The remaining GalNAc and GlcNAc NHs do not appear to be donors from either temperature-dependent chemical shifts or one-bond NH J couplings. These results substantiate the presence of weak or partial hydrogen bonds in carbohydrates, and that MD simulations of repeating units in PSs provide insight into overall PS structure and dynamics. Published 2011 Wiley Periodicals, Inc. Biopolymers 97: 145–154, 2012.  相似文献   

2.
The three-dimensional structure of a cyclic enterobacterial common antigen (ECA) having four trisaccharide repeating units has been investigated by NMR spectroscopy and molecular dynamics simulations. Three different NMR parameters were determined: (a) (1)H,(1)H cross-relaxation rates from NOE experiments were used for determination of proton-proton distances; (b) trans-glycosidic (3)J(C,H) scalar coupling constants analyzed via a Karplus-type relationship provided information on torsion angles; and (c) (1)H,(13)C one-bond dipolar couplings obtained in a dilute liquid-crystalline medium were interpreted in terms of the orientational order and molecular conformations. The molecular dynamics simulations of the dodecasaccharide were performed with explicit water and counterions, which are important factors that strongly influence molecular conformation. Subsequently, the results from computer simulation were used to generate a three-dimensional structure of the cyclic ECA which is consistent with the experimental NMR parameters.  相似文献   

3.
A new heteropolysaccharide, HEPF3, was isolated from the fruiting bodies of Hericium erinaceus. HEPF3 has a molecular weight of 1.9 x 10(4) Da and is composed of fucose and galactose in a ratio of 1:4.12. Compositional analysis, methylation analysis, together with 1H and 13C NMR spectroscopy established that HEPF3 consists of a branched pentasaccharide repeating unit with the following structure: [structure: see text]. HEPF3 also contains a minor proportion of 3-O-methylrhamnose that is thought to terminate the polymer main chain.  相似文献   

4.
The structure of the O-antigenic polysaccharide (PS) from the enteroaggregative Escherichia coli strain 522/C1 has been determined. Component analysis and (1)H and (13)C NMR spectroscopy techniques were used to elucidate the structure. Inter-residue correlations were determined by (1)H,(1)H-NOESY and (1)H,(13)C-heteronuclear multiple-bond correlation experiments. The PS is composed of pentasaccharide repeating units with the following structure: [ structure: see text]. Analysis of NMR data reveals that on average the PS consists of four repeating units and indicates that the biological repeating unit contains an N-acetylgalactosamine residue at its reducing end. Serotyping of the E. coli strain 522/C1 showed it to be E. coli O 178:H7. Determination of the structure of the O-antigen PS of the international type strain from E. coli O 178:H7 showed that the two polysaccharides have identical repeating units. In addition, this pentasaccharide repeating unit is identical to that of the capsular polysaccharide from E. coli O9:K 38, which also contains O-acetyl groups.  相似文献   

5.
The structure of the O-antigen polysaccharide from Escherichia coli O172 has been determined. In combination with sugar analysis, NMR spectroscopy shows that the polysaccharide is composed of pentasaccharide repeating units. Sequential information was obtained by mass spectrometry and two-dimensional NMR techniques. An O-acetyl group was present as 0.7 equivalent per repeating unit. Treatment of the O-deacetylated polysaccharide with aqueous 48% hydrofluoric acid rendered cleavage of the phosphodiester in the backbone of the polymer and the pentasaccharide isolated after gel permeation chromatography was structurally characterized. Subsequent NMR experiments on polymeric materials revealed the structure of the repeating unit of the O-polysaccharide from E. coli O172 as:-->P-4)-alpha-D-Glcp-(1-->3)-alpha-L-FucpNAc-(1-->3)-alpha-D- GlcpNAc-(1-->3)-alpha-L-FucpNAc-(1-->4)-alpha-D-Glcp6Ac-(1-->  相似文献   

6.
Cronobacter dublinensis (formerly Enterobacter sakazakii) HPB 3169 is a pathogenic Gram-negative bacterium that produces a smooth-type lipopolysaccharide in which the antigenic O-polysaccharide component was determined to be a repeating pentasaccharide unit composed of L-rhamnose; 2-acetamido-2-deoxy-D-glucose; 3,6-dideoxy-3-(R)-3-hydroxybutyramido-D-glucose; and 3-deoxy-manno-oct-2-ulosonic acid in the respective molar ratio 2:1:1:1. Chemical and 2D NMR analyses of the O-polysaccharide and a pentasaccharide derived by the mild acid hydrolysis of the ketosyl linkage of the Kdo (3-deoxy-D-manno-2-octulosonic acid) residue in the O-polysaccharide established that the O-antigen is a high molecular mass unbranched polymer of a repeating pentasaccharide unit and has the structure [see formula in text] where Bu is a (R)-3-hydroxybutanoyl substituent. The O-antigen is structurally similar to that of the recently reported Cronobacter sakazakii strain G706 (designated as serotype O5), except that in strain G706 the d-Qui3N is in its N-acetyl form, in contrast to its presence as a 3-deoxy-3-(R)-3-hydroxybutyramido derivative in the C. sakazakii HPB 3169 strain O-antigen.  相似文献   

7.
The O-antigen of the lipopolysaccharide from Escherichia coli O166 has been determined by component analysis together with 1D and 2D NMR spectroscopy techniques. The polysaccharide has pentasaccharide repeating units consisting of D-glucose (1), D-galactose (2) and N-acetyl-D-galactosamine (2) with the following structure: [STRUCTURE: SEE TEXT]. In the 1H NMR, spectrum resonances of low intensity were observed. Further analysis of these showed that they originate from the terminal part of the polysaccharide, thereby revealing that the repeating unit has a 3-substituted N-acetyl-D-galactosamine residue at its reducing end.  相似文献   

8.
Fan J  Zhang J  Tang Q  Liu Y  Zhang A  Pan Y 《Carbohydrate research》2006,341(9):1130-1134
A water-soluble fucogalactan (CMP3), with a molecular mass of 1.03 x 10(4) Da as determined by high-performance size-exclusion chromatography (HPSEC), was obtained from the crude intracellular polysaccharide of Coprinus comatus mycelium. Its chemical structure was characterized by sugar and methylation analysis along with 1H and 13C NMR spectroscopy, including NOESY and HMBC experiments for linkage and sequence analysis. The polysaccharide is composed of a pentasaccharide repeating unit with the following structure: [structure:see text].  相似文献   

9.
The synthesis and conformational analysis of a pentasaccharide corresponding to a fragment of the cell-wall polysaccharide (CWPS) of the bacteria Streptococcus Group A are described. The polysaccharide consists of alternating alpha-(1 --> 2)- and alpha-(1 --> 3)-linked L-rhamnopyranose (Rhap) residues with branching 2-acetamido-2-deoxy-D-glucopyranose (GlcpNAc) residues linked beta-(1 --> 3) to alternate rhamnose rings. The pentasaccharide is of interest as a possible terminal unit on the CWPS, for use in a vaccine. The syntheses employed a trichloroacetimidate glycosyl donor. Molecular dynamics (MD) calculations of the pentasaccharide with the force fields CVFF and PARM22, both in gas phase and with explicit water present, gave different predictions for the flexibility and preferred conformational space. Metropolis Monte Carlo (MMC) calculations with the HSEA force field were also performed. Experimental data were obtained from 1D transient NOE measurements. Complete build-up curves were compared to those obtained by full relaxation matrix calculations in order to derive a model of the conformation. Overall, the best fit between experimental and calculated data was obtained with MMC simulations using the HSEA force field. Molecular dynamics and MMC simulations of a tetrasaccharide corresponding to the Group A-variant polysaccharide, which differs in structure from Group A in lacking the GlcpNAc residues, were also performed for purposes of comparison.  相似文献   

10.
The structures of the O-antigenic part of the lipopolysaccharides from Shigella dysenteriae type 3 and Escherichia coli O124 have been reinvestigated. (1)H and (13)C NMR spectroscopy in combination with selected 2D NMR techniques were used to determine the O-antigen pentasaccharide repeating units with the following structure: [see text]. From biosynthetic considerations this should also be the biological repeating unit. The structures of the repeating units also explain the previously observed cross-reactivity between the strains and to E. coli O164, which only differs in the terminal sugar residue that is lacking the (R)-1-carboxyethyl group.  相似文献   

11.
We have derived oligosaccharides from the capsular polysaccharide of type III group B Streptococcus by enzymatic hydrolysis of a specific backbone glycosidic bond utilizing an endo-beta-galactosidase from Flavobacterium keratolyticus. Enzymatic digestion of the polysaccharide produced oligosaccharide fragments of one or more pentasaccharide repeating units. On the basis of 13C NMR, 1H NMR, and methylation analyses, it was established that the smallest digestion fragment was alpha-D-NeupNAc-(2----3)-beta-D-Galp-(1----4)-[beta-D-Glcp-(1----6 )]- beta-D-GlcpNAc-(1----3)-beta-D-Gal. The isolation of this oligosaccharide is consistent with the susceptibility of the beta-D-Galp-(1----4)-beta-D-Glcp linkage in the backbone of the type III group B streptococcal polysaccharide and confirms that the polysaccharide is composed of a pentasaccharide repeating unit. High resolution 13C NMR spectroscopic studies indicated that, as in the case of the pentasaccharide, the terminal sialic acid residues of the type III group B streptococcal polysaccharide were linked to O-3 and not to O-6 of its branch beta-D-galactopyranosyl residues as had been previously reported (Jennings, H. J., Rosell, K.-G., and Kasper, D. L. (1980) Can. J. Chem. 58, 112-120). This linkage was confirmed in an independent methylation analysis of the type III group B streptococcal polysaccharide. Thin layer chromatogram binding assay and radioactive antigen binding assays with radiolabeled oligosaccharides demonstrated the single repeating unit pentasaccharide oligosaccharide to be poorly antigenic. Increasing oligosaccharide size to a decasaccharide consisting of two repeating units resulted in an 8-fold increase in antigen binding in the direct radioactive antigen binding assay. The results suggest that a region of the immunodeterminant site critical for antibody binding is located in the backbone of the polysaccharide and involves the beta-D-galactopyranose-(1----4) beta-D-glucopyranose bond.  相似文献   

12.
The structure of the antigenic O-polysaccharide (O-PS) of the lipopolysaccharide (LPS) produced by the enterohemorrhagic strain of Escherichia coli O48:H21 (EHEC) has been elucidated. The O-PS obtained by mild acid hydrolysis of the LPS had [alpha]D +95 (water) and was composed of L-rhamnose (L-Rha), D-galactose (D-Gal), 2-amino-2-deoxy-D-glucose (D-GlcN), 2-amino-2-deoxy-D-galactose (D-GalN), and D-galacturonic acid (D-GalA) (1:1:1:1:1). From the results of methylation analysis, mass spectrometry, 2D NMR, and DOC-PAGE, the O-PS was shown to be a high molecular mass polymer of a repeating pentasaccharide unit having the structure: [structure: see text]. The D-Gal pA non-reducing end groups in the O-PS were partially O-acetylated (approximately 30%) at the O-2 and O-3 positions and the degree of acetylation was variable from batch to batch cell production.  相似文献   

13.
The O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of Providencia alcalifaciens O30. Studies by sugar and methylation analyses along with (1)H and (13)C NMR spectroscopy, including two-dimensional (1)H,(1)H COSY, TOCSY, ROESY, and H-detected (1)H,(13)C HSQC, HMBC, and HMQC-TOCSY experiments, showed that the polysaccharide has a linear pentasaccharide repeating unit of the following structure:  相似文献   

14.
The phenol-phase soluble cellular lipopolysaccharide that was isolated by the phenol-water extraction from Haemophilus pleuropneumoniae serotype 2 was shown to be of the S type by sodium dodecyl sulfate--polyacrylamide gel electrophoresis, hydrolysis, methylation, specific degradations, and both one- and two-dimensional 1H and 13C nuclear magnetic resonance studies. It could be cleaved to yield a lipid A and an O-chain polysaccharide. This O-polysaccharide was identified as a high molecular weight unbranched linear polymer of a pentasaccharide repeating unit having the structure: (Formula: see text).  相似文献   

15.
An O-specific polysaccharide was isolated from the lipopolysaccharide of a plant-growth-promoting bacterium Azospirillum brasilense Sp245 and studied by sugar analyses along with one- and two-dimensional 1H and 13C NMR spectroscopy, including NOESY. The polysaccharide was found to be a new rhamnan with a pentasaccharide repeating unit having the following structure:-->2)-beta-D-Rhap-(1-->3)-alpha-D-Rhap-(1-->3)-alpha-D-Rhap-(1-->2)-alpha-D-Rhap-(1-->2)-alpha-D-Rhap-(1-->  相似文献   

16.
The O-antigen of the lipopolysaccharide (LPS) from the enteroaggregative Escherichia coli strain 87/D2 has been determined by component analysis together with NMR spectroscopy. The polysaccharide has pentasaccharide repeating units in which all the residues have the galacto-configuration. The repeating unit of the O-antigen, elucidated using the O-deacylated LPS, is branched with the following structure: Analysis of the 1H NMR spectrum of the LPS revealed O-acetyl groups (approximately 0.7 per repeating unit) distributed over two positions. Subsequent analysis showed that the galactose residue carries acetyl groups at either O-3 or O-4 in a ratio of approximately 2:1. The international reference strain from E. coli O128ab was investigated and the repeating unit of the O-antigens has the following structure: Analysis of the 1H NMR spectrum of the LPS revealed O-acetyl groups (approximately one per repeating unit) distributed over two positions. The integrals of the resonances for the O-acetyl groups indicated similarities between the O-antigen from E. coli O128ab and that of E. coli strain 87/D2, whereas the O-acetyl substitution pattern in the E. coli O128ac O-antigen differed slightly. Enzyme immunoassay using specific anti-E. coli O128ab and anti-E. coli O128ac rabbit sera confirmed the results.  相似文献   

17.
The following structure of the pentasaccharide repeating unit of an acidic O-polysaccharide of Hafnia alvei PCM 1529 was established by sugar and methylation analyses along with 1D and 2D 1H and 13C NMR spectroscopy: [Carbohydrate structure: see text].  相似文献   

18.
The structure of the O-antigenic part of the lipopolysaccharide (LPS) obtained from the verotoxin-producing Escherichia coli O171 has been determined. (1)H and (13)C NMR spectroscopy techniques in combination with component analysis were used to elucidate the O-antigen structure of O-deacylated LPS. Subsequent NMR analysis of the native LPS revealed acetylation at O-7/O-9 of the sialic acid residue. The sequence of sugars was determined by inter-residue correlations in (1)H,(1)H-NOESY and (1)H,(13)C-heteronuclear multiple-bond correlation spectra. The O-antigen is composed of pentasaccharide repeating units with one equivalent of O-acetyl groups distributed over two positions: -->4)-alpha-Neu5Ac7,9Ac-(2-->6)-beta-D-Galp-(1-->6)-beta-DGlcp-->(1-->3)-beta-D-Galp-(1-->3)-beta-D-GalpNAc-(1--> Based on biosynthetic considerations, this should also be the biological repeating unit.  相似文献   

19.
An acidic O-specific polysaccharide was isolated from Hafnia alvei PCM 1196 lipopolysaccharide and studied by sugar and methylation analyses along with one- and two-dimensional 1H and 13C NMR spectroscopy, including NOESY and HMBC experiments. The following structure of the pentasaccharide repeating unit was established: -->4)-alpha-D-GalpA-(1-->3)-beta-D-GlcpNAc-(1-->2)-beta-D-Galp-(1-->6)-alpha-D-Glcp-(1-->6)-alpha-D-GlcpNAc-(1-->.  相似文献   

20.
The O-polysaccharide (O-antigen) was obtained by mild acid degradation of the lipopolysaccharide of Providencia stuartii O57:H29. Studies by sugar and methylation analyses along with (1)H and (13)C NMR spectroscopy, including two-dimensional (1)H,(1)H COSY, TOCSY, ROESY, H-detected (1)H,(13)C HSQC, and HMBC experiments, showed that the polysaccharide contains an amide of D-galacturonic acid with L-alanine and has the following pentasaccharide repeating unit: [formula: see text]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号