首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Origin of ultraviolet damage in DNA   总被引:12,自引:0,他引:12  
A novel ultraviolet (u.v.) footprinting technique has been used to analyze the formation of u.v. photoproducts at 250 bases of a 5 S rRNA gene under conditions where the gene is either double or single-stranded. Because many more types of u.v. damage can be detected by the u.v. footprinting technique than has been previously possible, we have been able to examine in detail why certain bases in DNA are damaged by u.v. light while others are not. Our measurements demonstrate that the ability of u.v. light to damage a given base in DNA is determined by two factors, the sequence of the DNA in the immediate vicinity of the photoproduct, and the flexibility of the DNA at the site of the photoproduct. For pyrimidines, the predominant photoreaction in double-stranded DNA involves covalent dimerization between adjacent pyrimidine residues. Dimerization is much easier in melted DNA because the geometrical changes required for adjacent pyrimidine residues to dimerize are easier in single-stranded DNA. The absorption of a u.v. photon cannot simultaneously induce the geometrical changes required for adjacent pyrimidines or other bases to dimerize with one another. Rather, upon the absorption of a u.v. photon, only those thermally excited bases that are in a geometry capable of easily forming a photodimer during excitation, can photoreact. In contrast to adjacent pyrimidines, non-adjacent pyrimidines (pyrimidines flanked on either side by a purine) do not readily form u.v. photoproducts in double-stranded DNA. Because photoreactions at non-adjacent pyrimidine residues are greatly enhanced in single-stranded DNA, their failure to form in double-helical DNA is attributed to torsional constraints imposed by the double helix which make it difficult for non-adjacent pyrimidines to adopt a geometry necessary for photoreaction. Although purines are believed to be resistant to u.v. damage, our measurements demonstrate that at moderate u.v. dosages purines which are flanked on their 5' side by two or more contiguous pyrimidines readily form u.v. photoproducts in double-stranded DNA. Flanking pyrimidines appear to activate purine photoreactions by transferring triplet excitation energy to the purine. Melting of the DNA helix greatly inhibits the ability of flanking pyrimidines to activate purine photoreactions, presumably by disrupting intimate orbital overlap required for triplet transfer.  相似文献   

2.
The aim of this study was to evaluate the effects of organosulfurs, isothiocyanates and vitamin C towards hydrogen peroxide-induced DNA damage (DNA strand breaks and oxidized purines/pyrimidines) in human hepatoma cells (HepG2), using the Comet assay. Treatment with hydrogen peroxide (H(2)O(2)) increased the levels of DNA strand breaks and oxidized purine and pyrimidine bases, in a concentration and time dependent manner. Organosulfur compounds (OSCs) reduced DNA strand breaks induced by H(2)O(2). In addition, OSCs also decreased the levels of oxidized pyrimidines. However, none of the OSCs tested reduced the levels of oxidized purines. Isothiocyanates compounds (ITCs) and vitamin C showed protective effects towards H(2)O(2)-induced DNA strand breaks and oxidized purine and pyrimidine bases. The results indicate that removal of oxidized purine and pyrimidine bases by ITCs was more efficient than by OSCs and vitamin C. Our findings suggest that OSCs, ITCs and vitamin C could exert their protective effects towards H(2)O(2)-induced DNA strand breaks and oxidative DNA damage by the free radical-scavenging efficiency of these compounds.  相似文献   

3.
Abasic sites are common DNA lesions resulting from spontaneous depurination and excision of damaged nucleobases by DNA repair enzymes. However, the influence of the local sequence context on the structure of the abasic site and ultimately, its recognition and repair, remains elusive. In the present study, duplex DNAs with three different bases (G, C or T) opposite an abasic site have been synthesized in the same sequence context (5′-CCA AAG6 XA8C CGG G-3′, where X denotes the abasic site) and characterized by 2D NMR spectroscopy. Studies on a duplex DNA with an A opposite the abasic site in the same sequence has recently been reported [Chen,J., Dupradeau,F.-Y., Case,D.A., Turner,C.J. and Stubbe,J. (2007) Nuclear magnetic resonance structural studies and molecular modeling of duplex DNA containing normal and 4′-oxidized abasic sites. Biochemistry, 46, 3096–3107]. Molecular modeling based on NMR-derived distance and dihedral angle restraints and molecular dynamics calculations have been applied to determine structural models and conformational flexibility of each duplex. The results indicate that all four duplexes adopt an overall B-form conformation with each unpaired base stacked between adjacent bases intrahelically. The conformation around the abasic site is more perturbed when the base opposite to the lesion is a pyrimidine (C or T) than a purine (G or A). In both the former cases, the neighboring base pairs (G6-C21 and A8-T19) are closer to each other than those in B-form DNA. Molecular dynamics simulations reveal that transient H-bond interactions between the unpaired pyrimidine (C20 or T20) and the base 3′ to the abasic site play an important role in perturbing the local conformation. These results provide structural insight into the dynamics of abasic sites that are intrinsically modulated by the bases opposite the abasic site.  相似文献   

4.
Y H Wang  J Griffith 《Biochemistry》1991,30(5):1358-1363
We recently showed that bulged bases kink duplex DNA, with the degree of kinking increasing in roughly equal increments as the number of bases in the bulge increases from one to four [Hsieh, C.-H., & Griffith, J.D. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 4833-4837]. Here we have examined the kinking of DNA by single A, C, G, or T bulges with different neighboring base pairs. Synthetic 30 base pair (bp) duplex DNAs containing 2 single-base bulges spaced by 10 bp were ligated head to tail, and their electrophoretic behavior in highly cross-linked gels was examined. All bulge-containing DNAs showed marked electrophoretic retardations as compared to non-bulge-containing DNA. Regardless of the sequence of the flanking base pairs, purine bulges produced greater retardations than pyrimidine bulges. Furthermore, C and T bulges produced the same retardations as did G and A bulges. Bulged DNA containing different flanking base pairs showed marked differences in electrophoretic mobility. For C-bulged DNA, the greatest retardations were observed with G.C neighbors, the least with T.A neighbors, and an intermediate amount with a mixture of neighboring base pairs. For A-bulged DNA, the retardations were greatest with G.C neighbors, less with T.A neighbors, even less with a mixture of neighboring base pairs, and finally least with C.G neighbors. Thus flanking base pairs affect C-bulged DNA and A-bulged DNA differently, and G.C and C.G flanking base pairs were seen to have very different effects. These results imply an important role of base stacking in determining how neighboring base pairs influence the kinking of DNA by a single-base bulge.  相似文献   

5.
The 50 non-coding bases immediately internal to the telomeric repeats in the two 5′ ends of macronuclear DNA molecules of a group of hypotrichous ciliates are anomalous in composition, consisting of 61% purines and 39% pyrimidines, A>T (ratio of 44:32), and G>C (ratio of 17:7). These ratio imbalances violate parity rule 2, according to which A should equal T and G should equal C within a DNA strand and therefore pyrimidines should equal purines. The purine-rich and base ratio imbalances are in marked contrast to the rest of the non-coding parts of the molecules, which have the theoretically expected purine content of 50%, with A = T and G = C. The ORFs contain an average of 52% purines as a result of bias in codon usage. The 50 bases that flank the 5′ ends of macronuclear sequences in micronuclear DNA (12 cases) consist of ~50% purines. Thus, the 50 bases in the 5′ ends of macronuclear sequences in micronuclear DNA are islands of purine richness in which A>T and G>C. These islands may serve as signals for the excision of macronuclear molecules during macronuclear development. We have found no published reports of coding or non-coding native DNA with such anomalous base composition.  相似文献   

6.
The effects of base sequence, specifically different pyrimidines flanking a bulky DNA adduct, on translesional synthesis in vitro catalyzed by the Klenow fragment of Escherichia coli Pol I (exo(-)) was investigated. The bulky lesion was derived from the binding of a benzo[a]pyrene diol epoxide isomer [(+)-anti-BPDE] to N(2)-guanine (G*). Four different 43-base long oligonucleotide templates were constructed with G* at a site 19 bases from the 5'-end. All bases were identical, except for the pyrimidines, X or Y, flanking G* (sequence context 5'-.XGY., with X, Y = C and/or T). In all cases, the adduct G* slows primer extension beyond G* more than it slows the insertion of a dNTP opposite G* (A and G were predominantly inserted opposite G, with A > G). Depending on X or Y, full lesion bypass differed by factors of approximately 1.5-5 ( approximately 0.6-3.0% bypass efficiencies). A downstream T flanking G on the 5'-side instead of C favors full lesion bypass, while an upstream C flanking G* is more favorable than a T. Various deletion products resulting from misaligned template-primer intermediates are particularly dominant ( approximately 5.0-6.0% efficiencies) with an upstream flanking C, while a 3'-flanking T lowers the levels of deletion products ( approximately 0.5-2.5% efficiencies). The kinetics of (1) single dNTP insertion opposite G* and (2) extension of the primer beyond G* by a single dNTP, or in the presence of all four dNTPs, with different 3'-terminal primer bases (Z) opposite G* were investigated. Unusually efficient primer extension efficiencies beyond the adduct (approaching approximately 90%) was found with Z = T in the case of sequences with 3'-flanking upstream C rather than T. These effects are traced to misaligned slipped frameshift intermediates arising from the pairing of pairs of downstream template base sequences (up to 4-6 bases from G*) with the 3'-terminal primer base and its 5'-flanking base. The latter depend on the base Y and on the base preferentially inserted opposite the adduct. Thus, downstream template sequences as well as the bases flanking G* influence DNA translesion synthesis.  相似文献   

7.
Human DNA polymerase iota (Pol iota) differs from other DNA polymerases in that it exhibits a marked template specificity, being more efficient and accurate opposite template purines than opposite pyrimidines. The crystal structures of Pol iota with template A and incoming dTTP and with template G and incoming dCTP have revealed that in the Pol iota active site, the templating purine adopts a syn conformation and forms a Hoogsteen base pair with the incoming pyrimidine which remains in the anti conformation. By using 2-aminopurine and purine as the templating residues, which retain the normal N7 position but lack the N(6) of an A or the O(6) of a G, here we provide evidence that whereas hydrogen bonding at N(6) is dispensable for the proficient incorporation of a T opposite template A, hydrogen bonding at O(6) is a prerequisite for C incorporation opposite template G. To further analyze the contributions of O(6) and N7 hydrogen bonding to DNA synthesis by Pol iota, we have examined its proficiency for replicating through the (6)O-methyl guanine and 8-oxoguanine lesions, which affect the O(6) and N7 positions of template G, respectively. We conclude from these studies that for proficient T incorporation opposite template A, only the N7 hydrogen bonding is required, but for proficient C incorporation opposite template G, hydrogen bonding at both the N7 and O(6) is an imperative. The dispensability of N(6) hydrogen bonding for proficient T incorporation opposite template A has important biological implications, as that would endow Pol iota with the ability to replicate through lesions which impair the Watson-Crick hydrogen bonding potential at both the N1 and N(6) positions of templating A.  相似文献   

8.
Lactobacillus helveticus contains two types of N-deoxyribosyltransferases: DRTase I catalyzes the transfer of 2'-deoxyribose between purine bases exclusively whereas DRTase II is able to transfer the 2'-deoxyribose between two pyrimidine or between pyrimidine and purine bases. An Escherichia coli strain, auxotrophic for guanine and unable to use deoxyguanosine as source of guanine, was constructed to clone the corresponding genes. By screening a genomic bank for the production of guanine, the L. helveticus ptd and ntd genes coding for DRTase I and II, respectively, were isolated. Although the two genes have no sequence similarity, the two deduced polypeptides display 25.6% identity, with most of the residues involved in substrate binding and the active site nucleophile Glu-98 being conserved. Overexpression and purification of the two proteins shows that DRTase I is specific for purines with a preference for deoxyinosine (dI) > deoxyadenosine > deoxyguanosine as donor substrates whereas DRTase II has a strong preference for pyrimidines as donor substrates and purines as base acceptors. Purine analogues were substrates as acceptor bases for both enzymes. Comparison of DRTase I and DRTase II activities with dI as donor or hypoxanthine as acceptor and colocalization of the ptd and add genes suggest a specific role for DRTase I in the metabolism of dI.  相似文献   

9.
Purine and pyrimidine nucleotides play critical roles in DNA and RNA synthesis as well as in membrane lipid biosynthesis and protein glycosylation. They are necessary for the development and survival of mature T lymphocytes. Activation of T lymphocytes is associated with an increase of purine and pyrimidine pools. However, the question of how purine vs pyrimidine nucleotides regulate proliferation, cell cycle, and survival of primary T lymphocytes following activation has not yet been specifically addressed. This was investigated in the present study by using well-known purine (mycophenolic acid, 6-mercaptopurine) and pyrimidine (methotrexate, 5-fluorouracil) inhibitors, which are used in neoplastic diseases or as immunosuppressive agents. The effect of these inhibitors was analyzed according to their time of addition with respect to the initiation of mitogenic activation. We showed that synthesis of both purine and pyrimidine nucleotides is required for T cell proliferation. However, purine and pyrimidine nucleotides differentially regulate the cell cycle since purines control both G(1) to S phase transition and progression through the S phase, whereas pyrimidines only control progression from early to intermediate S phase. Furthermore, inhibition of pyrimidine synthesis induces apoptosis whatever the time of inhibitor addition whereas inhibition of purine nucleotides induces apoptosis only when applied to already cycling T cells, suggesting that both purine and pyrimidine nucleotides are required for survival of cells committed into S phase. These findings reveal a hitherto unknown role of purine and pyrimidine de novo synthesis in regulating cell cycle progression and maintaining survival of activated T lymphocytes.  相似文献   

10.
Bursts of free radicals produced by ionization of water in close vicinity to DNA can produce clusters of opposed DNA lesions and these are termed multiply damaged sites (MDS). How MDS are processed by the Escherichia coli DNA glycosylases, endonuclease (endo) III and endo VIII, which recognize oxidized pyrimidines, is the subject of this study. Oligonucleotide substrates were constructed containing a site of pyrimidine damage or an abasic (AP) site in close proximity to a single nucleotide gap, which simulates a free radical-induced single-strand break. The gap was placed in the opposite strand 1, 3 or 6 nt 5' or 3' of the AP site or base lesion. Endos III and VIII were able to cleave an AP site in the MDS, no matter what the position of the opposed strand break, although cleavage at position one 5' or 3' was reduced compared with cleavage at positions three or six 5' or 3'. Neither endo III nor endo VIII was able to remove the base lesion when the gap was positioned 1 nt 5' or 3' in the opposite strand. Cleavage of the modified pyrimidine by endo III increased as the distance increased between the base lesion and the opposed strand break. With endo VIII, however, DNA breakage at the site of the base lesion was equivalent to or less when the gap was positioned 6 nt 3' of the lesion than when the gap was 3 nt 3' of the lesion. Gel mobility shift analysis of the binding of endo VIII to an oligonucleotide containing a reduced AP (rAP) site in close opposition to a single nucleotide gap correlated with cleavage of MDS substrates by endo VIII. If the strand break in the MDS was replaced by an oxidized purine, 7,8-dihydro-8-oxoguanine (8-oxoG), neither endo VIII cleavage nor binding were perturbed. These data show that processing of oxidized pyrimidines by endos III and VIII was strongly influenced by the position and type of lesion in the opposite strand, which could have a significant effect on the biological outcome of the MDS lesion.  相似文献   

11.
G L Nelsestuen 《Biochemistry》1979,18(13):2843-2846
Mild heating of aqueous mixtures containing 2-deoxyribose, amino compounds, and purines or pyrimidines produces derivatives of the purines and pyrimidines in high yield. Among the major products formed are 2,3-dideoxy-3-(1'-pyrimidino)pentose and 2,3-dideoxy-3-(9'-purino)pentose. The mechanism of the reaction includes amine-catalzyed dehydration of the alpha, beta positions of the sugar followed by addition of the purine or pyrimidine to the double bond. Rapid addition of purines and pyrimidines to alpha, beta-unsaturated carbonyl compounds (such as acrolin) is a general phenomenon which does not require an amine catalyst. While multiple derivatization of the purines will take place, the N-9 derivative is formed first.  相似文献   

12.
Utilization of ion-air reagents in a reversed-phase chromatographic system allows solving a number of problems related to the separation of purine and pyrimidine derivatives. Simultaneous analysis of nucleotides, nucleosides and their bases was carried out by acetonitrile gradient elution using tetrabutyl ammonium phosphate as a counterion in the mobile phase. Besides, optimal conditions were selected for isocratic separation of adenine nucleotides and their metabolites. Furthermore, isocratic separation of certain purines and pyrimidines was achieved by modifying the stationary C18-phase with pentane- and heptane sulphonic acids.  相似文献   

13.
DNA context-specific effects of the association of proflavin, single-stranded DNA and DNA polymerase on DNA polymerization reactions were examined. Frameshift mutations induced by the presence of proflavin during in vitro DNA replication of a single-stranded DNA template by the Klenow fragment of Escherichia coli DNA polymerase I were sequenced. More than 80% of the frameshifts were one base-pair deletions opposite purine bases that were immediately 3' to pyrimidines. Purines (Pu) that were not adjacent to pyrimidines (Py) were not deletion sites. The remaining deletions were opposite template pyrimidines that were also immediately 3' to another pyrimidine. All pyrimidine site deletions occurred in the context 5' PyPyPu 3'. In additional experiments, the site-specific inhibition of processive DNA polymerization by proflavin was examined. A novel inhibition of polymerization was found opposite all pyrimidines in the template when proflavin-template complexes were exposed to ten seconds of white light. This inhibition of polymerization is reversible. Longer photoactivation led to an altered pattern of DNA sequence-specific inhibition that was not reversible. The role of DNA sequence-specific interactions of proflavin with DNA in proflavin mutagenesis is discussed.  相似文献   

14.
An oligopurine sequence bias occurs in eukaryotic viruses.   总被引:10,自引:6,他引:4  
Twenty four DNA and RNA viral nucleotide sequences, comprising over 346 kilobases, have been analyzed for the occurrence of strings of contiguous purine or pyrimidine residues. On average strings greater than or equal to 10 contiguous purines or pyrimidines are found three and a half times more frequently than would be expected for a random distribution of bases. Detailed analysis of the 172 kilobase Epstein-Barr viral sequence shows that the bias in favor of contiguous purine residues increases with the length of the purine string. These findings are similar to those seen for genomic DNA from higher eukaryotes. In contrast no overrepresentation of oligopurine or oligopyrimidine strings is observed in 52 kilobases from eight bacteriophage and E. coli DNA sequences.  相似文献   

15.
Small molecules that can specifically bind to a DNA abasic site (AP site) have received much attention due to their importance in DNA lesion identification, drug discovery, and sensor design. Herein, the AP site binding behavior of sanguinarine (SG), a natural alkaloid, was investigated. In aqueous solution, SG has a short-wavelength alkanolamine emission band and a long-wavelength iminium emission band. At pH 8.3, SG experiences a fluorescence quenching for both bands upon binding to fully matched DNAs without the AP site, while the presence of the AP site induces a strong SG binding and the observed fluorescence enhancement for the iminium band are highly dependent on the nucleobases flanking the AP site, while the alkanolamine band is always quenched. The bases opposite the AP site also exert some modifications on the SG''s emission behavior. It was found that the observed quenching for DNAs with Gs and Cs flanking the AP site is most likely caused by electron transfer between the AP site-bound excited-state SG and the nearby Gs. However, the flanking As and Ts that are not easily oxidized favor the enhanced emission. This AP site-selective enhancement of SG fluorescence accompanies a band conversion in the dominate emission from the alkanolamine to iminium band thus with a large emission shift of about 170 nm. Absorption spectra, steady-state and transient-state fluorescence, DNA melting, and electrolyte experiments confirm that the AP site binding of SG occurs and the stacking interaction with the nearby base pairs is likely to prevent the converted SG iminium form from contacting with water that is thus emissive when the AP site neighbors are bases other than guanines. We expect that this fluorophore would be developed as a promising AP site binder having a large emission shift.  相似文献   

16.
Cyclobutane pyrimidine dimers were quantified at the sequence level after irradiation with solar ultraviolet (UVB) and nonsolar ultraviolet (UVC) light sources. The yield of photoproducts at specific sites was dependent on the nucleotide composition in and around the potential lesion as well as on the wavelength of ultraviolet light used to induce the damage. Induction was greater in the presence of 5' flanking pyrimidines than purines; 5' guanine inhibited induction more than adenine. UVB irradiation increased the induction of cyclobutane dimers containing cytosine relative to thymine homodimers. At the single UVC and UVB fluences used, the ratio of thymine homodimers (T mean value of T) to dimers containing cytosine (C mean value of T, T mean value of C, C mean value of C) was greater after UVC compared to UVB irradiation.  相似文献   

17.
Studies on the incorporation of radio-labeled precursors into orotic acid and the pyrimidine nucleotides of RNA have established the occurrence of the orotate pathway for the de novo biosynthesis of pyrimidines in the chick oviduct. Measurements of the rate of incorporation of precursors into orotic acid in minces of oviduct revealed the activity of the orotate pathway to be accelerated in response to estrogen-stimulated nucleic acid synthesis and tissue growth. These data indicate that extrahepatic tissues of avian species meet their requirements for pyrimidine nucleotides through de novo synthesis rather than depend upon the liver or other exogenous sources for a supply of preformed pyrimidines. An examination of the influence of pyrimidine and purine nucleosides on the incorporation of radio-labeled precursors into orotic acid yielded evidence that pyrimidine biosynthesis in the chick is quite sensitive to inhibition by both purines and pyrimidines; the data indicate the reaction catalyzed by carbamoylphosphate synthetase to be the site of inhibition in both cases.  相似文献   

18.
Using an in vitro processing system, we have identified a required sequence surrounding the Drosophila melanogaster 5 S RNA processing site at nucleotide 120. Mutations in this region vary the processing rate from complete inhibition to a level equal to or greater than wild type. Analysis of mutants at +1 and in the region 118-122 separates the inhibitory effect into two parts. 1) Nucleotide 118 C, the base-paired nucleotide in helix I proximal to the processing site, plays an essential role. Changing it to a purine inhibits processing. The +1-118 base pair must be intact, but this alone is not sufficient for processing, since compensatory changes at +1 do not restore down-processing mutants at 118 to the wild type level. 2) The processing site has to be pyrimidine rich; multiple contiguous purines inhibit processing. On the other hand, multiple pyrimidines can largely negate the inhibitory effect of a mutation at position 118. Thus a base-paired C at 118 followed by a stretch of pyrimidines is the processing signal, which may be recognized by the processing enzyme and/or a required accessory factor.  相似文献   

19.
Unusual duplex formation in purine rich oligodeoxyribonucleotides   总被引:5,自引:2,他引:3  
The purine rich oligodeoxyribonucleotides 1C, d(ATGACGGAATA) and 2C, d(ATGAGCGAATA) alone exhibit highly cooperative melting transitions. Analysis of the concentration dependence of melting, and electrophoretic studies indicate that these oligomers can form an unusual purine rich offset double helix. The unusual duplex is predicted to contain four A.T, two G.C, and four G.A mismatch base pairs as well as a single A base stacked on the 3' end of each chain of the helix. Other possible models for the duplex are unlikely because they are predicted to contain many base pairs of low stability. Changing the central sequence to CGG or GGG should destabilize the duplex and this is observed. The unusual duplex of 2C is more stable than the duplex of 1C indicating that the stability of G.A base pairs is quite sensitive to the surrounding sequence. Addition of 1C and 2C to their complementary pyrimidine strands results in normal duplexes of similar stability. We feel that the unusual duplexes are significantly stabilized by the intrinsic stacking tendency of purine bases.  相似文献   

20.
Loss of a base in DNA leading to creation of an abasic (AP) site leaving a deoxyribose residue in the strand, is a frequent lesion that may occur spontaneously or under the action of various physical and chemical agents. Progress in the understanding of the chemistry and enzymology of abasic DNA largely relies upon the study of AP sites in synthetic duplexes. We report here on interactions of diastereomerically pure metallo–helical ‘flexicate’ complexes, bimetallic triple-stranded ferro-helicates [Fe2(NN-NN)3]4+ incorporating the common NN–NN bis(bidentate) helicand, with short DNA duplexes containing AP sites in different sequence contexts. The results show that the flexicates bind to AP sites in DNA duplexes in a shape-selective manner. They preferentially bind to AP sites flanked by purines on both sides and their binding is enhanced when a pyrimidine is placed in opposite orientation to the lesion. Notably, the Λ-enantiomer binds to all tested AP sites with higher affinity than the Δ-enantiomer. In addition, the binding of the flexicates to AP sites inhibits the activity of human AP endonuclease 1, which is as a valid anticancer drug target. Hence, this finding indicates the potential of utilizing well-defined metallo–helical complexes for cancer chemotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号