首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Transforming Growth Factor-beta (TGFbeta) is known to be a negative regulator of G1 cyclin/cdk activity. It is not clear whether TGFbeta has any effect on G2 checkpoint kinases. We have found that TGFbeta downregulated the expression of several G2 checkpoint kinases including cdc2, cyclin B1, and cdc25c without causing cell accumulation in G2/M phases in two human leukemia cell lines. The inhibition was time-dependent with a maximal inhibition being observed by 24h for cyclin B1 and cdc2 and by 48h for cdc25c. The inhibition was not a result of G1 arrest but a direct effect of TGFbeta which downregulates their expression at mRNA level. In proliferating cells, there was a significant formation of cdc2-pRb complexes, which was decreased to 30% of control levels by 48h after initiating TGFbeta treatment. Cdc2 showed a marked kinase activity on GST-Rb protein in proliferating cells detected by in vitro kinase assay, which was downregulated in response to TGFbeta. In addition, TGFbeta caused a rapid and transient dephosphorylation of cdc2 (Tyr15) and cdc25c (Ser216) for about 2-3h before a dramatic decrease of both molecules by 48h. Taken together, our data suggest that TGFbeta has a direct inhibitory effect on G2 checkpoint kinases, which is regulated at mRNA level. The transient activation of cdc2 and cdc25c and subsequent inhibition of cdc2, cyclin B1, and cdc25c could amplify TGFbeta-induced G1 arrest and growth inhibition.  相似文献   

3.
RACK1 regulates G1/S progression by suppressing Src kinase activity   总被引:14,自引:0,他引:14       下载免费PDF全文
Cancer genes exert their greatest influence on the cell cycle by targeting regulators of a critical checkpoint in late G(1). Once cells pass this checkpoint, they are fated to replicate DNA and divide. Cancer cells subvert controls at work at this restriction point and remain in cycle. Previously, we showed that RACK1 inhibits the oncogenic Src tyrosine kinase and NIH 3T3 cell growth. RACK1 inhibits cell growth, in part, by prolonging G(0)/G(1). Here we show that RACK1 overexpression induces a partial G(1) arrest by suppressing Src activity at the G(1) checkpoint. RACK1 works through Src to inhibit Vav2, Rho GTPases, Stat3, and Myc. Consequently, cyclin D1 and cyclin-dependent kinases 4 and 2 (CDK4 and CDK2, respectively) are suppressed, CDK inhibitor p27 and retinoblastoma protein are activated, E2F1 is sequestered, and G(1)/S progression is delayed. Conversely, downregulation of RACK1 by short interference RNA activates Src-mediated signaling, induces Myc and cyclin D1, and accelerates G(1)/S progression. RACK1 suppresses Src- but not mitogen-activated protein kinase-dependent platelet-derived growth factor signaling. We also show that Stat3 is required for Rac1 induction of Myc. Our results reveal a novel mechanism of cell cycle control in late G(1) that works via an endogenous inhibitor of the Src kinase.  相似文献   

4.
5.
6.
8-Chloroadenosine, an active dephosphorylated metabolite of the antineoplastic agent 8-chloroadenosine 3',5'-monophosphate (8-Cl-cAMP), induces growth inhibition in multiple carcinomas. Here we report that 8-chloroadenosine inhibits growth in human promyelocytic leukemia HL-60 cells by a G(0)/G(1) phase arrest and terminates cell differentiation along the granulocytic lineage. The mechanism of 8-chloroadenosine-induced G(0)/G(1) arrest is independent of apoptosis. The expressions of cyclin D1 and c-myc in HL-60 are suppressed by 8-chloroadenosine, whereas the cyclin-dependent kinases inhibitor p21(WAF1/CIP1) is up-regulated. 8-Chloroadenosine has less effect on the expressions of cyclin-dependent kinase (cdk)2 and cdk4, G(1) phase cyclin-dependent kinases, and only moderately induces the expression of transforming growth factor beta1 (TGFbeta1) and the mitotic inhibitor p27(KIP1). Telomerase activity is reduced in extracts of 8-chloroadenosine treated HL-60 cells, but 8-chloroadenosine does not directly inhibit the catalytic activity of telomerase in vitro. Therefore, anti-proliferation of HL-60 cells by 8-chloroadenosine involves coordination of cyclin D1 suppression, reduction of telomerase activity, and up-regulation of p21(WAF1/CIP1) that arrest cell-cycle progression at G(0)/G(1) phase and terminate cell differentiation.  相似文献   

7.
Geminin-Cdt1 balance is critical for genetic stability   总被引:7,自引:0,他引:7  
Saxena S  Dutta A 《Mutation research》2005,569(1-2):111-121
A cell limits its DNA replication activity to once per cell division cycle to maintain its genomic integrity. Studies in a variety of organisms are elucidating how these controls are exercised. Key amongst these is the regulation of replication initiator proteins such as Cdt1. Cdt1 is present in cells in G1 phase where it is required for initiation of replication. Once origins have fired, Cdt1 is either exported out of the nucleus or degraded, thereby preventing another round of replication. Higher eukaryotes have evolved another redundant mechanism, an inhibitor called geminin, to restrain Cdt1 activity. Studies in multiple organisms have shown that unregulated Cdt1 activity stimulates overreplication of the genome. Interestingly, the same seems to be true when geminin is depleted. The imbalance in the activities of these proteins causes the activation of key checkpoint proteins, the ATM/ATR kinases and the tumor suppressor, p53. This review proposes that a balance between Cdt1 and geminin is important for maintaining genomic stability.  相似文献   

8.
9.

Background

The role of the MYC oncogene in the apoptotic pathways is not fully understood. MYC has been reported to protect cells from apoptosis activation but also to sensitize cells to apoptotic stimuli. We have previously demonstrated that the down-regulation of Myc protein activates apoptosis in melanoma cells and increases the susceptibility of cells to various antitumoral treatments. Beyond the well-known role in the G1→S transition, MYC is also involved in the G2-M cell cycle phases regulation.

Methodology/Principal Findings

In this study we have investigated how MYC could influence cell survival signalling during G2 and M phases. We used the microtubules damaging agent paclitaxel (PTX), to arrest the cells in the M phase, in a p53 mutated melanoma cell line with modulated Myc level and activity. An overexpression of Myc protein is able to increase endoreduplication favoring the survival of cells exposed to antimitotic poisoning. The PTX-induced endoreduplication is associated in Myc overexpressing cells with a reduced expression of MAD2, essential component of the molecular core of the spindle assembly checkpoint (SAC), indicating an impairment of this checkpoint. In addition, for the first time we have localized Myc protein at the spindle poles (centrosomes) during pro-metaphase in different cell lines.

Conclusions

The presence of Myc at the poles during the prometaphase could be necessary for the Myc-mediated attenuation of the SAC and the subsequent induction of endoreduplication. In addition, our data strongly suggest that the use of taxane in antitumor therapeutic strategies should be rationally based on the molecular profile of the individual tumor by specifically analyzing Myc expression levels.  相似文献   

10.
DNA damage during the cell division cycle can activate ATM/ATR and their downstream kinases that are involved in the checkpoint pathway, and cell growth is halted until damage is repaired. As a result of DNA damage induced in mitotic cells by doxorubicin treatment, cells accumulate in a G2-like phase, not in mitosis. Under these conditions, two mitosis-specific kinases, Cdk1 and Plk1, are inhibited by inhibitory phosphorylation and dephosphorylation, respectively. G2-specific phosphorylation of Cdc25 was increased during incubation after mitotic DNA damage. Inhibition of Plk1 through dephosphorylation was dependent on ATM/Chk1 activity. Depleted expression of ATM and Chk1 was achieved using small hairpin RNA (shRNA) plasmid constructs. In this condition, damaged mitotic cells did not accumulated in a G2-like stage, and entered into G1 phase without delay. Protein phosphatase 2A was responsible for dephosphorylation of mitotic Plk1 in response to DNA damage. In knockdown of PP2A catalytic subunits, Plk1 was not dephosphorylated, but rather degraded in response to DNA damage, and cells did not accumulate in G2-like phase. The effect of ATM/Chk1 inhibition was counteracted by overexpression of PP2A, indicated that PP2A may function as a downstream target of ATM/Chk1 at a mitotic DNA damage checkpoint, or may have a dominant effect on ATM/Chk1 function at this checkpoint. Finally, we have shown that negative regulation of Plk1 by dephosphorylation is important to cell accumulation in G2-like phase at the mitotic DNA damage checkpoint, and that this ATM/Chk1/PP2A pathway independent on p53 is a novel mechanism of cellular response to mitotic DNA damage.  相似文献   

11.
The phenotypic change characteristic of Aurora B inhibition is the induction of polyploidy. Utilizing specific siRNA duplexes and a selective small molecule inhibitor (AZD1152) to inhibit Aurora B activity in tumor cells, we sought to elucidate the mechanism by which Aurora B inhibition results in polyploidy. Cells treated with AZD1152 progressed through mitosis with misaligned chromosomes and exited without cytokinesis and subsequently underwent endoreduplication of DNA despite activation of a p53-dependent pseudo G1 checkpoint. Concomitant with polyploid cell formation, we observed the appearance of Rb hypophosphorylation, an event that occurred independently of cyclin-dependent kinase inhibition. We went on to discover that Aurora B directly phosphorylates Rb at serine 780 both in vitro and in vivo. This novel interaction plays a critical role in regulating the postmitotic checkpoint to prevent endoreduplication after an aberrant mitosis. Thus, we propose for the first time that Aurora B determines cellular fate after an aberrant mitosis by directly regulating the Rb tumor suppressor protein.  相似文献   

12.
Pathways governing G1/S transition and their response to DNA damage   总被引:21,自引:0,他引:21  
Bartek J  Lukas J 《FEBS letters》2001,490(3):117-122
The ability to self-replicate is a fundamental feature of life, reflected at the cellular level by a highly regulated process initiated in G1 phase via commitment to a round of DNA replication and cell division. Here we briefly highlight recent advances in understanding the molecular pathways which govern the decision of mammalian somatic cells to enter S phase, and the so-called cell cycle checkpoints which guard the G1/S transition and S phase progression against potentially deleterious effects of genotoxic stress. Particular emphasis is put on the emerging parallel yet cooperative pathways of retinoblastoma protein (pRB)–E2F and Myc, their convergence to control the activity of the cyclin-dependent kinase 2 (Cdk2) at the G1/S boundary, as well as the two waves of checkpoint responses at G1/S: the rapid pathway(s) leading to Cdc25A degradation, and the delayed p53–p21 cascade, both silencing the Cdk2 activity upon DNA damage.  相似文献   

13.
In Saccharomyces cerevisiae, Mec1/ATR plays a primary role in sensing and transducing checkpoint signals in response to different types of DNA lesions, while the role of the Tel1/ATM kinase in DNA damage checkpoints is not as well defined. We found that UV irradiation in G(1) in the absence of Mec1 activates a Tel1/MRX-dependent checkpoint, which specifically inhibits the metaphase-to-anaphase transition. Activation of this checkpoint leads to phosphorylation of the downstream checkpoint kinases Rad53 and Chk1, which are required for Tel1-dependent cell cycle arrest, and their adaptor Rad9. The spindle assembly checkpoint protein Mad2 also partially contributes to the G(2)/M arrest of UV-irradiated mec1Delta cells independently of Rad53 phosphorylation and activation. The inability of UV-irradiated mec1Delta cells to undergo anaphase can be relieved by eliminating the anaphase inhibitor Pds1, whose phosphorylation and stabilization in these cells depend on Tel1, suggesting that Pds1 persistence may be responsible for the inability to undergo anaphase. Moreover, while UV irradiation can trigger Mec1-dependent Rad53 phosphorylation and activation in G(1)- and G(2)-arrested cells, Tel1-dependent checkpoint activation requires entry into S phase independently of the cell cycle phase at which cells are UV irradiated, and it is decreased when single-stranded DNA signaling is affected by the rfa1-t11 allele. This indicates that UV-damaged DNA molecules need to undergo structural changes in order to activate the Tel1-dependent checkpoint. Active Clb-cyclin-dependent kinase 1 (CDK1) complexes also participate in triggering this checkpoint and are required to maintain both Mec1- and Tel1-dependent Rad53 phosphorylation, suggesting that they may provide critical phosphorylation events in the DNA damage checkpoint cascade.  相似文献   

14.
The evolutionarily conserved yeast Mec1 and Tel1 protein kinases, as well as the Mec1-interacting protein Ddc2, are involved in the DNA damage checkpoint response. We show that regulation of Tel1 and Ddc2-Mec1 activities is important to modulate both activation and termination of checkpoint-mediated cell cycle arrest. In fact, overproduction of either Tel1 or Ddc2 causes a prolonged cell cycle arrest and cell death in response to DNA damage, impairing the ability of cells to recover from checkpoint activation. This cell cycle arrest is independent of Mec1 in UV-irradiated Tel1-overproducing cells, while it is strictly Mec1 dependent in similarly treated DDC2-overexpressing cells. The Rad53 checkpoint kinase is instead required in both cases for cell cycle arrest, which correlates with its enhanced and persistent phosphorylation, suggesting that unscheduled Rad53 phosphorylation might prevent cells from re-entering the cell cycle after checkpoint activation. In addition, Tel1 overproduction results in transient nuclear division arrest and concomitant Rad53 phosphorylation in the absence of exogenous DNA damage independently of Mec1 and Ddc1.  相似文献   

15.
The DNA damage checkpoint, when activated in response to genotoxic damage during S phase, arrests cells in G2 phase of the cell cycle. ATM, ATR, Chk1 and Chk2 kinases are the main effectors of this checkpoint pathway. The checkpoint kinases prevent the onset of mitosis by eliciting well characterized inhibitory phosphorylation of Cdk1. Since Cdk1 is required for the recruitment of condensin, it is thought that upon DNA damage the checkpoint also indirectly blocks chromosome condensation via Cdk1 inhibition. Here we report that the G2 damage checkpoint prevents stable recruitment of the chromosome-packaging-machinery components condensin complex I and II onto the chromatin even in the presence of an active Cdk1. DNA damage-induced inhibition of condensin subunit recruitment is mediated specifically by the Chk2 kinase, implying that the condensin complexes are targeted by the checkpoint in response to DNA damage, independently of Cdk1 inactivation. Thus, the G2 checkpoint directly prevents stable recruitment of condensin complexes to actively prevent chromosome compaction during G2 arrest, presumably to ensure efficient repair of the genomic damage.  相似文献   

16.
Saccharomyces cerevisiae dbf4 and cdc7 cell cycle mutants block initiation of DNA synthesis (i.e., are iDS mutants) at 37 degrees C and arrest the cell cycle with a 1C DNA content. Surprisingly, certain dbf4 and cdc7 strains divide their chromatin at 37 degrees C. We found that the activation of the Cdc28 mitotic protein kinase and the Dbf2 kinase occurred with the correct relative timing with respect to each other and the observed division of the unreplicated chromatin. Furthermore, the division of unreplicated chromatin depended on a functional spindle. Therefore, the observed nuclear division resembled a normal mitosis, suggesting that S. cerevisiae commits to M phase in late G1 independently of S phase. Genetic analysis of dbf4 and cdc7 strains showed that the ability to restrain mitosis during a late G1 block depended on the genetic background of the strain concerned, since the dbf4 and cdc7 alleles examined showed the expected mitotic restraint in other backgrounds. This restraint was genetically dominant to lack of restraint, indicating that an active arrest mechanism, or checkpoint, was involved. However, none of the previously described mitotic checkpoint pathways were defective in the iDS strains that carry out mitosis without replicated DNA, therefore indicating that the checkpoint pathway that arrests mitosis in iDS mutants is novel. Thus, spontaneous strain differences have revealed that S. cerevisiae commits itself to mitosis in late G1 independently of entry into S phase and that a novel checkpoint mechanism can restrain mitosis if cells are blocked in late G1. We refer to this as the G1/M-phase checkpoint since it acts in G1 to restrain mitosis.  相似文献   

17.
Cell division in the absence of telomerase leads to telomere shortening that can activate checkpoint responses and impair chromosomal stability. The absence of telomerase in primary human cells and its near universal reactivation in human cancers has highlighted the importance of telomere shortening and telomerase reactivation during tumor development. Data from telomerase-deficient mouse models of cancer have indicated that telomere shortening can exert profoundly different influences on cell fates in developing cancers, limiting tumorigenesis by enhancing cell death or facilitating carcinogenesis by compromising chromosomal stability. These alternate fates depend on the integrity of the p53 pathway and on cell type.  相似文献   

18.
When telomerase is absent and/or telomeres become critically short, cells undergo a progressive decline in viability termed senescence. The telomere checkpoint model predicts that cells will respond to a damaged or critically short telomere by transiently arresting and activating repair of the telomere. We examined the senescence of telomerase-deficient Saccharomyces cerevisiae at the cellular level to ask if the loss of telomerase activity triggers a checkpoint response. As telomerase-deficient mutants were serially subcultured, cells exhibited a progressive decline in average growth rate and an increase in the number of cells delayed in the G2/M stage of the cell cycle. MEC3, MEC1, and DDC2, genes important for the DNA damage checkpoint response, were required for the cell cycle delay in telomerase-deficient cells. In contrast, TEL1, RAD9, and RAD53, genes also required for the DNA damage checkpoint response, were not required for the G2/M delay in telomerase-deficient cells. We propose that the telomere checkpoint is distinct from the DNA damage checkpoint and requires a specific set of gene products to delay the cell cycle and presumably to activate telomerase and/or other telomere repair activities.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号