首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of (human recombinant) tumor necrosis factor-alpha on phosphatidylinositol breakdown, release of 1,2-diacylglycerols, mobilization of arachidonate from diacylglycerol and prostaglandin synthesis were examined in a model osteoblast cell line (MC3T3-E1). Tumor necrosis factor-alpha (10 nM) caused a specific (30%) decrease in the mass of phosphatidylinositol (and no other phospholipids) within 30 min of exposure. Tumor necrosis factor-alpha doubled the rate of incorporation of [32P]orthophosphoric acid into phosphatidylinositol, indicating that the turnover of inositol phosphate was enhanced, and increased the content of diacylglycerol in parallel with phosphatidylinositol breakdown. The cytokine (10-50 nM; 4 h) also promoted a specific release of 24-34% of the [3H]arachidonate from prelabeled phosphatidylinositol, a release of 80% of the 3H-fatty acid from the diacylglycerol pool, and a 30-fold increase in the synthesis of prostaglandin E2. The tumor necrosis factor-alpha induced liberation of [3H]arachidonate from diacylglycerol, cellular arachidonate release and the synthesis of prostaglandin E2 were each blocked by an inhibitor of diacylglycerol lipase, the compound RHC 80267 (30 microM). Therefore, we conclude that, in the MC3T3-E1 cell line, tumor necrosis factor-alpha activates a phosphatidylinositol-specific phospholipase C (phosphatidylinositol inositolphosphohydrolase; EC 3.1.4.3) to release diacylglycerol, and increases the metabolism of diacylglycerol to liberate arachidonate for prostaglandin synthesis.  相似文献   

2.
We studied the possible involvement of diacylglycerol lipase in the regulatory mechanisms governing the release of prolactin by primary cultures of anterior pituitary cells. This was accomplished by studying the effect of a selective inhibitor of diacylglycerol lipase activity, RHC 80267, on basal prolactin release and that stimulated by TRH and elevated potassium concentrations. RHC 80267 produced a concentration-dependent reduction in basal prolactin release and abolished its increase produced by TRH and potassium. These results are consistent with the hypothesis that the production of arachidonate from lipids via the diacylglycerol lipase pathway is an important event in the governance of prolactin release.  相似文献   

3.
Addition of a guanine nucleotide analog, guanosine 5'-O-(thiotriphosphate) (GTP gamma S)(1-100 microM) induced release of [3H]arachidonic acid from [3H]arachidonate-prelabeled rabbit neutrophils permeabilized with saponin. The chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced arachidonate release was enhanced by GTP gamma S, Ca2+, or their combination. Ca2+ alone (up to 100 microM) did not effectively stimulate lipid turnover. However, the combination of fMLP plus GTP gamma S elicited greater than additional effects in the presence of resting level of free Ca2+. The addition of 100 microM of GTP gamma S reduced the Ca2+ requirement for arachidonic acid liberation induced by fMLP. Pretreatment of neutrophils with pertussis toxin resulted in the abolition of arachidonate release and diacylglycerol formation. Neomycin (1 mM) caused no significant reduction of arachidonate release. In contrast, about 40% of GTP gamma S-induced arachidonate release was inhibited by a diacylglycerol lipase inhibitor, RHC 80267 (30 microM). These observations indicate that liberation of arachidonic acid is mediated by phospholipase A2 and also by phospholipase C/diacylglycerol lipase pathways. Fluoride, which bypasses the receptor and directly activates G proteins, induced arachidonic acid release and diacylglycerol formation. The fluoride-induced arachidonate release also appeared to be mediated by these two pathways. The loss of [3H]arachidonate was seen in phosphatidylinositol, phosphatidylcholine, and phosphatidylethanolamine. These data indicate that a G protein is involved between the binding of fMLP to its receptor and activation of phospholipase A2, and also that the arachidonic acid release is mediated by both phospholipase A2 and phospholipase C/diacylglycerol lipase.  相似文献   

4.
The diacylglycerol lipase inhibitor, RHC 80267, 1,6-di(O-(carbamoyl)cyclohexanone oxime)hexane, was tested for its ability to block the release of arachidonic acid from human platelets. At a concentration (10 microM) reported to completely inhibit diacylglycerol lipase in fractions of broken platelets, RHC 80267 had no effect on diacylglycerol lipase activity or the release of arachidonic acid from washed human platelets stimulated with collagen. At a high concentration (250 microM), the compound inhibited the formation of arachidonyl-monoacylglycerol by 70% and the release of arachidonate by 60%. However, at this concentration RHC 80267 was found to inhibit cyclooxygenase activity, phospholipase C activity and the hydrolysis of phosphatidylcholine (PC) (presumably by inhibiting phospholipase A2). The phospholipase C inhibition was attributed to the inhibition of prostaglandin H2 formation, as it was alleviated by the addition of the endoperoxide analog, U-46619. PC hydrolysis was only partially restored with U-46619, suggesting that RHC 80267 directly alters phospholipase A2 activity. The inhibition of arachidonate release observed was accounted for by the inhibition of PC hydrolysis. We conclude that RHC 80267, because of its lack of specificity at concentrations needed to inhibit diacylglycerol lipase, is an unsuitable inhibitor for studying the release of arachidonic acid in intact human platelets.  相似文献   

5.
Monoglyceride and diglyceride lipases from human platelet microsomes   总被引:1,自引:0,他引:1  
In the present study, we have characterized the properties of both diglyceride lipase (lipoprotein lipase, EC 3.1.1.24) and monoglyceride lipases (acylglycerol lipase, EC 3.1.1.23) in an attempt to assess the potential roles of these two enzymes in the release of arachidonate in activated human platelets. Diglyceride lipase exhibited maximal activity at pH 3.5, whereas monoglyceride lipase showed optimal activity at pH 7.0. Neither of the lipases were inhibited by EDTA or stimulated by Ca2+, Mg2+ or Mn2+. Both enzymes, however, were strongly inhibited by Hg2+ and Cu2+, indicating the involvement of sulfhydryl groups in catalytic activity. This suggestion was further supported by their sensitivity toward sulfhydryl inhibitors, with monoglyceride lipase being more susceptible to inhibition. Both lipases were found to be inhibited to a different degree by a variety of antiplatelet drugs blocking aggregation and arachidonate release. Kinetic studies indicated that dichotomous metabolism of diacylglycerol to monoacylglycerol and to phosphatidic acid could occur concurrently, since the apparent Km values for diglyceride lipase and for diglyceride kinase were comparable. Further studies showed that the specific activity of monoglyceride lipase was at least 100-fold higher than that of diglyceride lipase, indicating that the rate-limiting step in the release of arachidonate was the reaction catalyzed by diglyceride lipase.  相似文献   

6.
The synthesis and release of PGs by the isolated perfused rabbit heart upon bradykinin stimulation results from lipase stimulation which liberates arachidonic acid for PG biosynthesis. The [14C]-labelled fatty acids, arachidonate, linoleate, and oleate, when infused into the heart preparation, were efficiently incorporated into the phospholipid pool in the heart, mostly in the 2-position of phosphatidylcholine. On the other hand, [14C]-palmitate was esterified into both the 1- and the 2-position. Bradykinin released bioassayable PG when injected into the rabbit hearts regardless of which fatty acid label was incorporated into the phospholipid pool. However, only [14C]-arachidonic acid (but not [14C]-linoleate, oleate or palmitate) was liberated from the variously labelled hearts upon hormone stimulation. This selective bradykinin effect on fatty acid release suggests that hormone stimulation either activates a specific lipase that distinguishes different fatty acids in the 2-position or activates lipase which is selectively compartmented with arachidonate-containing phospholipids. Ischemia, on the other hand, appeared to non-specifically stimulate tissue lipases, resulting in a non-selective release of oleic as well as arachidonic acid. A disproportionally large release of arachidonic acid was observed accompanying a relatively small PG (10:1 arachidonate: PG ratio) production during ischemia, as compared to bradykinin (3:1 ratio), suggesting distinct mechanisms for PG biosynthesis induced by bradykinin and ischemia.This work was supported by NIH grants: SCOR-HL-17646, HE-14397, HL-20787, and Experimental Pathology training grant (WH) 5 TO1 GM00897-16. Address correspondence to Dr. Philip Needleman, Department of Pharmacology, Washington University Medical School, St. Louis, Missouri 63110.  相似文献   

7.
Thrombin stimulated rapid formation of diacylglycerol, inositol 1,4,5-trisphosphate (IP3) and thromboxane B2 (TXB2) in human platelets. Formation of diacylglycerol and IP3 appeared to precede that of TXB2. Activation of protein kinase C by diacylglycerol combining with Ca+2 mobilization by IP3 has been implicated in mediating arachidonate release. However, addition of the protein kinase C inhibitor 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7) to platelet suspension did not inhibit thrombin-stimulated arachidonate release and TXB2 synthesis, whereas addition of the Ca+2 antagonist, 3,4,5-trimethoxybenzoic acid 8-(diethylamino) octyl ester (TMB-8) or the calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) abolished arachidonate release. The correlation of IP3 production with arachidonate release on increasing the concentrations of thrombin was further examined. IP3 production reached near maximum at 0.2 U/ml, whereas TXB2 synthesis continued to increase at 1 U/ml. These results suggest that protein kinase C activation may not mediate arachidonate release and that Ca+2 mobilization by IP3 may only partially account for arachidonate release in platelets stimulated with relatively high concentrations of thrombin.  相似文献   

8.
Diacylglycerol lipase activity has been demonstrated in human fetal membranes and decidua vera tissues. The specific activity of the enzyme is highest in the microsomal fraction of decidua vera tissue. The acylester bond at the sn-1 position of 1,2-diacyl-sn-glycerol is hydrolyzed followed by release of the fatty acid at the sn-2 position. The diacylglycerol lipase activity present in the microsomal fraction of decidua vera tissue hydrolyzes preferentially a diacylglycerol containing an arachidonoyl group in the sn-2 position. Monoacylglycerol lipase activity was also demonstrated in these tissues. The specific activity of monoacylglycerol lipase was significantly greater than that of diacylglycerol lipase and catalyzed preferentially the hydrolysis of monoacylglycerols containing an arachidonyl group in the sn-2 position. Based on the subcellular distribution and the differential effects of various inhibitors, we suggest that the monoacylglycerol lipase and diacylglycerol lipase in decidua vera tissue are 2 distinct enzymes. Diacylglycerol kinase specific activity was examined also and was found to be 4-5 times greater in amnion than in either chorion laeve or decidua vera. The importance of diacylglycerol metabolism in the mechanism of arachidonic acid release and prostaglandin biosynthesis is discussed.  相似文献   

9.
Diacylglycerol lipase (glycerol ester hydrolase, EC 3.1.1.3) activities were investigated in subcellular fractions from neonatal and adult rat liver in order to determine whether one or more different lipases might provide the substrate for the developmentally expressed, activity monoacylglycerol acyltransferase. The assay for diacylglycerol lipase examined the hydrolysis of sn-1-stearoyl,2- [14C]oleoylglycerol to labeled monoacylglycerol and fatty acid. Highest specific activities were found in lysosomes (pH 4.8) and cytosol and microsomes (pH 8). The specific activity from plasma membrane from adult liver was 5.8-fold higher than the corresponding activity in the neonate. In other fractions, however, no developmental differences were observed in activity or distribution. In both lysosomes and cytosol, 75 to 90% of the labeled product was monoacylglycerol, suggesting that these fractions contained relatively little monoacylglycerol lipase activity. In contrast, 80% of the labeled product from microsomes was fatty acid, suggesting the presence of monoacylglycerol lipase in this fraction. Analysis of the reaction products strongly suggested that the lysosomal and cytosolic diacylglycerol lipase activities hydrolyzed the acyl-group at the sn-1 position. The effects of serum and NaCl on diacylglycerol lipase from each of the subcellular fractions differed from those effects routinely observed on lipoprotein lipase and hepatic lipase, suggesting that the hepatic diacylglycerol lipase activities were not second functions of these triacylglycerol lipases. Cytosolic diacylglycerol lipase activity from neonatal liver and adult liver was characterized. The apparent Km for 1-stearoyl,2-oleoylglycerol was 115 microM. There was no preference for a diacylglycerol with arachidonate in the sn-2 position. Bovine serum albumin stimulated the activity, whereas dithiothreitol, N-ethylmaleimide, and ATP inhibited the activity. Both sn-1(3)- and 2-monooleylglycerol ethers stimulated cytosolic diacylglycerol lipase activity 2-3-fold. The corresponding amide analogs stimulated 28 to 85%, monooleoylglycerol itself had little effect, and 1-alkyl- or 1-acyl-lysophosphatidylcholine inhibited the activity. These data provide the first characterization of hepatic subcellular lipase activities from neonatal and adult rat liver and suggest that independent diacylglycerol and monoacylglycerol lipase activities are present in microsomal membranes and that the microsomal and cytosolic diacylglycerol lipase activities may describe an ambipathic enzyme. The data also suggest possible cellular regulation by monoalkylglycerols.  相似文献   

10.
Previous studies of brown adipocytes identified an increased breakdown of phosphoinositides after selective alpha 1-adrenergic-receptor activation. The present paper reports that this response, elicited with phenylephrine in the presence of propranolol and measured as the accumulation of [3H]inositol phosphates, is accompanied by increased release of [3H]arachidonic acid from cells prelabelled with [3H]arachidonic acid. Differences between stimulated arachidonic acid release and formation of inositol phosphates included a requirement for extracellular Ca2+ for stimulated release of arachidonic acid but not for the formation of inositol phosphates and the preferential inhibition of inositol phosphate formation by phorbol 12-myristate 13-acetate. The release of arachidonic acid in response to phenylephrine was associated with an accumulation of [3H]arachidonic acid-labelled diacylglycerol, and this response was not dependent on extracellular Ca2+ but was partially prevented by treatment with the phorbol ester. The release of arachidonic acid was also stimulated by melittin, which increases the activity of phospholipase A2, by ionophore A23187, by lipolytic stimulation with forskolin and by exogenous phospholipase C. The arachidonic acid response to phospholipase C was completely blocked by RHC 80267, an inhibitor of diacylglycerol lipase, but this inhibitor had no effect on release stimulated with melittin or A23187 and inhibited phenylephrine-stimulated release by only 40%. The arachidonate response to forskolin was additive with the responses to either phenylephrine or exogenous phospholipase C. These data indicate that brown adipocytes are capable of releasing arachidonic acid from neutral lipids via triacylglycerol lipolysis, and from phospholipids via phospholipase A2 or by the sequential activities of phospholipase C and diacylglycerol lipase. Our findings also suggest that the action of phenylephrine to promote the liberation of arachidonic acid utilizes both of these reactions.  相似文献   

11.
We recently proposed a new pathway by which arachidonate is released from platelet phosphatidyl inositol after stimulation by either thrombin or calcium ionophore A23187. The initial step in arachidonate liberation involves hydrolysis of phosphatidyl inositol to form 1,2-diacylglycerol which is subsequently hydrolyzed by a diacylglycerol lipase to liberate arachidonate for the prostaglandin and lipoxygenase pathways. Whether this pathway is unique to platelets or accounts for arachidonate release from other tissues has not been previously studied. Thus we have now investigated arachidonate metabolism in mouse fibrosarcoma cells (HSDM1C1) grown in culture. These cells contain approximately 7.6% of their total phospholipid as phosphatidyl inositol in the resting state (range 6.5–8.3%). When bradykinin (12 μM) is added to the fibrosarcoma cells, there is a rapid depletion of membrane phosphatidyl inositol reaching 62 ± 8% S.D. of baseline values by 15 seconds, falling to 36 ± 6% by 15 minutes. The drop in membrane phosphatidyl inositol is accompanied by release of arachidonate and PGE2 into the culture medium. The time course of phosphatidyl inositol breakdown and PGE2 formation supports the idea that phosphatidyl inositol breakdown provides the arachidonate for prostaglandin synthesis in mouse fibrosarcoma cells. Crude extracts of HSDM1C1 cells contained sufficient phosphatidyl inositol-specific phospholipase C activity and diacylglycerol lipase activity to account for arachidonate release in these cells.  相似文献   

12.
We have studied the capacity of human neutrophils to release arachidonic acid from diacylglycerol, employing 1-stearoyl-2-[1-14C]arachidonoyl-sn-glycerol and 1-[1-14C]stearoyl-2-arachidonoyl-sn-glycerol as exogenous substrates. We have found that arachidonic acid is removed from diacylglycerol by the sequential action of two enzymes. First, the sn-1 position is split by 1-diacylglycerol lipase activity, and then, arachidonic acid is released from the resulting 2-monoacylglycerol by a 2-monoacylglycerol lipase. The specific activity of the 2-monoacylglycerol lipase, using 2-[1-14C]arachidonoyl-sn-glycerol as exogenous substrate, was at least 9-fold higher than that of 1-diacylglycerol lipase, indicating that the action of the 1-diacylglycerol lipase is the rate-limiting step in arachidonic acid release from diacylglycerol. Postnuclear supernatants from A23187-treated cells showed a 2.5-fold increase in both lipase activities. The arachidonic acid-releasing diacylglycerol lipase system showed an optimum pH of 4.5 and was not inhibited by EGTA or stimulated by Ca2+, Mg2+, Mn2+, Zn2+, or Co2+. However, arachidonic acid release was inhibited by Hg2+, suggesting the involvement of sulfhydryl groups in catalytic activity. The subcellular distribution of both 1-diacylglycerol lipase and 2-monoacylglycerol lipase activities was examined in resting and A23187-treated human neutrophils by fractionation of postnuclear supernatants on continuous sucrose gradients. Both lipases were localized mainly in the membrane of gelatinase-containing granules, which were resolved from cytosol, plasma membrane, phosphasomes, and specific and azurophilic granules. When neutrophils were stimulated by the calcium ionophore A23187, a drastic shift of the 1-diacylglycerol lipase and 2-monoacylglycerol lipase toward the plasma membrane was detected. This shift was due to fusion of gelatinase-containing granules with the plasma membrane upon neutrophil stimulation. As a result of the membrane fusion process, the capacity to release arachidonic acid from diacylglycerol was increased. This translocation from the membrane of gelatinase-containing granules to the plasma membrane may play an important role in regulating the diacylglycerol level in stimulated human neutrophils.  相似文献   

13.
In cultured dorsal root ganglion (DRG) neurons prelabeled with [3H]arachidonic acid [( 3H]AA), bradykinin (BK) stimulation resulted in increased levels of radioactive diacylglycerol, monoacylglycerol, and free AA. The transient increases in content of radioactive diacylglycerol and monoacylglycerol preceded the increase in level of free AA, suggesting the contribution of a diacylglycerol lipase pathway to AA release. An analysis of the molecular species of diacylglycerols in unstimulated cultures revealed the presence of two primary [3H]AA-containing species, 1-palmitoyl-2-arachidonoyl and 1-stearoyl-2-arachidonoyl diacylglycerol. BK stimulation resulted in a preferential increase in content of 1-stearoyl-2-arachidonoyl diacylglycerol. When DRG cultures were labeled with [3H]stearic acid, treatment with BK increased the amount of label in diacylglycerol and free stearic acid, but not in monoacylglycerol. This result suggested that AA release occurred through the successive actions of an sn-1 diacylglycerol lipase and monoacylglycerol lipase. Other data supporting a diacylglycerol lipase pathway was the significant inhibition of [3H]AA release and consequent accumulation of diacylglycerol by RG 80267, which preferentially inhibits diacylglycerol lipase. Analysis of the molecular species profiles of individual phospholipids in DRG neurons indicated that phosphoinositide hydrolysis may account for a significant portion of the rapid increase in content of 1-stearoyl-2-arachidonoyl diacylglycerol. We were unable to obtain evidence that the phospholipase A2 pathway makes a significant contribution to BK-stimulated AA release in DRG cultures. Under our assay conditions there were no BK-stimulated increases in levels of radioactive lysophosphatidylinositol, lysophosphatidylcholine, or lysophosphatidylethanolamine in cultures prelabeled with [3H]inositol, [3H]choline, or [3H]-ethanolamine, respectively.  相似文献   

14.
GTP or GTP gamma S alone caused low but significant liberation of arachidonic acid in saponin-permeabilized human platelets but not in intact platelets. GTP or GTP gamma S also enhanced thrombin-induced [3H]arachidonic acid release in permeabilized platelets. Inhibitors of the phospholipase C (neomycin)/diacylglycerol lipase (RHC 80267) pathway for arachidonate liberation did not reduce the [3H]arachidonic acid release. The loss of [3H]arachidonate radioactivity from phosphatidylcholine was almost equivalent to the increase in released [3H]arachidonic acid, suggesting the hydrolysis of phosphatidylcholine by phospholipase A2. The effect of GTP gamma S was greater at lower Ca2+ concentrations. These data indicate that the release of arachidonic acid by phospholipase A2 in saponin-treated platelets may be linked to a GTP-binding protein.  相似文献   

15.
We have adapted rat pituitary GH3 cells to grow in delipidated culture medium. In response, esterfied linoleic acid and arachidonic acid become essentially undetectable, whereas eicosa-5,8,11-trienoic acid accumulates and oleic acid increases markedly. These changes occur in all phospholipid classes, but are particularly pronounced in inositol phospholipids, where the usual stearate/arachidonate profile is replaced with oleate/eicosatrienoate (n - 9) and stearate/eicosatrienoate (n - 9). Incubation of arachidonate-depleted cells with 10 microM-arachidonic acid for only 24 h results in extensive remodelling of phospholipid fatty acids, such that close-to-normal compositions and arachidonic acid content are achieved for the inositol phospholipids. In comparison studies with arachidonic acid-depleted or -repleted cells, it was found that the arachidonate content does not affect thyrotropin-releasing-hormone (TRH)-stimulated responses measured at long time points, including [32P]Pi labelling of phosphatidylinositol and phosphatidic acid, stimulation of protein phosphorylation, and basal or TRH-stimulated prolactin release. However, transient events such as stimulated breakdown of inositol phospholipids and an initial rise in diacylglycerol are enhanced by the presence of arachidonate. These results show that arachidonic acid itself is not required for operation of the phosphatidylinositol cycle and is not an obligatory intermediate in TRH-mediated GH3 cell activation. It is possible that any structural or functional role of arachidonic acid in these processes is largely met by replacement with eicosatrienoate (n - 9). However, since arachidonate in inositol phospholipids facilitates their hydrolysis upon stimulation by TRH, arachidonic acid apparently may have a specific role in the recognition of these lipids by phospholipase C.  相似文献   

16.
Cross-linking of IgE receptors by antigen stimulation leads to histamine release and arachidonic acid release in rat peritoneal mast cells. Investigators have reported a diverse distribution of [3H]arachidonate that is dependent on labelling conditions. Mast cells from rat peritoneal cavity were labelled with [3H]arachidonic acid for different periods of time at either 30 or 37 degrees C. Optimum labelling was found to be after 4 h incubation with [3H]arachidonate at 30 degrees C, as judged by cell viability (Trypan Blue uptake), responsiveness (histamine release) and distribution of radioactivity. Alterations in 3H-radioactivity distribution in mast cells labelled to equilibrium were examined on stimulation with antigen (2,4-dinitrophenyl-conjugated Ascaris suum extract). The results indicated that [3H]arachidonic acid was lost mainly from phosphatidylcholine and, to a lesser extent, from phosphatidylinositol. A transient appearance of radiolabelled phosphatidic acid and diacylglycerol indicated phosphatidylinositol hydrolysis by phospholipase C. Pretreatment with a phospholipase A2 inhibitor, mepacrine, substantially prevented the antigen-induced liberation of [3H]arachidonic acid from phosphatidylcholine. It can be thus concluded that, in the release of arachidonic acid by antigen-stimulated mast cells, the phospholipase A2 pathway, in which phosphatidylcholine is hydrolysed, serves as the major one, the phospholipase C/diacylglycerol lipase pathway playing only a minor role.  相似文献   

17.
Upon differentiation, U937 promonocytic cells gain the ability to release a large fraction of arachidonate esterified in phospholipids when stimulated, but the mechanism is unclear. U937 cells express group IV phospholipase A(2) (cPLA(2)), but neither its level nor its phosphorylation state increases upon differentiation. A group VI PLA(2) (iPLA(2)) that is sensitive to a bromoenol lactone inhibitor catalyzes arachidonate hydrolysis from phospholipids in some cells and facilitates arachidonate incorporation into glycerophosphocholine (GPC) lipids in others, but it is not known whether U937 cells express iPLA(2). We confirm that ionophore A23187 induces substantial [(3)H]arachidonate release from differentiated but not control U937 cells, and electrospray ionization mass spectrometric (ESI/MS) analyses indicate that differentiated cells contain a higher proportion of arachidonate-containing GPC species than control cells. U937 cells express iPLA(2) mRNA and activity, but iPLA(2) inhibition impairs neither [(3)H]arachidonate incorporation into nor release from U937 cells. Experiments with phosphatidate phosphohydrolase (PAPH) and phospholipase D (PLD) inhibitors coupled with ESI/MS analyses of PLD-PAPH products indicate that differentiated cells gain the ability to produce diacylglycerol (DAG) via PLD-PAPH. DAG promotes arachidonate release by a mechanism that does not require DAG hydrolysis, is largely independent of protein kinase C, and requires cPLA(2) activity. This may reflect DAG effects on cPLA(2) substrate state.  相似文献   

18.
The exocytotic histamine secretion from ATP-permeabilized and Mg-resealed rat peritoneal mast cells is markedly enhanced by the addition of guanosine 5'-(gamma-thio)triphosphate (GTP gamma S) at a concentration of 100 uM. GTP gamma S also caused a great enhancement of arachidonic acid liberation from these cells. The level of released arachidonic acid in permeabilized cells enhanced by GTP gamma S in the absence of Ca2+ was nearly equal to the level of permeabilized cells incubated in the presence of Ca2+ but without GTP gamma S, suggesting the Ca2+ sparing effect of GTP gamma S. From the time sequential changes in the [3H]arachidonate radioactivities in various phospholipids, it is conceivable that nucleotide-dependent arachidonic acid release was mediated via phospholipase A2 pathway. The entrapment of a diacylglycerol (DG) lipase inhibitor, RHC 80267, caused suppression of both Ca2+- and guanine nucleotide-dependent arachidonic acid liberation in mast cells, indicating contribution of DG lipase pathway for arachidonic acid generation.  相似文献   

19.
Rat renal cortical and medullary slices incorporate [14C]arachidonate into phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and triacylglycerols. The percent distribution of [14C]arachidonate among the various phospholipids is similar in renal cortex and medulla, although the total amount of radioactively labeled phospholipids is higher in the renal medulla. Subsequent incubation of prelabeled slices in the presence of deoxycholate induces a loss of radioactivity from [14C]phosphatidylinositol, with a concomitant increase in 1,2-[14C]diacylglycerol. Neutral lipids are not affected. The degradation of phosphatidylinositol to [14C]diacylglycerol indicates the presence of phospholipase C activity. Renal medulla seems to be more sensitive to deoxycholate than the renal cortex. Deoxycholate also induces slightly the disappearance of some 14C radioactivity from phosphatidylethanolamine and phosphatidylcholine, which might reflect activation of phospholipase A2. The activity of the phospholipase C could constitute the first step in the sequence of reactions that leads to the release of arachidonic acid.  相似文献   

20.
Tumor promoting phorbol diesters: substrates for diacylglycerol lipase   总被引:1,自引:0,他引:1  
Enzyme activity in rat serum was examined utilizing the potent tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) and various glycerolipids as substrates. The serum activity was specific for hydrolysis of the long chain tetradecanoate moiety of TPA, hydrolyzed mono- and diacylglycerols, but was not effective against triacylglycerols, cholesterylesters, or phospholipids. Heating the enzyme preparation at 56 degrees C for 1 min was dually effective in reducing the hydrolysis of both TPA and dioleoylglycerol by 83-86% of control levels. The potent diacylglycerol lipase inhibitor, RHC 80267, inhibited the hydrolysis of TPA in the 0.2-1.0 microM range and was also a potent blocker of monoacyl- and diacylglycerol hydrolysis. In substrate competition studies, exogenous unlabeled TPA was added to the [14C]dioleoylglycerol-containing reaction mixture, however, this produced an approximate 3-fold stimulation of [14]dioleoylglycerol hydrolysis. Although we have not established whether the hydrolysis of TPA and diacylglycerol is the work of one enzyme, the effectiveness of the specific lipase inhibitor, RHC 80267, demonstrates that diacylglycerol lipase can utilize TPA as substrate, a finding never before documented. This point is of interest in light of the theory that phorbol esters act by mimicry of the natural lipid mediator, diacylglycerols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号