首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Metabotropic glutamate receptors   总被引:6,自引:0,他引:6  
Metabotropic glutamate receptors (mGlus) are a family of G-protein-coupled receptors activated by the neurotransmitter glutamate. Molecular cloning has revealed eight different subtypes (mGlu1-8) with distinct molecular and pharmacological properties. Multiplicity in this receptor family is further generated through alternative splicing. mGlus activate a multitude of signalling pathways important for modulating neuronal excitability, synaptic plasticity and feedback regulation of neurotransmitter release. In this review, we summarize anatomical findings (from our work and that of other laboratories) describing their distribution in the central nervous system. Recent evidence regarding the localization of these receptors in peripheral tissues will also be examined. The distinct regional, cellular and subcellular distribution of mGlus in the brain will be discussed in view of their relationship to neurotransmitter release sites and of possible functional implications.This work was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan (R.S.) and by the Austrian Science Fund FWF (grant no. P16720 to F.F.).  相似文献   

2.
3.
Pro-inflammatory stimuli evoke an export of glutamate from microglia that is sufficient to contribute to excitotoxicity in neighbouring neurons. Since microglia also express various glutamate receptors themselves, we were interested in the potential feedback of glutamate on this system. Several agonists of mGluRs (metabotropic glutamate receptors) were applied to primary rat microglia, and the export of glutamate into their culture medium was evoked by LPS (lipopolysaccharide). Agonists of group-II and -III mGluR ACPD [(1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid] and L-AP4 [L-(+)-2-amino-4-phosphonobutyric acid] were both capable of completely blocking the glutamate export without interfering with the production of NO (nitric oxide); the group-I agonist tADA (trans-azetidine-2,4-dicarboxylic acid) was ineffective. Consistent with the possibility of feedback, inhibition of mGluR by MSPG [(R,S)-α-2-methyl-4sulfonophenylglycine] potentiated glutamate export. As the group-II and -III mGluR are coupled to Gαi-containing G-proteins and the inhibition of adenylate cyclase, we explored the role of cAMP in this effect. Inhibition of cAMP-dependent protein kinase [also known as protein kinase A (PKA)] by H89 mimicked the effect of ACPD, and the mGluR agonist had its actions reversed by artificially sustaining cAMP through the PDE (phosphodiesterase) inhibitor IBMX (isobutylmethylxanthine) or the cAMP mimetic dbcAMP (dibutyryl cAMP). These data indicate that mGluR activation attenuates a potentially neurotoxic export of glutamate from activated microglia and implicate cAMP as a contributor to this aspect of microglial action.  相似文献   

4.
Metabotropic G-protein-coupled glutamate receptors as therapeutic targets.   总被引:1,自引:0,他引:1  
Metabotropic glutamate receptors have received considerable attention over the past decade in view of their relevance in multiple aspects of glutamatergic transmission. Recent advances in the molecular biology, pharmacology and medicinal chemistry of this family of G-protein-coupled receptors have led to therapeutic opportunities for subtype-selective modulators in brain disorders and diseases such as ischemia and schizophrenia.  相似文献   

5.
Metabotropic glutamate receptors in the basal ganglia motor circuit   总被引:5,自引:0,他引:5  
In recent years there have been tremendous advances in our understanding of the circuitry of the basal ganglia and our ability to predict the behavioural effects of specific cellular changes in this circuit on voluntary movement. These advances, combined with a new understanding of the rich distribution and diverse physiological roles of metabotropic glutamate receptors in the basal ganglia, indicate that these receptors might have a key role in motor control and raise the exciting possibility that they might provide therapeutic targets for the treatment of Parkinson's disease and related disorders.  相似文献   

6.
The effects of metabotropic glutamate receptor agonists on the basal and potassium (50 mM K+)-stimulated release of [3H]GABA from mouse hippocampal slices were investigated using a superfusion system. The group I agonist (1±)-1-aminocyclopentane-trans-1,3-dicarboxylate enhanced the basal GABA release and reduced the K+-evoked release by a mechanism antagonized by (RS)-1-aminoindan-1,5-dicarboxylate in both cases. The group II agonist (2S,2R,3R)-2-(2,3-dicarboxycyclopropyl)glycine failed to have any effect on the basal release, but inhibited the stimulated release. This inhibition was not affected by the antagonist (2S)-2-ethylglutamate. The group III agonists L(+)-amino-4-phosphonobutyrate and O-phospho-L-serine inhibited the basal GABA release, which effects were blocked by the antagonist (RS)-2-cyclopropyl-4-phosphonophenylglycine. Moreover, the suppression of the K+-evoked release by L(+)2-amino-4-phosphonobutyrate was apparently receptor-mediated, being blocked by (RS)-2-cyclopropyl-4-phosphonophenylglycine. The results show that activation of metabotropic glutamate receptors of group I is able to potentiate the basal release of GABA, whereas activation of groups I and III receptors reduce K+-stimulated release in mouse hippocampal slices.  相似文献   

7.
Glaucoma is a leading cause of blindness, ultimatively resulting in the apoptotic death of retinal ganglion cells. However, molecular mechanisms involved in ganglion cell death are poorly understood. While the involvement of ionotropic glutamate receptors has been extensively studied, virtually nothing is known about its metabotropic counterparts. Here, we compared the retinal gene expression of metabotropic glutamate receptors (mGluR) in eyes with normal and elevated intraocular pressure (IOP) of DBA/2J mice, a model for secondary angle-closure glaucoma using RT-PCR and immunohistochemistry. Elevated IOP in DBA/2J mice significantly increased retinal gene expression of mGluR1a, mGluR2, mGluR4a, mGluR4b, mGluR6 and mGluR7a when compared to C57BL/6 control animals, while mGluR5a/b and mGluR8a were decreased and no difference was observed for mGluR3 and mGluR8b. Specific antibodies detected an increase of mGluR1a and mGluR5a/b in both synaptic layers and in the ganglion cell layer of the retina under elevated IOP. Because ganglion cell death in DBA/2J mice occurs most likely by apoptotic mechanisms, we demonstrated up-regulation of mGluRs in neurons undergoing apoptosis. In summary, we support the idea that the specific gene regulation of mGluRs is a part of the glaucoma-like pathological process that develops in the eyes of DBA/2J mice.  相似文献   

8.
Forward and reverse signaling mediated by EphB tyrosine kinase receptors and their transmembrane ephrin-B ligands play important roles in axon pathfinding, yet little is known about the intracellular pathways involved. Here we have used growth cones from the ventral (EphB receptor-bearing) and dorsal (ephrin-B-bearing) embryonic Xenopus retina to investigate the signaling mechanisms in both forward and reverse directions. We report that unclustered, but not clustered, EphB2 ectodomains trigger fast (5-10 min) transient collapse responses in growth cones. This collapse response is mediated by low levels of intracellular cyclic GMP and requires proteasome function. In contrast, clustered, but not unclustered, ephrin-B1 ectodomains cause slow (30-60 min) growth cone collapse that depends on high cGMP levels and is insensitive to inhibition of the proteasomal pathway. Upon receptor-ligand binding, endocytosis occurs in the reverse direction (EphB2-Fc into dorsal retinal growth cones), but not the forward direction, and is also sensitive to proteasomal inhibition. Endocytosis is functionally important because blocking of EphB2 internalization inhibits growth cone collapse. Our data reveal that distinct signaling mechanisms exist for B-type Eph/ephrin-mediated growth cone guidance and suggest that endocytosis provides a fast mechanism for switching off signaling in the reverse direction.  相似文献   

9.
A possible effect of nitric oxide (NO) on metabotropic glutamate receptor (mGluR) function in the amino acid afferent synapse was investigated in the isolated labyrinth of the frog Rana temporaria. The modification of the amplitude of responses of metabotropic glutamate receptor agonist trans-ACPD was analyzed during bath applied NO donor S-nitroso-N-acetyl-DL-penicillamine SNAP (0.1–100 μM) or nitric oxide synthase inhibitor L-NAME. It was shown that NO donor SNAP (1 μM) inhibited mGluR induced responses, and the inhibitor of NO-synthase L-NAME (100 μM) increased the amplitude of trans-ACPD evoked answers. The results suggest that NO can depress mGluR function due to modulation of functions of the endoplasmic reticulum channels.  相似文献   

10.
11.
代谢型谷氨酸受体在突触可塑性中的作用   总被引:2,自引:0,他引:2  
陈鹏  李金莲 《生命科学》2001,13(3):107-109,102
突触可塑性是近几年神经科学研究的热点之一,因为它对于理解神经系统的学习、学习和记忆、多咱神经疾病等许多过程有着重要的意义。除了离子型谷氨酸受体外,代谢型谷氨酸受体也参与了一些脑区中不同形式的突触可塑性变化。本文就代谢型谷氨酸受体选择性激动剂和拮抗剂对长时程增强和长时程抑制的作用进行了综述,以助于人们进一步理解突触可塑性的细胞和分子机制。  相似文献   

12.
Metabotropic glutamate receptors (mGluRs) modulate important processes in cerebellum including long-term depression, which also requires formation of nitric oxide (NO) and cGMP. Some reports suggest that mGluRs could modulate the NO-cGMP pathway in cerebellum. However this modulation has not been studied in detail. The aim of this work was to assess by microdialysis in freely moving rats whether activation of mGluR5 modulates the NO-cGMP pathway in cerebellum in vivo and to analyze the underlying mechanisms. We show that mGluR5 activation increases extracellular glutamate, citrulline and cGMP in cerebellum. Blocking NMDA receptors with MK-801 does not prevent any of these effects, indicating that NMDA receptors activation is not required. However in the presence of MK-801 the effects are more transient, returning faster to basal levels. Blocking AMPA receptors prevents the increase in citrulline and cGMP induced by mGluR5 activation, but not the increase in glutamate. The release of glutamate is prevented by tetrodotoxin but not by fluoroacetate, indicating that glutamate is released from neurons and not from astrocytes. Activation of AMPA receptors increases citrulline and cGMP. These data indicate that activation of mGluR5 induces an increase of extracellular glutamate which activates AMPA receptors, leading to activation of nitric oxide synthase and increased NO, which activates guanylate cyclase, increasing cGMP. The response mediated by AMPA receptors desensitize rapidly. Activation of AMPA receptors also induces a mild depolarization, allowing activation of NMDA receptors which prolongs the duration of the effect initiated by activation of AMPA receptors. These data support that the three types of glutamate receptors: mGluR5, AMPA and NMDA cooperate in the modulation of the grade and duration of activation of the NO-cGMP pathway in cerebellum in vivo. This pathway would modulate cerebellar processes such as long-term depression.  相似文献   

13.
Huntington's disease (HD) is a mid-life onset neurodegenerative disorder characterized by unvoluntary movements (chorea), personality changes and dementia that progress to death within 10-20 years of onset. There are currently no treatment to delay or prevent appearance of the symptoms in the patients. The defective gene in HD contains a trinucleotide CAG repeat expansion within its coding region that is expressed as a polyglutamine (polyQ) repeat in the protein huntingtin. The exact molecular mechanims by which mutant huntingtin induces cell death as well as the function of huntingtin are not totally understood. Studying mechanisms by which polyQ-huntingtin induces neurodegeneration has shown that phosphorylation plays a key role in HD. The IGF-1/Akt/SGK pathway reduces polyQ-huntingtin induced toxicity. This anti-apopototic effect is mediated via the phosphorylation of serine 421 of huntingtin. Moreover, components of this pathway are altered in disease. What is the function of huntingtin? Several studies indicate that huntingtin is an anti-apoptotic protein that could regulate intracellular dynamic. We recently demonstrated, that huntingtin specifically enhances vesicular transport of brain-derived neurotrophic factor (BDNF) along microtubules. Huntingtin-mediated transport involves Huntingtin-Associated Protein-1 (HAP1) and the p150(Glued) subunit of dynactin, an essential component of molecular motors. BDNF transport is attenuated both in the disease context and by reducing the levels of wild-type huntingtin. The alteration of the huntingtin/HAP1/ p150(Glued) complex correlates with reduced association of motor proteins with microtubules. Finally, polyQ-huntingtin-induced transport deficit results in the loss of neurotrophic support and neuronal toxicity.  相似文献   

14.
F Zheng  J P Gallagher 《Neuron》1992,9(1):163-172
Recent observations have led to the suggestion that the metabotropic glutamate receptor may play a role in the induction or maintenance of long-term potentiation (LTP). However, experimental evidence supporting a role for this receptor in the induction of LTP is still inconclusive and controversial. Here we report that, in rat dorsolateral septal nucleus (DLSN) neurons, which have the highest density of metabotropic receptors and show functional responses, the induction of LTP is not blocked by the NMDA receptor antagonist 2-amino-5-phosphonovalerate, but is blocked by two putative metabotropic glutamate receptor antagonists, L-2-amino-3-phosphonopropionic acid and L-2-amino-4-phosphonobutyrate. Furthermore, superfusion of (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid, a selective metabotropic glutamate agonist, resulted in a long-lasting potentiation of synaptic transmission similar to that induced by tetanic stimuli. Our results demonstrated that activation of postsynaptic metabotropic receptors is both necessary and sufficient for the induction of LTP in the DLSN, and we suggest that such a mechanism may be important at other CNS synapses.  相似文献   

15.
Glutamate uptake by high affinity glutamate transporters is essential for preventing excitotoxicity and maintaining normal synaptic function. We have discovered a novel role for presenilin-1 (PS1) as a regulator of glutamate transport. PS1-deficient neurons showed a decrease in glutamate uptake of approximately 50% compared to wild-type neurons. Gamma-secretase inhibitor treatment mimicked the effects of PS1 deficiency on glutamate uptake. PS1 loss-of-function, accomplished by PS1 deficiency or gamma-secretase inhibitor treatment, caused a corresponding decrease in cell surface expression of the neuronal glutamate transporter, EAAC1. PS1 deficiency is known to reduce intracellular calcium stores. To explore the possibility that PS1 influences glutamate uptake via regulation of intracellular calcium stores, we examined the effects of treating neurons with caffeine, thapsigargin, and SKF-96365. These compounds depleted intracellular calcium stores by distinct means. Nonetheless, each treatment mimicked PS1 loss-of-function by impairing glutamate uptake and reducing EAAC1 expression at the cell surface. Blockade of voltage-gated calcium channels, activation and inhibition of protein kinase C (PKC), and protein kinase A (PKA) all had no effect on glutamate uptake in neurons. Taken together, these findings indicate that PS1 and intracellular calcium stores may play a significant role in regulating glutamate uptake and therefore may be important in limiting glutamate toxicity in the brain.  相似文献   

16.
代谢型谷氨酸受体在突触可塑性中的作用研究进展   总被引:5,自引:0,他引:5  
突触可塑性是近 30年来神经科学领域的研究热点之一 ,它主要包括长时程增强 (long termpotentiation ,LTP)和长时程抑制 (long termdepression ,LTD)。以往的研究已经证实 ,离子型谷氨酸受体 (iGluRs)中的NMDA受体和AMPA受体 ,在LTP和LTD的诱导和维持中通过阳离子内流 ,引起细胞内的级联反应而起作用。新近的研究发现 ,代谢型谷氨酸受体 (mGluRs)与G蛋白偶联 ,通过细胞内的多种信使系统介导慢突触传递。本文主要就mGluRs在不同脑区LTP和LTD中的作用进行综述  相似文献   

17.
Recently, evidence has emerged that seven transmembrane G protein-coupled receptors may be present as homo- and heteromers in the plasma membrane. Here we describe a new molecular and functional interaction between two functionally unrelated types of G protein-coupled receptors, namely the metabotropic glutamate type 1alpha (mGlu(1alpha) receptor) and the adenosine A1 receptors in cerebellum, primary cortical neurons, and heterologous transfected cells. Co-immunoprecipitation experiments showed a close and subtype-specific interaction between mGlu(1alpha) and A1 receptors in both rat cerebellar synaptosomes and co-transfected HEK-293 cells. By using transiently transfected HEK-293 cells a synergy between mGlu(1alpha) and A1 receptors in receptor-evoked [Ca(2+)](i) signaling has been shown. In primary cultures of cortical neurons we observed a high degree of co-localization of the two receptors, and excitotoxicity experiments in these cultures also indicate that mGlu(1alpha) and A1 receptors are functionally related. Our results provide a molecular basis for adenosine/glutamate receptors cross-talk and open new perspectives for the development of novel agents to treat neuropsychiatric disorders in which abnormal glutamatergic neurotransmission is involved.  相似文献   

18.
Regulation and intracellular trafficking pathways of the endothelin receptors   总被引:12,自引:0,他引:12  
The effects of endothelin (ET) are mediated via the G protein-coupled receptors ET(A) and ET(B). However, the mechanisms of ET receptor desensitization, internalization, and intracellular trafficking are poorly understood. The aim of the present study was to investigate the molecular mechanisms of ET receptor regulation and to characterize the intracellular pathways of ET-stimulated ET(A) and ET(B) receptors. By analysis of ET(A) and ET(B) receptor internalization in transfected Chinese hamster ovary cells in the presence of overexpressed betaARK, beta-arrestin-1, beta-arrestin-2, or dynamin as well as dominant negative mutants of these regulators, we have demonstrated that both ET receptor subtypes follow an arrestin- and dynamin/clathrin-dependent mechanism of internalization. Fluorescence microscopy of Chinese hamster ovary and COS cells expressing green fluorescent protein (GFP)-tagged ET receptors revealed that the ET(A) and ET(B) subtypes were targeted to different intracellular routes after ET stimulation. While ET(A)-GFP followed a recycling pathway and colocalized with transferrin in the pericentriolar recycling compartment, ET(B)-GFP was targeted to lysosomes after ET-induced internalization. Both receptor subtypes colocalized with Rab5 in classical early endosomes, indicating that this compartment is a common early intermediate for the two ET receptors during intracellular transport. The distinct intracellular routes of ET-stimulated ET(A) and ET(B) receptors may explain the persistent signal response through the ET(A) receptor and the transient response through the ET(B) receptor. Furthermore, lysosomal targeting of the ET(B) receptor could serve as a biochemical mechanism for clearance of plasma endothelin via this subtype.  相似文献   

19.
High glucose concentrations cause oxidative injury and programmed cell death in neurons, and can lead to diabetic neuropathy. Activating the type 3 metabotropic glutamate receptor (mGluR3) prevents glucose-induced oxidative injury in dorsal root ganglion neurons co-cultured with Schwann cells. To determine the mechanisms of protection, studies were performed in rat dorsal root ganglion neuron-Schwann cell co-cultures. The mGluR3 agonist 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate prevented glucose-induced inner mitochondrial membrane depolarization, reactive oxygen species accumulation, and programmed cell death, and increased glutathione (GSH) concentration in co-cultured neurons and Schwann cells, but not in neurons cultured without Schwann cells. Protection was diminished in neurons treated with the GSH synthesis inhibitor l-buthionine-sulfoximine, suggesting that mGluR-mediated protection requires GSH synthesis. GSH precursors and the GSH precursor GSH-ethyl ester also protected neurons from glucose-induced injury, indicating that GSH synthesis in Schwann cells, and transport of reaction precursors to neurons, may underlie mGluR-mediated neuroprotection. These results support the conclusions that activating glial mGluR3 protects neurons from glucose-induced oxidative injury by increasing free radical scavenging and stabilizing mitochondrial function, through increased GSH antioxidant defense.  相似文献   

20.
Antidepressant drugs have a clinical latency that correlates with the development of neuroadaptive changes, including down-regulation of beta-adrenergic receptors in different brain regions. The identification of drugs that shorten this latency will have a great impact on the treatment of major depressive disorders. We report that the time required for the antidepressant imipramine to reduce the expression of beta-adrenergic receptors in the hippocampus is reduced by a co-administration with centrally active ligands of type 2/3 metabotropic glutamate (mGlu2/3) receptors. Daily treatment of mice with imipramine alone (10 mg/kg, i.p.) reduced the expression of beta-adrenergic receptors in the hippocampus after 21 days, but not at shorter times, as assessed by western blot analysis of beta1-adrenergic receptors and by the amount of specifically bound [3H]CGP-12177, a selective beta-adrenergic receptor ligand. Down-regulation of beta-adrenergic receptors occurred at shorter times (i.e. after 14 days) when imipramine was combined with low doses (0.5 mg/kg, i.p.) of the selective mGlu2/3 receptor agonist LY379268, or with the preferential mGlu2/3 receptor antagonist LY341495 (1 mg/kg, i.p.). Higher doses of LY379268 (2 mg/kg, i.p.) were inactive. This intriguing finding suggests that neuroadaptation to imipramine--at least as assessed by changes in the expression of beta1-adrenergic receptors--is influenced by drugs that interact with mGlu2/3 receptors and stimulates further research aimed at establishing whether any of these drugs can shorten the clinical latency of classical antidepressants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号