首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Little information is available on the relevance of parameters representing the insulin-like growth factor (IGF) system with regard to growth hormone (GH) treatment during childhood. In adults, high IGF-I levels were found to be associated with side effects and long-term risks. AIM/METHOD: Our aim was to monitor the serum levels of IGF-I, IGF-binding protein (IGFBP) 3, and IGFBP-2 during long-term GH treatment of 156 patients with GH deficiency (GHD) and of 153 non-GHD patients. We determined the extent to which the IGF parameters exceed the normal ranges and identified those parameters which are predictive of 1st-year growth. RESULTS: In prepubertal GHD children, the levels of IGF-I, IGFBP-3, and IGF-I/IGFBP-3 exceeded the 95th centile of the reference values for this age group in 2.3, 0.3, and 7.9% of the cases, respectively, whereas in prepubertal non-GHD children, the same parameters exceeded the 95th reference centile in 20.1, 3.5, and 32.2%, respectively. In pubertal GHD children IGF-I, IGFBP-3, and IGF-I/IGFBP-3 levels exceeded the 95th reference centile in 11.1, 1.5, and 15.4%, respectively. In pubertal non-GHD children, these levels also exceeded the 95th centile in 26.7, 7.0, and 41.4%, respectively. In both GHD and non-GHD groups, however, some patients had IGF parameters which were below the reference values. Our analysis showed that, in both groups, in addition to maximum GH, all IGF parameters (IGF-I, IGFBP-3, IGF-I/IGFBP-3 ratio, IGFBP-2 or derivatives) significantly extend the scope of a calculated model for predicting 1st-year height velocity. CONCLUSION: For reasons of safety and optimization of GH therapy, it is essential to follow up IGF-I, IGFBP-3, and IGFBP-2 levels regularly during childhood.  相似文献   

2.
BACKGROUND: Recent studies have shown that many patients treated with growth hormone (GH) during childhood because of idiopathic GH deficiency (GHD) are no longer GH deficient when retested after cessation of GH therapy when final height is achieved. These patients are labelled as transient GHD. We hypothesized that normalization of GH secretion in transient GHD could occur earlier during the course of GH treatment, which could allow earlier cessation of GH treatment. METHODS: In a retrospective study, GH secretion was re-evaluated after cessation of GH treatment at final height in 43 patients diagnosed during childhood as idiopathic GHD (10 with multiple pituitary hormonal deficiencies (MPHD) and 33 with isolated GHD (IsGHD)). In a prospective study, GH secretion was re-assessed after interruption of GH treatment given for 1 year in 18 children with idiopathic GHD (2 MPHD, 16 IsGHD). GH secretion was evaluated by glucagon or insulin stimulation tests. RESULTS: In the retrospective study, all the 10 patients with MPHD and 64% of the 33 patients with IsGHD were still deficient at re-evaluation using the paediatric criteria to define GHD (GH peak <10 ng/ml at provocative test). The proportion of persisting deficiency was greater in patients with complete IsGHD (86%, 12/14 patients) than in patients with partial IsGHD (47%, 9/19 patients). With the criteria proposed in adulthood (GH peak <3 ng/ml), all the 10 patients with MPHD were still considered to be deficient. In contrast, only 15% (5/33 patients) with IsGHD had a maximal GH value <3 ng/ml (36% of the 14 patients with complete IsGHD and none of the 19 patients with partial IsGHD). In the prospective study, after interruption of GH therapy given for 1 year, the 2 patients with MPHD were still GHD at re-evaluation and they resumed GH treatment. Among the 16 patients with IsGHD, 13 (81%) were still deficient (peak response <10 ng/ml) after 1 year. Two of the 3 patients in whom GHD was not confirmed at retesting after 1 year GH showed again a deficient response at second retesting. CONCLUSIONS: Although many patients diagnosed with IsGHD during childhood have a normalized GH secretory capacity when retested during adulthood, early retesting after interruption of GH treatment given for 1 year during childhood does not enable to determine if GH therapy has to be discontinued before cessation of growth.  相似文献   

3.
BACKGROUND/AIMS: The aim of the present study was to investigate whether short children with normal growth hormone (GH) immunoreactivity, but reduced bioactivity (bioinactive GH) could benefit from rhGH treatment as GH deficient (GHD) patients. Methods: We evaluated 12 pre-pubertal children (8 M, 4 F), with GH deficiency-like phenotype showing normal serum GH peak levels (>10 ng/ml), measured by immunofluorimetric assay (IFMA-GH), in contrast with a reduced GH bioactivity (bio-GH), evaluated using the Nb(2) cells. We also evaluated 15 age-matched GHD pre-pubertal children (11 M, 4 F) with serum GH peak <5 ng/ml. Both groups were treated with rhGH therapy at the dose of 0.23 mg/kg/week s.c. RESULTS: Serum bio-GH/IFMA-GH ratio at peak time for each patient during the provocative test was significantly lower in bioinactive GH than in GHD children (0.29 vs. 2.05, p = 0.00001). Recombinant human GH therapy induced a significant (p < 0.001) increase in growth rate in both groups during the first 2 years. In the third year of treatment, while growth rate in GHD children is maintained, in bioinactive GH patients it decreases remaining, however higher compared to the pre-treatment one. CONCLUSIONS: Short rhGH therapy given to selected bioinactive GH children improve growth rate and might result in greater final adult height.  相似文献   

4.
目的:探讨可乐定联合精氨酸激发试验在矮小儿童生长激素缺乏症(GHD)中的诊断价值,并分析生长激素(GH)峰值的影响因素。方法:选取2016年5月到2018年7月期间因身材矮小来安徽理工大学附属亳州医院就诊的矮小儿童120例,所有儿童均进行可乐定、精氨酸激发试验,比较可乐定、精氨酸、可乐定联合精氨酸激发试验的阳性率,以可乐定联合精氨酸激发试验的结果为标准,将120例矮小儿童分为GHD组(76例)和非GHD组(44例),比较两组儿童的年龄、骨龄、体质量指数(BMI)、体重指数标准差积分(BMI SDS)、胰岛素样生长因子-1(IGF-1)、胰岛素样生长因子结合蛋白-3(IGFBP-3)、GH峰值,分析可乐定联合精氨酸激发试验中GH峰值与各临床指标的相关性,并采用多因素逐步回归分析法分析可乐定联合精氨酸激发试验中GH峰值的影响因素。结果:可乐定联合精氨酸激发试验的阳性率高于可乐定激发试验和精氨酸激发试验的阳性率(P0.05),可乐定激发试验的阳性率高于精氨酸激发试验的阳性率(P0.05)。GHD组儿童BMI、BMI SDS高于非GHD组,IGF-1、GH峰值低于非GHD组(P0.05)。经Pearson相关分析显示,可乐定联合精氨酸激发试验中儿童的BMI、BMI SDS与GH峰值呈负相关,IGF-1与GH峰值呈正相关(P0.05)。多因素逐步回归分析结果显示,可乐定联合精氨酸激发试验中儿童的BMI SDS和IGF-1是GH峰值的影响因素(P0.05)。结论:可乐定联合精氨酸激发试验在矮小儿童GHD诊断中具有较高的阳性率,其诊断价值高于两种药物单独进行激发试验,且儿童的BMI SDS和IGF-1是激发试验GH峰值的影响因素,在进行激发试验时需考虑儿童的BMI SDS和IGF-1水平对诊断结果造成的影响。  相似文献   

5.
BACKGROUND: A stepwise increment of the GH dose is an approach aimed at avoiding adverse events. We investigated GH sensitivity by studying IGF-I and IGFBP-3 concentrations during the initial phase of GH treatment. METHODS: Our investigation was part of the regular follow-up of prepubertal children with GH deficiency (GHD) (n = 31) and small for gestational age (SGA) (n = 23). Dosage was increased in three steps: one-third at the start, two-thirds after 14 days, and the full dose after 28 days (full dose: GHD = 28 microg/kg body weight (BW)/day; SGA = 60 microg/kg BW/day). Blood samples were taken on days 0, 14 and 28, as well as in conjunction with anthropometrical examinations after 3, 6 and 12 months. IGF-I and IGFBP-3 were measured by means of published in-house RIAs and age-related references were used to calculate standard deviation scores (SDS). Height velocity (cm/year) and Delta HT SDS were taken as growth response parameters. RESULTS: Before GH treatment (GHD vs. SGA; median and p values): age (years) (6.6 vs. 6.0; n.s.), HT SDS (-2.6 vs. -3.2; p < 0.05); GH amount after stepping up (mug/kg BW/day) (28 vs. 60; p < 0.01); BW SDS (-0.5 vs. -2.9; p < 0.01); max. GH stimulated (microg/l) (5.6 vs. 10.8; p < 0.01); IGF-I SDS (-3.5 vs. -1.8; p < 0.01); IGFBP-3 SDS (-2.0 vs. 0.8; p < 0.01). After 1 year of GH therapy: HT velocity (cm/year) (9.8 vs. 9.6; n.s.), Delta HT SDS (0.9 vs. 0.9; n.s.); WT velocity (kg/year) (3.3 vs. 3.5; n.s.). Our results show that changes in growth similar to GHD could be induced in SGA by a dosage that was twice as high as the replacement dose given in GHD. GH dose and HT velocity did not correlate in both groups. IGF-I and IGFBP-3 increased as follows in GHD and SGA during stepping up of the dosage (ng/ml, GHD vs. SGA): at start, 54 vs. 89; at day 14, 78 vs. 132; at day 28, 90 vs. 167; at 3 months, 118 vs. 218. There was the same relationship between dose levels and absolute IGF-I concentrations in both groups. In terms of IGF-I SDS, the dose-response curve in SGA showed a shift to the right in comparison to GHD, thus indicating lower sensitivity to GH. The dynamics of IGF-I and IGFBP-3 differed, as IGFBP-3 peaked earlier (on day 28). In GHD, IGF-I SDS at 3 months was -0.7 vs. +0.9 in SGA. Near-identical levels were found for Delta IGF-I SDS and IGFBP-3 SDS above basal levels for each time-point investigated. First year HT velocity in GHD correlated negatively with basal IGF-I SDS (R(2) = 0.33; p <0.001) and basal IGFBP-3 (R(2) = 0.17; p <0.05) but did not correlate with the IGF-I increment during the 0- to 3-month period. Conversely, first year HT velocity correlated (+) in SGA with the IGF SDS increment during the 0- to 3-month period (R(2) = 0.26; p = <0.05). Height velocity in SGA, however, correlated neither with basal IGF-I and IGFBP-3 nor with the 0- to 3-month increments of IGFBP-3 SDS. CONCLUSIONS: IGFs increase during initial GH therapy, thus raising questions about short-term IGF generation tests. (I) In terms of IGF generation, substantially lower sensitivity to GH was observable in SGA. (II) Higher GH sensitivity during first year catch-up growth is associated with GHD, but in SGA it is attributable to increases in IGF. A wider range of GH dosages needs to be explored in order to gain further insight into the relationship between GH dose, IGF levels, and growth. Monitoring IGFs is a practical means for exploring GH sensitivity during dosage stepping up.  相似文献   

6.
Kim HJ  Kwon SH  Kim SW  Park DJ  Shin CS  Park KS  Kim SY  Cho BY  Lee HK 《Hormone research》2001,56(3-4):117-123
OBJECTIVE: To investigate the diagnostic value of serum insulin-like growth factor-I (IGF-I) and insulin-like growth factor-binding protein-3 (IGFBP-3) measurements in adult patients with acromegaly and GH deficiency (GHD). METHODS: Serum IGF-I and IGFBP-3 levels were measured in 39 active acromegalic patients, 34 adult patients with GHD and 150 healthy adults. Disease activity in patients with acromegaly was confirmed by nadir GH levels during an oral glucose tolerance test (OGTT). Among patients with acromegaly, 15 had not been treated previously and 24 had been treated but not cured. GHD in adults was diagnosed by an insulin tolerance test (ITT). Among patients with GHD, 15 were aged 20-40 years (9 men and 6 women) and 19 were aged over 40 years (9 men and 10 women). One hundred and fifty healthy subjects were recruited as a control group. To compare the individual serum IGF-I and IGFBP-3 levels of patients with the results of the gold standard, we calculated age- and sex-corrected standard deviation scores (SDS) for individual IGF-I and IGFBP-3 levels. The sensitivities of serum IGF-I and IGFBP-3 measurements for the disease diagnosis were analyzed using the mean +/- 2 SD of the values of healthy control subjects as a diagnostic cutoff, defining 95% specificity. RESULTS: The mean IGF-I and IGFBP-3 SDS levels were significantly higher in active acromegalic patients, both untreated and treated but not cured, than in the control subjects (p < 0.05). The sensitivities of serum IGF-I and IGFBP-3 measurements for the diagnosis of acromegaly were 97.4 and 81.8%, respectively. In untreated patients with acromegaly, the sensitivities of serum IGF-I and IGFBP-3 measurements for the diagnosis of disease were 100 and 100%, while these were 95.8 and 72.7% in treated patients with acromegaly. In adult patients with GHD, the mean IGF-I and IGFBP-3 SDS were significantly lower than those of the control subjects (IGF-I, -2.2 +/- 0.8 vs. 0.0 +/- 1.0 SDS, p < 0.0001); IGFBP-3, -1.7 +/- 1.2 vs. 0.0 +/- 1.0 SDS, p < 0.0001), but there was a considerable overlap between GHD in adults and the controls. In all patients with GHD, the sensitivities of serum IGF-I and IGFBP-3 measurements were 64.7 and 52.9%, respectively. In the group of women aged 20-40 years, the sensitivity of IGF-I measurement for the diagnosis of GHD was 100%, although the number of patients was only 6. CONCLUSION: Both serum IGF-I and IGFBP-3 measurements are comparable to an oral glucose tolerance test in patients with untreated acromegaly, but in acromegalic patients that have undergone surgery and/or radiotherapy, serum IGF-I is more valuable for determining disease activity than serum IGFBP-3. Serum IGF-I and IGFBP-3 measurements are not valuable for the diagnosis of GHD in adults, but in women aged 20-40 years serum IGF-I measurement appears to be useful in the diagnosis of GHD.  相似文献   

7.
We report long-term evolution of endocrine functions and the results of GH treatment in 35 patients (26 male and 9 female) with pituitary stalk interruption. At diagnosis, mean chronological age was 4.8 +/- 2.7 years, mean SDS for height -3.1 +/- 0.8 with a bone age retardation of 2.3 +/- 1.3 years and a mean SDS for growth velocity of -0.5 +/- 1.1; 80% presented complete GH deficiency (GHD) and 20% partial GHD; thyroid deficiency was present in 47.1% of children with complete GHD but absent in all partial GHD. Diagnosis was made during the first months of life in only 2 patients while 23% presented with severe neonatal distress; neonatal signs were only observed in the group with pituitary height below 2 mm (45.7% of patients). GHD was isolated in 40.6% of patients below 10 years while multiple hormone deficiencies was consistent at completion of growth in all patients. Height gain was significantly higher in patients who started GH treatment before 4 years (p = 0.002). GH treatment is very effective: in 13 patients, final height was -0.4 +/- 1.0, total height gain 3.2 +/- 1.2 and distance to target height -0.3 +/- 1.6 SDS.  相似文献   

8.
Introduction: The symptoms of GH deficiency (GHD) in adults include: abnormalities in body composition, unfavourable lipid profile, early atherosclerosis and impaired quality of life. The aim of the study was the selection of patients with confirmed severe GHD from among all the children treated due to GHD, who could benefit from GH therapy continuation in adulthood and the optimization of GH dosage in young adults with severe GHD. Material and methods: The study group consisted of 54 young adults (38 male), age 17.6 +/- 1.5 years, with childhood-onset GHD, who had reached final height. At least 1 month after the GH therapy withdrawal, the second evaluation of GH secretion was performed in all the patients. In 24% of patients, permanent severe GHD (PSGHD) was confirmed, but a group of 9 patients (4 male) was involved in renewed GH therapy. Results: The renewed GH therapy gave positive effects, including a significant increase in fat-free mass and a decrease in fat mass, and a significant decrease in LDL-cholesterol, but connected with an insignificant decrease of HDL-cholesterol serum concentration and improved results of quality of life (QoL) assessment. During the therapy, an insignificant increase of fasting insulin was observed, with no change in fasting glucose and only a slight increase in HbA(1c) percentage. A decrease of insulin sensitivity was also observed, but both insulin secretion and the values of insulin resistance indices still remained within the reference range. Conclusions: The observed positive effects on body composition, lipid metabolism and QoL, together with the absence of adverse events, confirm the indications for GH therapy in young adults with severe GHD.  相似文献   

9.
OBJECTIVES: Epidemiologic and auxologic characteristics of patients treated with GH during childhood and adolescence and entered in a national registry in Catalonia were studied between 1988 and 1997. At the end of 1997, prevalence was 53.2 treatments/100,000 inhabitants aged 0-14 years. Maximum annual incidence rates were observed in 1990 and 1991 (34.0-35.6 cases/100,000 inhabitants aged 0-14 years). STUDY DESIGN: Analysis of treatments terminated in 1993 (n = 548) revealed, for the three principal reasons for cessation of treatment ('near-final height', 'adequate height but further growth potential', and 'poor growth response'), that males began and ended treatment at older ages with a better auxologic situation in SDS than girls at the beginning and end of therapy in the first two subgroups, with a similar duration of therapy. Severe GH deficiency (GHD) [both multiple pituitary hormone deficiency (MPHD) and the most severe isolated GHD (IGHD-A)] was more frequent in the group ending treatment at 'near-final height', whereas cessation of therapy because of 'poor growth response' was more frequent in the group with 'other causes of short stature' and no demonstrable GHD by routine tests. In the near-final height group, after excluding Turner's syndrome, MPHD and GHD cases secondary to brain tumors and GH deficiencies associated with malformative syndromes, positive linear correlations were observed between HSDS at the end of treatment and HSDS at the beginning, predicted adult height SDS (PAHSDS) and target height SDS (THSDS). Multiple regression analysis showed that in this group of patients, 41.4% of the variability in HSDS increment can be explained by the equation: HSDS increment = -0.33 + 0.29 THSDS - 0.68 HSDS at the beginning of treatment. RESULTS: The outcome showed a reasonable use of GH, since good-response cases generally continued treatment until final height whereas therapy was suspended in doubtful cases.  相似文献   

10.
We studied the effect of a single intravenous bolus of 0.5 microgram/kg of growth hormone-releasing factor (GRF) on plasma GH, prolactin (PRL) and somatomedin C (SMC) in 12 short normal children and 24 patients with severe GH deficiency (GHD), i.e. GH less than 5 ng/ml after insulin and glucagon tolerance tests. GRF elicited an increase in plasma GH in both short normal and GHD children. The mean GH peak was lower in the GHD than in the short normal children (8.2 +/- 2.5 vs. 39.2 +/- 5.1 ng/ml, p less than 0.001). In the GHD patients (but not in the short normals) there was a negative correlation between bone age and peak GH after GRF (r = -0.58, p less than 0.005); GH peaks within the normal range were seen in 5 out of 8 GHD children with a bone age less than 5 years. In the short normal children, GRF had no effect on plasma PRL, which decreased continuously between 8.30 and 11 a.m. (from 206 +/- 22 to 86 +/- 10 microU/ml, p less than 0.005), a reflection of its circadian rhythm. In the majority of the GHD patients, PRL levels were higher than in the short normal children but had the same circadian rhythm, except that a slight increase in PRL was observed 15 min after GRF; this increase in PRL was seen both in children with isolated GHD and in those with multiple hormone deficiencies; it did occur in some GHD patients who had no GH response to GRF. Serum SMC did not change 24 h after GRF in the short normal children. We conclude that: (1) in short normal children: (a) the mean GH response to a single intravenous bolus of 0.5 microgram/kg of GRF is similar to that reported in young adults and (b) GRF has no effect on PRL secretion; (2) in GHD patients: (a) normal GH responses to GRF are seen in patients with a bone age less than 5 years and establish the integrity of the somatotrophs in those cases; (b) the GH responsiveness to GRF decreases with age, which probably reflects the duration of endogenous GRF deficiency, and (c) although the PRL response to GRF is heterogeneous, it does in some patients provide additional evidence of responsive pituitary tissue.  相似文献   

11.
INTRODUCTION: Assessment of growth hormone (GH) secretion is based on stimulation tests. Low GH peaks in stimulation tests, together with decreased insulin-like growth factor-I (IGF-I) secretion, confirm a diagnosis of GH deficiency (GHD). However, limitations in interpreting the test results and discrepancies between GH and IGF-I secretion in particular patients have both been reported. GH therapy should improve the prognosis of adult height (PAH). The aim of the study was to compare the deficit of height at diagnosis, IGF-I secretion and PAH in children with either decreased (in varying degrees of severity) or normal GH secretion in stimulation tests. MATERIAL AND METHODS: The analysis comprised 540 short children (373 boys, 167 girls), aged 11.7 +/- 3.2 years. In all the patients two GH stimulation tests were performed, IGF-I serum concentration was measured, bone age was assessed and PAH was calculated. According to the GH peak in the two stimulation tests, the patients were classified into the following groups: severe GHD (sGHD)--GH peak < 5 ng/mL (n = 44), partial GHD (pGHD)--GH peak 5-10 ng/mL (n = 190), idiopathic short stature (ISS)--GH peak at least 10 ng/mL (n = 306). RESULTS: A significantly greater deficit of height, lower IGF-I secretion and worse PAH were observed in sGHD than in both remaining groups, while all the differences between pGHD and ISS in the parameters analysed were insignificant. CONCLUSION: The results obtained indicate the necessity of applying another methods of qualifying short children for GH therapy other than GH stimulation tests with a cut-off value at a level of 10 ng/mL.  相似文献   

12.
Ghrelin is an endogenous growth hormone (GH) secretagogue recently isolated from the stomach. Although it possesses a strong GH releasing activity in vitro and in vivo, its physiological significance in endogenous GH secretion remains unclear. The aim of this study was to characterize plasma ghrelin levels in acromegaly and growth hormone deficiency (GHD). We investigated plasma total and active ghrelin in 21 patients with acromegaly, 9 patients with GHD and 24 age-, sex- and BMI-matched controls. In all subjects, we further assessed the concentrations of leptin, soluble leptin receptor, insulin, IGF-I, free IGF-I and IGFBP-1, 2, 3 and 6. Patients with acromegaly and GHD as well as control subjects showed similar levels of total ghrelin (controls 2.004+/-0.18 ng/ml, acromegalics 1.755+/-0.16 ng/ml, p=0.31, GHD patients 1.704+/-0.17 ng/ml, p=0.35) and active ghrelin (controls 0.057+/-0.01 ng/ml, acromegalics 0.047+/-0.01 ng/ml, p=0.29, GHD patients 0.062+/-0.01 ng/ml, p=0.73). In acromegalic patients plasma total ghrelin values correlated negatively with IGF-I (p<0.05), in GHD patients active ghrelin correlated with IGF-I positively (p<0.05). In the control group, total ghrelin correlated positively with IGFBP-2 (p<0.05) and negatively with active ghrelin (p=0.05), BMI (p<0.05), WHR (p<0.05), insulin (p=0.01) and IGF-I (p=0.05). Plasma active ghrelin correlated positively with IGFBP-3 (p=0.005) but negatively with total ghrelin and free IGF-I (p=0.01). In conclusion, all groups of the tested subjects showed similar plasma levels of total and active ghrelin. In acromegaly and growth hormone deficiency plasma ghrelin does not seem to be significantly affected by changes in GH secretion.  相似文献   

13.
OBJECTIVE: Growth hormone (GH) secretion is characterized by a pulsatile, circadian rhythm, with the highest concentrations at night hours. Evaluation of nocturnal GH secretion may be truncated to 6 hours. Growth hormone stimulating tests are the standard method of assessment of GH secretion. In Poland, the assessment of GH peak during 2 hours after falling asleep was introduced as a screening procedure in children, suspected for GH deficiency. The aim of current study was to compare the results of a screening test with GH secretion during 6-hour nocturnal profile and with the results of GH stimulating tests, as well as with IGF-I secretion in children with short stature. Methods: In 72 short children, GH concentrations were measured every 30 minutes during first 6 hours after falling asleep and in two GH stimulating tests (the cut-off level of GH peak for all the tests was 10.0 ng/ml). Also, IGF-I concentrations were measured and expressed as IGF-I SDS for age and sex. Results: The screening test results correlated significantly with both GH peak in 6-hour profile and mean GH concentration, and the area under the curve (AUC) in 6 hour profile (r= 0.94, r=0.90 and r=0.89, respectively, p<0.05) but not with GH peak in stimulating tests (r=0.07, NS). There was no correlation between IGF-I secretion and any of the analyzed parameters of spontaneous and stimulated GH secretion. Conclusions: The results of screening test seem to reflect overnight GH secretion in short children, remaining, however, discordant with the results of GH stimulating tests and with IGF-I secretion.  相似文献   

14.
AIM: This study was designed to investigate whether determination of plasma insulin-like growth factor (IGF)-binding protein-2 (IGFBP-2) levels could be of benefit in the evaluation of childhood growth hormone (GH) deficiency (GHD). METHOD: A retrospective analysis was performed on 91 prepubertal children referred for investigation of short stature. Maximal GH levels in plasma after provocative stimuli were between 1.0 and 93.0 mU/l, 6 subjects exhibiting peak values of <5 mU/l. Initially a GH peak of 20 mU/l was used as a cutoff limit to define GHD and idiopathic short stature (ISS) patients. The results of GH provocative tests were compared to age- and gender-based standard deviation scores (SDS) of plasma IGFBP-2, IGF-I, IGFBP-3 and the molar ratios of the latter two to IGFBP-2. The respective normative range values for these parameters were determined in plasma samples from 353 healthy children (i.e. 171 girls, 182 boys). RESULTS: Circulating IGFBP-2 levels did not correlate with height SDS, height velocity SDS or the peak GH levels after provocative stimuli. A weak negative relationship was found between IGFBP-2 and IGF-I. Plasma levels of IGFBP-2 in GHD patients were higher than those of ISS children, who had normal levels. Although at the optimal cutoff point of -0.71 SDS 91.5% of the GHD patients were identified correctly, a substantial proportion (71.9%) of the ISS subjects also had IGFBP-2 levels above this limit. The use of various combinations of IGFBP-2, IGF-I, IGFBP-3 and the derived ratios only slightly improved the diagnostic efficiency as compared to the results of the individual tests. Neither IGFBP-2 nor the IGFBP-3/IGFBP-2 and IGF-I/IGFBP-2 ratios were found to be related to the short- (1 year) or long-term (3 years) growth response to GH therapy. CONCLUSION: It is concluded that none of the tests investigated, either alone or in various combinations, are reliable in either predicting the peak GH level after provocative stimuli in prepubertal short children or in predicting their growth response to GH.  相似文献   

15.
Using thymidine uptake by activated human lymphocytes to measure the growth-stimulating activity of human serum, the authors demonstrate that thymidine activity was significantly correlated (p less than 0.001) with GH levels. r = 0.729 when GH values are below 3.5 ng/ml, r = 0.509 when GH values are below 8 ng/ml and r = 0.337 for all of the patients. Low levels of GH are sufficient for the generation of this activity.  相似文献   

16.
Cutaneous parameters such as dermal thickness, stiffness, elasticity, skin surface lipid and hydration were evaluated using noninvasive methods in 77 growth hormone-deficient (GHD) children before replacement therapy and in 70 non-GHD children. We showed that in GHD children, dermis was thinner (0.70 +/- 0.10 vs. 0.80 +/- 0.10 mm, p < 0.0001 for prepubertal children and 0.81 +/- 0.10 vs. 0.94 +/- 0.11 mm, p < 0.0001 for pubertal children), stiffer (178.5 +/- 57.3 vs. 113.09 +/- 37 kPa, p < 0.0001 for prepubertal children and 172.5 +/- 61.7 vs. 117.3 +/- 42.5 kPa for pubertal children, p < 0.001) and less elastic (0.44 +/- 0.09 vs. 0.39 +/- 0.06 (nonelasticity index), p < 0.01 for prepubertal children and 0.39 +/- 0.05 vs. 0.33 +/- 0.04, p < 0.001 for pubertal children) compared to controls. Fourteen GHD children were re-evaluated after 1 year of GH treatment: dermal thickness and skin stiffness were significantly improved (p < 0.001 and p < 0.05 respectively) while elasticity was not modified. During the same period, 11 controls did not show any significant cutaneous modification. IGF-1 values, but not IGFBP-3 values, correlated positively with dermal thickness in GHD children, before and after 1 year of GH treatment. To conclude, GHD children exhibited specific cutaneous modifications. In a subset of GHD children, we showed that these modifications were influenced by GH treatment. More extensive studies are needed to see if these changes correlated with other GH effects.  相似文献   

17.
BACKGROUND: The present survey among members of the ESPE on current practice in diagnosis and treatment of growth hormone (GH) deficiency (GHD) is of great clinical relevance and importance in the light of the recently published guidelines for diagnosis and treatment of GHD by the Growth Hormone Research Society. We have found much conformity but also numerous discrepancies between the recommendations of the Growth Hormone Research Society and the current practice in Europe. RESULTS: We found that 80% of the pediatric endocrinologists included insulin-like growth factor I (IGF-I) in their initial evaluation of a short child suspected of having GHD, whereas only 22% used GH provocative testing alone in the initial evaluation of a short child. Sixty-eight percent confirmed the diagnosis of GHD using two separate provocative tests. In the present survey cutoff values for GH provocative testing clustered around two values; 10 ng/ml and 20 mU/l. Interestingly, these two values, differing by a factor of 2, were also the most prevalent cutoff values among those who reported their assay to be calibrated against the WHO International Reference Preparation 80/505 where the conversion factor between milligrams and milliunits is 2.6. This suggests that the selection of cutoff values is based on tradition rather than on specific GH assay characteristics. In addition, only 63% of the respondents actually knew what GH assay they were using, and only 57% knew how their GH assay was calibrated. Dosing of GH at the start of treatment was reported according to body surface by 39%, whereas 59% were dosing according to body weight. GH dose adjustment was primarily based on growth response and height during auxological assessment every 3-4 months (height velocity, change in height velocity or change in height standard deviation scores) as indicated by almost 70% of the respondents. However, dose adjustment according to body surface (38%) and body weight (44%) was also quite common. Sixty-five percent measures IGF-I regularly (at least once a year) during GH therapy in children, and to our surprise 17% reported that they adjust the GH dose according to the IGF-I levels. SUMMARY: In summary, we have found large heterogeneity in the current practice of diagnosis and treatment of childhood GHD among European pediatric endocrinologists. Especially standardizations of GH assays and cutoff values are urgently required to ensure a uniform and correct diagnosis and therapy of GHD in the future.  相似文献   

18.
52 patients (42 children and 10 adults) with growth hormone deficiency (GHD), grouped into four diagnostic categories, and 6 children with constitutional short stature who served as controls were tested for plasma GH response to synthetic GH-RH1-44 given in an intravenous bolus. The response was classified into three degrees according to the magnitude of the maximal rise: Good, greater than 9 ng/ml; Partial, 3.1-9.0 ng/ml; None, less than or equal to 3 ng/ml. Among the GHD patients the highest response was observed in patients with partial growth hormone deficiency (PGHD), and 60% of the children with isolated GH deficiency (IGHD) showed an increase in plasma GH levels. Nevertheless, the response of the GHD patients was lower than that in the control group. In the children and adolescents with PGHD and IGHD the response was not age related. Among those with multiple pituitary hormone deficiencies-idiopathic (MPHD-ID) there was no response in the adolescents although a hypothalamic disorder had been documented by other tests. Among those with MPHD-organic (MPHD-ORG) the GH-RH stimulated GH secretion in the patients with glioma, who had received only irradiation treatment, and in the youngest of the patients with craniopharyngioma. Of the 10 young adults tested none showed a good response. It is concluded that GH-RH is useful in differentiating between GH deficiency of hypothalamic origin and that of pituitary origin, and in selecting those patients who might benefit from long-term treatment with GH-RH in the future.  相似文献   

19.
INTRODUCTION: Oral clonidine is one of the most frequent drugs used for the diagnosis of growth hormone deficiency (GHD), but the duration of the test, depending on which European centres use it, is not uniform and can vary from 120 to 150 min or even 180 min. SUBJECTS AND METHODS: To standardize this test, evaluating the possibility to shorten it to 90 min, we investigated the response of GH to the oral clonidine test in 291 children evaluated for short stature (height <-2 SD). Of these, 164 were diagnosed as idiopathic short stature (ISS) and 127 as GHD. In these patients, we calculated: (1) the frequency distribution of the GH peaks to clonidine in GHD and in ISS at various times; (2) the percentage of GH peaks to clonidine before and after 90 min in all and in ISS children; (3) the percentage of the first GH value >or=10 ng/ml before 90 min and after 90 min in ISS. RESULTS: GH peak distribution varied between 30 and 180 min, even though the vast majority of peaks occurred between 30 and 60 min. There was no significant difference (p > 0.05) in the peak distribution between ISS and GHD children. The percentages of GH peaks within 90 min were 92.1% in all children and 95.7% in ISS. If considering the first value of GH >or=10 ng/ml this last percentage reaches 96.3%. CONCLUSION: Our study suggests that the oral clonidine test can be administered for only 90 min without significantly changing its validity. This test should be standardized at 90 min in European protocols just as in those currently used in the USA in order to reduce the discomfort of patients and the cost of this diagnostic procedure.  相似文献   

20.
OBJECTIVE: To establish the cut-off values of GH measured by immunofluorometric assay, a more sensitive and specific assay, in normal prepubertal children and compare their values with those of proven GH-deficient patients. METHODS: 30 normal children (20 males) and 26 patients with known causes of GH deficiency were submitted to the clonidine test and their GH values were compared. A powdered clonidine tablet (0.1 mg/m(2)) was given orally and blood samples for GH measurements were drawn at times -30, 0, 60, 90 and 120 min. RESULTS: GH peak values presented a wide variation ranging from 1.7 to 25 micro g/l (mean +/- SD = 12.87 +/- 5.8 micro g/l) in the normal group. The cut-off values for the 5th and 10th percentiles of the distribution curve were 3.3 and 5.5 micro g/l, respectively. In the GH deficiency group, maximum GH levels after clonidine stimulation ranged from <0.1 to 2.1 micro g/l (0.56 +/- 0.58 micro g/l). CONCLUSIONS: The cut-off values obtained with the immunofluorometric method are lower than the ones obtained by radioimmunoassay. We suggest a cut-off value of 3.3 micro g/l (5th percentile) that ensures 100% of sensitivity along with 93% of specificity to exclude the diagnosis of GH deficiency when using this immunofluorometric method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号