首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We reported previously that inhibition ofNa+-K+-Cl cotransporter isoform 1 (NKCC1) by bumetanide abolishes high extracellular K+concentration ([K+]o)-induced swelling andintracellular Cl accumulation in rat cortical astrocytes.In this report, we extended our study by using cortical astrocytes fromNKCC1-deficient (NKCC1/) mice. NKCC1 protein andactivity were absent in NKCC1/ astrocytes.[K+]o of 75 mM increased NKCC1 activityapproximately fourfold in NKCC1+/+ cells (P < 0.05) but had no effect in NKCC1/ astrocytes.Intracellular Cl was increased by 70% inNKCC1+/+ astrocytes under 75 mM[K+]o (P < 0.05) butremained unchanged in NKCC1/ astrocytes. Baselineintracellular Na+ concentration([Na+]i) in NKCC1+/+ astrocyteswas 19.0 ± 0.5 mM, compared with 16.9 ± 0.3 mM[Na+]i in NKCC1/ astrocytes(P < 0.05). Relative cell volume ofNKCC1+/+ astrocytes increased by 13 ± 2% in 75 mM[K+]o, compared with a value of 1.0 ± 0.5% in NKCC1/ astrocytes (P < 0.05).Regulatory volume increase after hypertonic shrinkage was completelyimpaired in NKCC1/ astrocytes.High-[K+]o-induced 14C-labeledD-aspartate release was reduced by ~30% inNKCC1/ astrocytes. Our study suggests that stimulationof NKCC1 is required for high-[K+]o-inducedswelling, which contributes to glutamate release from astrocytes underhigh [K+]o.

  相似文献   

2.
Rabbit conjunctival epithelium exhibits UTP-dependentCl secretion into the tears. We investigated whetherfluid secretion also takes place. Short-circuit current(Isc) was 14.9 ± 1.4 µA/cm2(n = 16). Four P2Y2 purinergic receptoragonists [UTP and the novel compounds INS365, INS306, and INS440(Inspire Pharmaceuticals)] added apically (10 µM) resulted intemporary (~30 min) Isc increases (88%, 66%,57%, and 28%, respectively; n = 4 each). Importantly, the conjunctiva transported fluid from serosa to mucosa at a rate of6.5 ± 0.7 µl · h1 · cm2 (range2.1-15.3, n = 20). Fluid transport was stimulatedby mucosal additions of 10 µM: 1) UTP, from 7.4 ± 2.3 to 10.7 ± 3.3 µl · h1 · cm2,n = 5; and 2) INS365, from 6.3 ± 1.0 to 9.8 ± 2.5 µl · h1 · cm2,n = 5. Fluid transport was abolished by 1 mMouabain (n = 5) and was drastically inhibited by 300 µM quinidine (from 6.4 ± 1.2 to 3.6 ± 1.0 µl · h1 · cm2,n = 4). We conclude that this epithelium secretes fluidactively and that P2Y2 agonists stimulate bothCl and fluid secretions.

  相似文献   

3.
Chloride release from nonpigmented ciliary epithelial (NPE)cells is a final step in forming aqueous humor, and adenosine stimulates Cl transport by these cells. Whole cell patchclamping of cultured human NPE cells indicated that theA3-selective agonist1-deoxy-1-(6-[([3-iodophenyl]methyl)amino]-9H-purin-9-yl)-N-methyl--D-ribofuranuronamide (IB-MECA) stimulated currents (IIB-MECA) by~90% at +80 mV. Partial replacement of external Clwith aspartate reduced outward currents and shifted the reversal potential (Vrev) from 23 ± 2 mV to0.0 ± 0.7 mV. Nitrate substitution had little effect. Perfusionwith the Cl channel blockers5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and niflumic acidinhibited the currents. Partial Cl replacement withaspartate and NO3, and perfusion with NPPB, hadsimilar effects on the swelling-activated whole cell currents(ISwell). Partial cyclamate substitution for external Cl inhibited inward and outward currents of bothIIB-MECA and ISwell. Bothsets of currents also showed outward rectification and inactivation atlarge depolarizing potentials. The results are consistent with theconcept that A3-subtype adenosine agonists and swellingactivate a common population of Cl channels.

  相似文献   

4.
Mammary epithelial 31EG4 cells (MEC) were grown as monolayers onfilters to analyze the apical membrane mechanisms that help mediate ionand fluid transport across the epithelium. RT-PCR showed the presenceof cystic fibrosis transmembrane conductance regulator (CFTR) andepithelial Na+ channel (ENaC) message, and immunomicroscopyshowed apical membrane staining for both proteins. CFTR was alsolocalized to the apical membrane of native human mammary ductepithelium. In control conditions, mean values of transepithelialpotential (apical-side negative) and resistance(RT) are 5.9 mV and 829  · cm2, respectively. The apical membranepotential (VA) is 40.7 mV, and the mean ratioof apical to basolateral membrane resistance (RA/RB) is 2.8. Apicalamiloride hyperpolarized VA by 19.7 mV andtripled RA/RB. AcAMP-elevating cocktail depolarized VA by 17.6 mV, decreased RA/RB by60%, increased short-circuit current by 6 µA/cm2,decreased RT by 155  · cm2, and largely eliminated responses toamiloride. Whole cell patch-clamp measurements demonstratedamiloride-inhibited Na+ currents [linear current-voltage(I-V) relation] and forskolin-stimulated Clcurrents (linear I-V relation). A capacitance probe methodshowed that in the control state, MEC monolayers either absorbed orsecreted fluid (2-4µl · cm2 · h1). Fluidsecretion was stimulated either by activating CFTR (cAMP) or blockingENaC (amiloride). These data plus equivalent circuit analysis showedthat 1) fluid absorption across MEC is mediated byNa+ transport via apical membrane ENaC, and fluid secretionis mediated, in part, by Cl transport via apicalCFTR; 2) in both cases, appropriate counterions move throughtight junctions to maintain electroneutrality; and 3)interactions among CFTR, ENaC, and tight junctions allow MEC to eitherabsorb or secrete fluid and, in situ, may help control luminal[Na+] and [Cl].

  相似文献   

5.
Transport of fluid by lens epithelium   总被引:2,自引:0,他引:2  
We report for the first time that cultured lens epithelial celllayers and rabbit lenses in vitro transport fluid. Layers of the TN4mouse cell line and bovine cell cultures were grown to confluence onpermeable membrane inserts. Fluid movement across cultured layers andexcised rabbit lenses was determined by volume clamp (37°C).Cultured layers transported fluid from their basal to their apicalsides against a pressure head of 3 cmH2O. Rates were (inµl · h1 · cm2)3.3 ± 0.3 for TN4 cells (n = 27) and 4.7 ± 1.0 for bovine layers (n = 6). Quinidine, a blocker ofK+ channels, andp-chloromercuribenzenesulfonate andHgCl2, inhibitors of aquaporins,inhibited fluid transport. Rabbit lenses transported fluid from theiranterior to their posterior sides against a2.5-cmH2O pressure head at 10.3 ± 0.62 µl · h1 · lens1(n = 5) and along the same pressurehead at 12.5 ± 1.1 µl · h1 · lens1(n = 6). We calculate that this flowcould wash the lens extracellular space by convection about once every2 h and therefore might contribute to lens homeostasis and transparency.  相似文献   

6.
Peroxynitrite causes endothelial cell monolayer barrier dysfunction   总被引:7,自引:0,他引:7  
Nitric oxide (·NO) attenuates hydrogen peroxide(H2O2)-mediated barrier dysfunction in culturedporcine pulmonary artery endothelial cells (PAEC) (Gupta MP, Ober MD,Patterson C, Al-Hassani M, Natarajan V, and Hart, CM. Am JPhysiol Lung Cell Mol Physiol 280: L116-L126, 2001). However,·NO rapidly combines with superoxide (O) to formthe powerful oxidant peroxynitrite (ONOO), which wehypothesized would cause PAEC monolayer barrier dysfunction. To testthis hypothesis, we treated PAEC with ONOO (500 µM) or3-morpholinosydnonimine hydrochloride (SIN-1; 1-500 µM).SIN-1-mediated ONOO formation was confirmed by monitoringthe oxidation of dihydrorhodamine 123 to rhodamine. BothONOO and SIN-1 increased albumin clearance(P < 0.05) in the absence of cytotoxicity and alteredthe architecture of the cytoskeletal proteins actin and -catenin asdetected by immunofluorescent confocal imaging.ONOO-induced barrier dysfunction was partially reversibleand was attenuated by cysteine. Both ONOO and SIN-1nitrated tyrosine residues, including those on -catenin and actin,and oxidized proteins in PAEC. The introduction of actin treated withONOO into PAEC monolayers via liposomes alsoresulted in barrier dysfunction. These results indicate thatONOO directly alters endothelial cytoskeletal proteins,leading to barrier dysfunction.

  相似文献   

7.
We investigated whethersupernatant cultured with melanoma cell lines B16-BL6 and K1735 or theLewis lung carcinoma cell line (LLC) can regulate lymphatic pumpactivity with bioassay preparations isolated from murine iliac lymphvessels. B16-BL6 and LLC supernatants caused significantdilation of lymph microvessels with cessation of pump activity. B16-BL6supernatant produced dose-related cessation of lymphatic pump activity.There was no significant tachyphylaxis in the supernatant-mediatedinhibitory response of lymphatic pump activity. Pretreatment with3 × 105 MN-nitro-L-arginine methyl ester(L-NAME) or 107 M or 106 Mglibenclamide and 5 × 104 M 5-hydroxydecanoic acidcaused significant reduction of supernatant-mediated inhibitoryresponses. Simultaneous treatment with 103 ML-arginine and 3 × 105 ML-NAME significantly lessened L-NAME-inducedinhibition of the supernatant-mediated response, suggesting thatendogenous nitric oxide (NO) plays important roles insupernatant-mediated inhibitory responses. Chemical treatment dialyzedsubstances of <1,000 molecular weight (MW), producing completereduction of the supernatant-mediated response. In contrast,pretreatment with heating or digestion with protease had no significanteffect on supernatant-mediated response. These findings suggest thatB16-BL6 cells may release nonpeptide substance(s) of <1,000 MW,resulting in significant cessation of lymphatic pump activity viaproduction and release of endogenous NO and activation of mitochondrialATP-sensitive K+ channels.

  相似文献   

8.
Intrahepatic bile ducts transport water in response to absorbed glucose   总被引:6,自引:0,他引:6  
The physiological relevance of theabsorption of glucose from bile by cholangiocytes remains unclear. Theaim of this study was to test the hypothesis that absorbed glucosedrives aquaporin (AQP)-mediated water transport by biliary epitheliaand is thus involved in ductal bile formation. Glucose absorption andwater transport by biliary epithelia were studied in vitro bymicroperfusing intrahepatic bile duct units (IBDUs) isolated from ratliver. In a separate set of in vivo experiments, bile flow andabsorption of biliary glucose were measured after intraportal infusionof D-glucose or phlorizin. IBDUs absorbedD-glucose in a dose- and phlorizin-dependent manner with anabsorption maximum of 92.8 ± 6.2 pmol · min1 · mm1.Absorption of D-glucose by microperfused IBDUs resulted inan increase of water absorption (Jv = 310nl · min1 · mm1,Pf = 40 × 103 cm/sec).Glucose-driven water absorption by IBDUs was inhibited byHgCl2, suggesting that water passively followsabsorbed D-glucose mainly transcellularly viamercury-sensitive AQPs. In vivo studies showed that as the amount ofabsorbed biliary glucose increased after intraportal infusion ofD-glucose, bile flow decreased. In contrast, as theabsorption of biliary glucose decreased after phlorizin, bile flowincreased. Results support the hypothesis that the physiologicalsignificance of the absorption of biliary glucose by cholangiocytes islikely related to regulation of ductal bile formation.

  相似文献   

9.
Purines regulate intraocular pressure. Adenosine activatesCl channels of nonpigmented ciliary epithelial cellsfacing the aqueous humor, enhancing secretion. Tamoxifen and ATPsynergistically activate Cl channels of pigmented ciliaryepithelial (PE) cells facing the stroma, potentially reducing netsecretion. The actions of nucleotides alone on Cl channelactivity of bovine PE cells were studied by electronic cell sorting,patch clamping, and luciferin/luciferase ATP assay. Clchannels were activated by ATP > UTP, ADP, and UDP, but not by 2-methylthio-ATP, all at 100 µM. UTP triggered ATP release. The second messengers Ca2+, prostaglandin (PG)E2,and cAMP activated Cl channels without enhancing effectsof 100 µM ATP. Buffering intracellular Ca2+activity with1,2-bis(2-aminophenoxy)ethane-N,N,N',N'- tetraacetic acidor blocking PGE2 formation with indomethacininhibited ATP-triggered channel activation. The Rp stereoisomerof 8-bromoadenosine 3',5'-cyclic monophosphothioate inhibited proteinkinase A activity but mimicked 8-bromoadenosine 3',5'-cyclicmonophosphate. We conclude that nucleotides can act at >1 P2Yreceptor to trigger a sequential cascade involving Ca2+,PGE2, and cAMP. cAMP acts directly on Clchannels of PE cells, increasing stromal release and potentially reducing net aqueous humor formation and intraocular pressure.

  相似文献   

10.
Patch-clamping and cell imageanalysis techniques were used to study the expression of thevolume-activated Cl current,ICl(vol), and regulatory volume decrease (RVD)capacity in the cell cycle in nasopharyngeal carcinoma cells (CNE-2Z). Hypotonic challenge caused CNE-2Z cells to swell and activated aCl current with a linear conductance, negligibletime-dependent inactivation, and a reversal potential close to theCl equilibrium potential. The sequence of anionpermeability was I > Br > Cl > gluconate. The Cl channelblockers tamoxifen, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB),and ATP inhibited ICl(vol). Synchronous cultures of cells were obtained by the mitotic shake-off technique and by adouble chemical-block (thymidine and hydroxyurea) technique. Theexpression of ICl(vol) was cell cycle dependent,being high in G1 phase, downregulated in S phase, butincreasing again in M phase. Hypotonic solution activated RVD, whichwas cell cycle dependent and inhibited by the Cl channelblockers NPPB, tamoxifen, and ATP. The expression of ICl(vol) was closely correlated with the RVDcapacity in the cell cycle, suggesting a functional relationship.Inhibition of ICl(vol) by NPPB (100 µM)arrested cells in G0/G1. The data also suggest that expression of ICl(vol) and RVD capacity areactively modulated during the cell cycle. The volume-activatedCl current associated with RVD may therefore play animportant role during the cell cycle progress.

  相似文献   

11.
The phorbol ester phorbol12-myristate 13-acetate (PMA) inhibits Cl secretion(short-circuit current, Isc) and decreasesbarrier function (transepithelial resistance, TER) in T84 epithelia. To elucidate the role of specific protein kinase C (PKC) isoenzymes inthis response, we compared PMA with two non-phorbol activators of PKC(bryostatin-1 and carbachol) and utilized three PKC inhibitors (Gö-6850, Gö-6976, and rottlerin) with different isozymeselectivity profiles. PMA sequentially inhibited cAMP-stimulatedIsc and decreased TER, as measured byvoltage-current clamp. By subcellular fractionation and Western blot,PMA (100 nM) induced sequential membrane translocation of the novelPKC followed by the conventional PKC and activated both isozymesby in vitro kinase assay. PKC was activated by PMA but did nottranslocate. By immunofluorescence, PKC redistributed to thebasolateral domain in response to PMA, whereas PKC moved apically.Inhibition of Isc by PMA was prevented by theconventional and novel PKC inhibitor Gö-6850 (5 µM) but not theconventional isoform inhibitor Gö-6976 (5 µM) or the PKCinhibitor rottlerin (10 µM), implicating PKC in inhibition ofCl secretion. In contrast, both Gö-6976 andGö-6850 prevented the decline of TER, suggesting involvement ofPKC. Bryostatin-1 (100 nM) translocated PKC and PKC andinhibited cAMP-elicited Isc. However, unlikePMA, bryostatin-1 downregulated PKC protein, and the decrease in TERwas only transient. Carbachol (100 µM) translocated only PKC andinhibited Isc with no effect on TER. Gö-6850 but not Gö-6976 or rottlerin blocked bryostatin-1and carbachol inhibition of Isc. We concludethat basolateral translocation of PKC inhibits Clsecretion, while apical translocation of PKC decreases TER. Thesedata suggest that epithelial transport and barrier function can bemodulated by distinct PKC isoforms.

  相似文献   

12.
HumanNa+-K+-ATPase11,21, and 31heterodimers were expressed individually in yeast, and ouabainbinding and ATP hydrolysis were measured in membrane fractions. Theouabain equilibrium dissociation constant was 13-17 nM for11 and 31at 37°C and 32 nM for 21, indicatingthat the human -subunit isoforms have a similar high affinity forcardiac glycosides. K0.5 values for antagonism of ouabain binding by K+ were ranked in order as follows:2 (6.3 ± 2.4 mM) > 3(1.6 ± 0.5 mM)  1 (0.9 ± 0.6 mM),and K0.5 values for Na+ antagonismof ouabain binding to all heterodimers were 9.5-13.8 mM. Themolecular turnover for ATP hydrolysis by11 (6,652 min1) was abouttwice as high as that by 31 (3,145 min1). These properties of the human heterodimersexpressed in yeast are in good agreement with properties of the humanNa+-K+-ATPase expressed in Xenopusoocytes (G Crambert, U Hasler, AT Beggah, C Yu, NN Modyanov, J-DHorisberger, L Lelievie, and K Geering. J Biol Chem275: 1976-1986, 2000). In contrast to Na+ pumpsexpressed in Xenopus oocytes, the21 complex in yeast membranes wassignificantly less stable than 11 or31, resulting in a lower functionalexpression level. The 21 complex was also more easily denatured by SDS than was the11 or the31 complex.

  相似文献   

13.
This work was undertaken toobtain a direct measure of the stoichiometry ofNa+-independent K+-Cl cotransport(KCC), with rabbit red blood cells as a model system. To determinewhether 86Rb+ can be used quantitatively as atracer for KCC, 86Rb+ and K+effluxes were measured in parallel after activation of KCC with N-ethylmaleimide (NEM). The rate constant for NEM-stimulatedK+ efflux into isosmotic NaCl was smaller than that for86Rb+ by a factor of 0.68 ± 0.11 (SD,n = 5). This correction factor was used in all otherexperiments to calculate the K+ efflux from the measured86Rb+ efflux. To minimize interference from theanion exchanger, extracellular Cl was replaced withSO, and4,4'-diisothiocyanothiocyanatodihydrostilbene-2,2'-disulfonic acid was present in the flux media. The membrane potential was clampednear 0 mV with the protonophore 2,4-dinitrophenol. The Clefflux at 25°C under these conditions is ~100,000-fold smaller thanthe uninhibited Cl/Cl exchange flux and isstimulated ~2-fold by NEM. The NEM-stimulated 36Cl flux is inhibited by okadaic acid andcalyculin A, as expected for KCC. The ratio of the NEM-stimulatedK+ to Cl efflux is 1.12 ± 0.26 (SD,n = 5). We conclude thatK+-Cl cotransport in rabbit red blood cellshas a stoichiometry of 1:1.

  相似文献   

14.
We investigated the regulation ofATP-sensitive K+ (KATP) currents in murinecolonic myocytes with patch-clamp techniques. Pinacidil(105 M) activated inward currents in the presence of highexternal K+ (90 mM) at a holding potential of 80 mV indialyzed cells. Glibenclamide (105 M) suppressedpinacidil-activated current. Phorbol 12,13-dibutyrate (PDBu; 2 × 107 M) inhibited pinacidil-activated current.4--Phorbol ester (5 × 107 M), an inactive formof PDBu, had no effect on pinacidil-activated current. In cell-attachedpatches, the open probability of KATP channels wasincreased by pinacidil, and PDBu suppressed openings ofKATP channels. When cells were pretreated withchelerythrine (106 M) or calphostin C (107M), inhibition of the pinacidil-activated whole cell currents by PDBuwas significantly reduced. In cells studied with the perforated patchtechnique, PDBu also inhibited pinacidil-activated current, and thisinhibition was reduced by chelerythrine (106 M).Acetylcholine (ACh; 105 M) inhibited pinacidil-activatedcurrents, and preincubation of cells with calphostin C(107 M) decreased the effect of ACh. Cells dialyzed withprotein kinase C -isoform (PKC) antibody had normal responses topinacidil, but the effects of PDBu and ACh on KATP wereblocked in these cells. Immunofluorescence and Western blots showedexpression of PKC in intact muscles and isolated smooth muscle cellsof the murine proximal colon. These data suggest that PKC regulates KATP in colonic muscle cells and that the effects of ACh onKATP are largely mediated by PKC. PKC appears to be themajor isozyme that regulates KATP in murine colonic myocytes.

  相似文献   

15.
An HEK-293 cell line stably expressing the humanrecombinant ClC-2 Cl channel was used in patch-clampstudies to study its regulation. The relative permeabilityPx/PCl calculated fromreversal potentials was I > Cl = NO3 = SCNBr. Theabsolute permeability calculated from conductance ratios wasCl = Br = NO3  SCN > I. The channel was activatedby cAMP-dependent protein kinase (PKA), reduced extracellular pH, oleicacid (C:18 cis9), elaidic acid (C:18trans9), arachidonic acid (AA; C:20cis5,8,11,14), and by inhibitors of AA metabolism,5,8,11,14-eicosatetraynoic acid (ETYA; C:20trans5,8,11,14),-methyl-4-(2-methylpropyl)benzeneacetic acid (ibuprofen), and2-phenyl-1,2-benzisoselenazol-3-[2H]-one (PZ51, ebselen). ClC-2Cl channels were activated by a combination of forskolinplus IBMX and were inhibited by the cell-permeant myristoylated PKAinhibitor (mPKI). Channel activation by reduction of bath pH wasincreased by PKA and prevented by mPKI. AA activation of the ClC-2Cl channel was not inhibited by mPKI or staurosporine andwas therefore independent of PKA or protein kinase C activation.

  相似文献   

16.
The objective of this study was todetermine the relative contribution of Cl channels tovolume regulation of cultured rat cortical astrocytes after hypotoniccell swelling. Using a Coulter counter, we showed that corticalastrocytes regulate their cell volume by ~60% within 45 min afterhypotonic challenge. This volume regulation was supported whenCl was replaced with Br,NO, methanesulfonate, oracetate but was inhibited when Cl wasreplaced with isethionate or gluconate.Additionally, substitution of Cl with Icompletely blocked volume regulation. Volume regulation was unaffected by furosemide or bumetanide, blockers of KCl transport, but was inhibited by Cl channel blockers, including5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB),4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), and niflumicacid. Surprisingly, the combination of Cd2+ with NPPB,DIDS, or niflumic acid inhibited regulation to a greater extent thanany of these drugs alone. Volume regulation did not differ amongastrocytes cultured from different brain regions, as cerebellar andhippocampal astrocytes exhibited behavior identical to that of corticalastrocytes. These data suggest that Cl flux through ionchannels rather than transporters is essential for volume regulation ofcultured astrocytes in response to hypotonic challenge.

  相似文献   

17.
Growthfactors affect a variety of epithelial functions. We examined theability of TGF- to modulate epithelial ion transport andpermeability. Filter-grown monolayers of human colonic epithelia, T84and HT-29 cells, were treated with TGF- (0.1-100 ng/ml,15 min-72 h) or infected with an adenoviral vector encodingTGF- (Ad-TGF) for 144 h. Ion transport (i.e., short-circuitcurrent, Isc) and transepithelial resistance(TER) were assessed in Ussing chambers. Neither recombinant TGF- norAd-TGF infection affected baseline Isc;however, exposure to 1 ng/ml TGF- led to a significant (30-50%) reduction in the Isc responses toforskolin, vasoactive intestinal peptide, and cholera toxin (agentsthat evoke Cl secretion via cAMP mobilization) and to thecell-permeant dibutyryl cAMP. Pharmacological analysis of signalingpathways revealed that the inhibition of cAMP-driven epithelialCl secretion by TGF- was blocked by pretreatment withSB-203580, a specific inhibitor of p38 MAPK, but not by inhibitors ofJNK, ERK1/2 MAPK, or phosphatidylinositol 3'-kinase. TGF- enhanced the barrier function of the treated monolayers by up to threefold asassessed by TER; however, this event was temporally displaced from thealtered Isc response, being statisticallysignificant only at 72 h posttreatment. Thus, in addition toTGF- promotion of epithelial barrier function, we show that thisgrowth factor also reduces responsiveness to cAMP-dependentsecretagogues in a chronic manner and speculate that this serves as abraking mechanism to limit secretory enteropathies.

  相似文献   

18.
Freshly dispersedinterstitial cells from the rabbit urethra were studied by using theperforated-patch technique. When cells were voltage clamped at 60 mVand exposed to 10 µM norepinephrine (NE) at 80-s intervals, eitherlarge single inward currents or a series of oscillatory inward currentsof diminishing amplitude were evoked. These currents were blocked byeither phentolamine (1 µM) or prazosin (1 µM), suggesting that theeffects of NE were mediated via 1-adrenoceptors.NE-evoked currents were depressed by the blockers ofCa2+-activated Cl currents, niflumic acid (10 µM), and 9-anthracenecarboxylic acid (9-AC, 1 mM). The reversalpotential of the above currents changed in a predictable manner whenthe Cl equilibrium potential was altered, againsuggesting that they were due to activation of a Clconductance. NE-evoked currents were decreased by 10 µM cyclopiazonic acid, suggesting that they were dependent on store-releasedCa2+. Inhibition of NE-evoked currents by the phospholipaseC inhibitor 2-nitro-4-carboxyphenyl-N,N-diphenylcarbamate(100 µM) suggested that NE releases Ca2+ via an inositol1,4,5-trisphosphate (IP3)-dependent mechanism. Theseresults support the idea that stimulation of1-adrenoceptors releases Ca2+ from anIP3-sensitive store, which in turn activatesCa2+-activated Cl current in freshlydispersed interstitial cells of the rabbit urethra. This elevates slowwave frequency in these cells and may underlie the mechanismresponsible for increased urethral tone during nerve stimulation.

  相似文献   

19.
We examined the effects of human cytomegalovirus (HCMV)infection on theNa+-K+-Clcotransporter (NKCC) in a human fibroblast cell line. Using the Cl-sensitive dye MQAE, weshowed that the mock-infected MRC-5 cells express a functional NKCC.1) IntracellularCl concentration([Cl]i)was significantly reduced from 53.4 ± 3.4 mM to 35.1 ± 3.6 mMfollowing bumetanide treatment. 2)Net Cl efflux caused byreplacement of external Clwith gluconate was bumetanide sensitive.3) InCl-depleted mock-infectedcells, the Cl reuptake rate(in HCO3-free media) was reduced inthe absence of external Na+ and bytreatment with bumetanide. After HCMV infection, we found that although[Cl]iincreased progressively [24 h postexposure (PE), 65.2 ± 4.5 mM; 72 h PE, 80.4 ± 5.0 mM], the bumetanide andNa+ sensitivities of[Cl]iand net Cl uptake and losswere reduced by 24 h PE and abolished by 72 h PE. Western blots usingthe NKCC-specific monoclonal antibody T4 showed an approximatelyninefold decrease in the amount of NKCC protein after 72 h ofinfection. Thus HCMV infection resulted in the abolition of NKCCfunction coincident with the severe reduction in the amount of NKCCprotein expressed.

  相似文献   

20.
Investigation of the role ofindividual protein kinase C (PKC) isozymes in the regulation ofNa+ channels has been largely limited by the lack ofisozyme-selective modulators. Here we used a novel peptide-specificactivator (V1-7) of PKC and other peptide isozyme-specificinhibitors in addition to the general PKC activator phorbol12-myristate 13-acetate (PMA) to dissect the role of individual PKCs inthe regulation of the human cardiac Na+ channel hH1,heterologously expressed in Xenopus oocytes. Peptides wereinjected individually or in combination into the oocyte. Whole cellNa+ current (INa) was recorded usingtwo-electrode voltage clamp. V1-7 (100 nM) and PMA (100 nM)inhibited INa by 31 ± 5% and 44 ± 8% (at 20 mV), respectively. These effects were not seen with thescrambled peptide for V1-7 (100 nM) or the PMA analog4-phorbol 12,13-didecanoate (100 nM). However, V1-7-and PMA-induced INa inhibition was abolished byV1-2, a peptide-specific antagonist of PKC. Furthermore,PMA-induced INa inhibition was not altered by100 nM peptide-specific inhibitors for -, -, -, or PKC. PMAand V1-7 induced translocation of PKC from soluble toparticulate fraction in Xenopus oocytes. This translocationwas antagonized by V1-2. In native rat ventricular myocytes,PMA and V1-7 also inhibited INa; thisinhibition was antagonized by V1-2. In conclusion, the resultsprovide evidence for selective regulation of cardiac Na+channels by PKC isozyme.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号