首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Cf-9 gene encodes an extracytoplasmic leucine-rich repeat protein that confers resistance in tomato to races of the fungus Cladosporium fulvum that express the corresponding avirulence gene Avr 9. We investigated whether the genomic Cf-9 gene functions in potato and tobacco. Transgenic tobacco and potato plants carrying Cf-9 exhibit a rapid hypersensitive cell death response (HR) to Avr 9 peptide injection. Cf 9 tobacco plants were reciprocally crossed to Avr 9-producing tobacco. A developmentally regulated seedling lethal phenotype occurred in F1 progeny when Cf9 was used as the male parent and Avr 9 as the female parent. However, when Cf9 was inherited in the maternal tissue and a heterozygous Avr 9 plant was used as the pollen donor, a much earlier reaction was caused, leading to no germination of any F1 seed. Detailed analysis of the Avr 9-induced responses in Cf 9 tobacco leaves revealed that (1) most mesophyll cells died within 3 hr (compared with 12 to 16 hr in tomato); (2) the macroscopic HR was visible at an Avr 9 titer five times lower than that which caused visible symptoms in tomato; (3) the HR invariably extended into noninjected panels of the tobacco leaf; (4) no HR occurred in leaves of young tobacco plants; (5) in older plants, the HR was dramatically enhanced by sequential Avr 9 challenges; and (6) coexpression of a salicylate hydroxylase transgene (nahG) from Pseudomonas putida reduced the severity of the macroscopic leaf HR and also restored germination to Cf 9 x 35S:Avr 9 F1 seedlings. Simultaneous introduction of Cf-9 homologs (Hcr 9-9 genes A and B or D) along with the native Cf-9 gene did not alter the responses that were specifically induced by Avr 9. Various ways to use the Cf-9-Avr 9 gene combination to engineer broad-spectrum disease resistance in several solanaceous species are discussed.  相似文献   

2.
The Cf-9 resistance gene from tomato confers resistance to races of the fungal pathogen Cladosporium fulvum that express the corresponding avirulence gene, Avr9. Avr9 encodes a secreted peptide. To investigate Cf-9 function, we tagged the Cf-9 protein with a triple myc epitope at either the amino- or carboxy-terminus of the mature protein. Tobacco plants carrying these constructs activate a defence response to Avr9 peptide. The Cf-9 sequence predicts a protein of 94 kDa, with 22 glycosylation sites. Using c-myc antibodies, c-myc : Cf-9 protein was detected as a unique band with a molecular size of 160 kDa. The band shifted to approximately 105 kDa after glucosidase treatment, indicating that Cf-9 protein is highly glycosylated. Plasma membranes were isolated using two-phase partitioning, and c-myc : Cf-9 was enriched in these fractions, indicating that Cf-9 is a plasma membrane protein. This was confirmed by silver-enhanced immunogold labelling of tobacco protoplasts carrying the amino-terminal c-myc tag; a higher labelling density was observed on the surface of protoplasts derived from c-myc : Cf-9 tobacco compared to untransformed control. The presence of Cf-9 in the plasma membrane is consistent with its role in conferring recognition of the extracellular Avr9 peptide.  相似文献   

3.
In many interactions between plants and their pathogens, resistance to infection is specified by plant resistance (R) genes and corresponding pathogen avirulence (Avr) genes. In tomato, the Cf-4 and Cf-9 resistance genes map to the same location but confer resistance to Cladosporium fulvum through recognition of different avirulence determinants (AVR4 and AVR9) by a molecular mechanism that has yet to be determined. Here, we describe the cloning and characterization of Cf-4, which also encodes a membrane-anchored extracellular glycoprotein. Cf-4 contains 25 leucine-rich repeats, which is two fewer than Cf-9. The proteins have > 91% identical amino acids. DNA sequence comparison suggests that Cf-4 and Cf-9 are derived from a common progenitor sequence. Amino acid differences distinguishing Cf-4 and Cf-9 are confined to their N termini, delimiting a region that determines the recognitional specificity of ligand binding. The majority of these differences are in residues interstitial to those of the leucine-rich repeat consensus motif. Many of these residues are predicted to form a solvent-exposed surface that can interact with the cognate ligand. Both Cf-4 and Cf-9 are located within a 36-kb region comprising five tandemly duplicated homologous genes. These results provide further insight into the molecular basis of pathogen perception by plants and the organization of complex R gene loci.  相似文献   

4.
The avirulence genes Avr9 and Avr4 from the fungal tomato pathogen Cladosporium fulvum encode extracellular proteins that elicit a hypersensitive response when injected into leaves of tomato plants carrying the matching resistance genes, Cf-9 and Cf-4, respectively. We successfully expressed both Avr9 and Avr4 genes in tobacco with the Agrobacterium tumefaciens transient transformation assay (agroinfiltration). In addition, we expressed the matching resistance genes, Cf-9 and Cf-4, through agroinfiltration. By combining transient Cf gene expression with either transgenic plants expressing one of the gene partners, Potato virus X (PVX)-mediated Avr gene expression, or elicitor injections, we demonstrated that agroinfiltration is a reliable and versatile tool to study Avr/Cf-mediated recognition. Significantly, agroinfiltration can be used to quantify and compare Avr/Cf-induced responses. Comparison of different Avr/Cf-interactions within one tobacco leaf showed that Avr9/Cf-9-induced necrosis developed slower than necrosis induced by Avr4/Cf-4. Quantitative analysis demonstrated that this temporal difference was due to a difference in Avr gene activities. Transient expression of matching Avr/Cf gene pairs in a number of plant families indicated that the signal transduction pathway required for Avr/Cf-induced responses is conserved within solanaceous species. Most non-solanaceous species did not develop specific Avr/Cf-induced responses. However, co-expression of the Avr4/Cf-4 gene pair in lettuce resulted in necrosis, providing the first proof that a resistance (R) gene can function in a different plant family.  相似文献   

5.
6.
Introgression of resistance trait Cf-4 from wild tomato species into tomato cultivar MoneyMaker (MM-Cf0) has resulted in the near-isogenic line MM-Cf4 that confers resistance to the fungal tomato pathogen Cladosporium fulvum. At the Cf-4 locus, five homologues of Cladosporium resistance gene Cf-9 (Hcr9s) are present. While Hcr9-4D represents the functional Cf-4 resistance gene matching Avr4, Hcr9-4E confers resistance towards C. fulvum by mediating recognition of the novel avirulence determinant Avr4E. Here, we report the isolation of the Avr4E gene, which encodes a cysteine-rich protein of 101 amino acids that is secreted by C. fulvum during colonization of the apoplastic space of tomato leaves. By complementation we show that Avr4E confers avirulence to strains of C. fulvum that are normally virulent on Hcr9-4E-transgenic plants, indicating that Avr4E is a genuine, race-specific avirulence determinant. Strains of C. fulvum evade Hcr9-4E-mediated resistance either by a deletion of the Avr4E gene or by production of a stable Avr4E mutant protein that carries two amino acid substitutions, Phe(82)Leu and Met(93)Thr. Moreover, we demonstrate by site-directed mutagenesis that the single amino acid substitution Phe(82)Leu in Avr4E is sufficient to evade Hcr9-4E-mediated resistance.  相似文献   

7.
8.
The Cf-2 gene of tomato confers resistance to strains of the biotrophic pathogenic fungus Cladosporium fulvum carrying avirulence gene Avr2. To allow dissection of the biochemical mechanism of perception of AVR2 by Cf-2, we set out to clone the Avr2 gene. Here, we report the functional cloning of Avr2 cDNA, based on the induction of a hypersensitive response (HR) by the encoded AVR2 protein in Cf2 tomato plants. Analysis of strains of C. fulvum that are virulent on Cf2 tomato lines revealed various independent frameshift mutations in the Avr2 open reading frame (ORF) and a point mutation resulting in a premature stop codon. All modifications result in the production of truncated AVR2 proteins. Interestingly, an additional modification involves the insertion of a LINE-like element, Cfl1, in the Avr2 ORF. Cfl1 is the first LINE-like element identified in C. fulvum and provides the first example of loss of avirulence of a plant pathogen caused by insertion of a retrotransposable element in an Avr gene. Rcr3 represents an additional plant protein that is specifically required for Cf-2-mediated resistance. Analysis of two different rcr3 mutant Cf2 tomato plants revealed that their ability to respond to AVR2 with a HR correlates with their degree of resistance to AVR2-producing strains of C. fulvum. These data support a role for Rcr3 in the perception of AVR2 by Cf-2.  相似文献   

9.
The interaction between the fungal pathogen Cladosporium fulvum and its only host, tomato, is a well-described gene-for-gene system and several resistance (Cf) genes of tomato and matching fungal avirulence (Avr) genes have been characterized. Transgenic tobacco suspension cells expressing Cf genes respond to matching elicitors with typical defense responses, such as medium alkalization and an oxidative burst. We found that this response is attenuated at elevated ambient temperatures. Tomato seedlings expressing both a Cf and the matching Avr gene rapidly die as a result of systemic necrosis at normal temperatures, but are rescued at 33 degrees C. We demonstrate that, at 33 degrees C, the Cf/Avr-mediated induction of defense-related genes is reversibly suppressed. Furthermore, in cell suspensions, the AVR-induced medium alkalization response is slowly suppressed upon incubation at 33 degrees C, but is quickly restored after transfer to lower temperatures. A high-affinity binding site (HABS) for AVR9 is present on plasma membranes isolated from solanaceous plants and has been suggested to act as a co-receptor for AVR9. The amount of AVR9-HABS is 80% reduced in tobacco cell suspensions incubated at 33 degrees C, as compared with cell suspensions incubated at 20 degrees C. Our data suggest that the temperature sensitivity of Cf-mediated defense responses resides at the level of perception of the fungal avirulence factors.  相似文献   

10.
Nekrasov V  Ludwig AA  Jones JD 《FEBS letters》2006,580(17):4236-4241
Tomato Cf-9, a receptor-like protein (RLP), confers resistance to races of the fungal pathogen Cladosporium fulvum that express the Avr9 avirulence gene. CITRX (Cf-9-interacting thioredoxin) was previously identified in a yeast two-hybrid screen as a protein interacting with the cytoplasmic domain of Cf-9 and shown to be a negative regulator of the cell death induced after Cf-9/Avr9 interaction. ACIK1 is a Ser/Thr protein kinase that is specifically required for the Cf-9 and Cf-4 dependent defence response in tomato. In this paper we present data suggesting that CITRX may act as an adaptor recruiting the ACIK1 kinase to the cytoplasmic domain of Cf-9 upon elicitation with the Avr9 peptide. Interestingly, the catalytic activities of both CITRX and ACIK1 are not required for their interaction.  相似文献   

11.
The tomato resistance genes Cf-4 and Cf-9 confer specific, hypersensitive response-associated recognition of Cladosporium carrying the avirulence genes Avr4 and Avr9, respectively. Cf-4 and Cf-9 encode type I transmembrane proteins with extracellular leucine-rich repeats (LRRs). Compared with Cf-9, Cf-4 lacks two LRRs and differs in 78 amino acid residues. To investigate the relevance of these differences for specificity, we exchanged domains between Cf-4 and Cf-9, and mutant constructs were tested for mediating the hypersensitive response by transient coexpression with either Avr4 or Avr9. We show that the number of LRRs is essential for both Cf-4 and Cf-9 function. In addition, Cf-9 specificity resides entirely in the LRR domain and appears to be distributed over several distant LRRs. In contrast, Cf-4 specificity determinants reside in the N-terminal LRR-flanking domain and three amino acid residues in LRRs 13, 14, and 16. These residues are present at putative solvent-exposed positions, and all are required for full Cf-4 function. Finally, we show that Cf-9 carrying the specificity determinants of Cf-4 has recognitional specificity for AVR4. The data indicate that diversifying selection of solvent-exposed residues has been a more important factor in the generation of Cf-4 specificity than has sequence exchange between Cf-4 progenitor genes. The fact that most variant residues in Cf-4 are not essential for Cf-4 specificity indicates that the diverse decoration of R proteins is not fully adapted to confer recognition of a certain avirulence determinant but likely provides a basis for a versatile, adaptive recognition system.  相似文献   

12.
The race-specific Cladosporium fulvum peptide elicitor AVR9, which specifically induces a hypersensitive response in tomato genotypes carrying the Cf-9 resistance gene, was labeled with iodine-125 at the N-terminal tyrosine residue and used in binding studies. 125I-AVR9 showed specific, saturable, and reversible binding to plasma membranes isolated from leaves of tomato cultivar Moneymaker without Cf resistance genes (MM-Cf0) or from a near-isogenic genotype with the Cf-9 resistance gene (MM-Cf9). The dissociation constant was found to be 0.07 nM, and the receptor concentration was 0.8 pmol/mg microsomal protein. Binding was highly influenced by pH and the ionic strength of the binding buffer and by temperature, indicating the involvement of both electrostatic and hydrophobic interactions. Binding kinetics and binding capacity were similar for membranes of the MM-Cf0 and MM-Cf9 genotypes. In all solanaceous plant species tested, an AVR9 binding site was present, whereas in the nonsolanaceous species that were analyzed, such a binding site could not be identified. The ability of membranes isolated from different solanaceous plant species to bind AVR9 seems to correlate with the presence of members of the Cf-9 gene family, but whether this correlation is functional remains to be determined.  相似文献   

13.
In many plant-pathogen interactions resistance to disease is controlled by the interaction of plant-encoded resistance (R) genes and pathogen-encoded avirulence (Avr) genes. The interaction between tomato and the leaf mould pathogen Cladosporium fulvum is an ideal system to study the molecular basis of pathogen perception by plants. A total of four tomato genes for resistance to C. fulvum (Cf-2, Cf-4, Cf-5 and Cf-9) have been isolated from two genetically complex chromosomal loci. Their gene products recognize specific C. fulvum-encoded avirulence gene products (Avr2, Avr4, Avr5 and Avr9) by an unknown molecular mechanism. Cf genes encode extracellular membrane-anchored glycoproteins comprised predominantly of 24 amino acid leucine-rich repeats (LRRs). Cf genes from the same locus encode proteins which are more than 90% identical. Most of the amino-acid sequence differences correspond to the solvent-exposed residues within a beta-strand/beta-turn structural motif which is highly conserved in LRR proteins. Sequence variability within this motif is predicted to affect the specificity of ligand binding. Our analysis of Cf gene loci at the molecular level has shown they comprise tandemly duplicated homologous genes, and suggests a molecular mechanism for the generation of sequence diversity at these loci. Our analysis provides further insight into the molecular basis of pathogen perception by plants and the organization and evolution of R gene loci.  相似文献   

14.
The avirulence gene Avr4 conditions avirulence of the biotrophic fungus Cladosporium fulvum on tomato genotypes carrying resistance gene Cf-4 (MM-Cf4). Strains of the fungus that circumvent Cf-4-specific resistance show various single point mutations in the coding region of the Avr4 gene. Similar to expression of the Avr4 gene, expression of the various virulent avr4 alleles is specifically induced during pathogenesis. Polyclonal antibodies raised against the AVR4 elicitor, however, did not detect AVR4 isoforms in MM-Cf4 plants infected by the different virulent strains, indicating that these isoforms are unstable. To analyze whether the AVR4 isoforms still possess specific elicitor activity, the avr4 alleles were expressed in MM-Cf4 plants by using the potato virus X (PVX)-based expression system. Inoculation with PVX::Avr4 resulted in the development of spreading lesions, eventually leading to plant death, whereas the various PVX::avr4 derivatives induced symptoms ranging from severe necrosis to no lesions at all. We conclude that instability of the AVR4 isoforms that are produced by virulent strains is a crucial factor in circumvention of Cf-4-mediated resistance.  相似文献   

15.
16.
The tomato Cf-9 gene confers resistance to races of the leaf mould fungus Cladosporium fulvum that carry the Avr9 avirulence gene. Cf-9 was isolated by transposon tagging using a modified maize Dissociation (Ds) element. This generated an allelic series of Ds-induced mutations of Cf-9, of which two were found to confer novel phenotypes in a screen for mutants affecting wild-type Cf-9 function in trans. Genetic and molecular analysis of these mutants suggested semidominant, Avr9-dependent, negative-interfering mutations involving Ds insertions in a defined subregion of Cf-9. Interference was associated with expression of the 5'-end of Cf-9 upstream of the Ds insertions in these mutants, suggesting that truncated Cf-9 proteins were the likely cause of interference. Transgenic tomato lines harbouring Cf-9 constructs with premature stop codons in positions similar to the Ds insertions also showed interference, indicating that the presence of Ds was not required for interference to occur. Interestingly, interference in these transgenic lines was completely dominant and was associated with a pronounced developmental phenotype that was dependent on co-expression of Cf-9, Avr9 and a truncated Cf-9 transgene. However, interference with a weakly autoactive Hcr9 gene was Avr9-independent and did not cause a developmental phenotype, suggesting that localized restoration of Cf-9/Avr9-dependent cell death was responsible for the developmental phenotype. The restricted region in which truncation of Cf-9 results in dominant-negative interference suggests that leucine-rich repeats (LRR) 16-19 of Cf-9 may mediate dimerization of Cf-9 and LRRs 20-23 may mediate interactions with downstream partner proteins required for Cf-9 signalling, or vice versa.  相似文献   

17.
Rivas S  Romeis T  Jones JD 《The Plant cell》2002,14(3):689-702
The tomato Cf-9 gene confers race-specific resistance to the fungal pathogen Cladosporium fulvum expressing the corresponding avirulence gene Avr9. In tobacco, Cf-9 confers a hypersensitive response to the Avr9 peptide. To investigate Cf-9 protein function in initiating defense signaling, we engineered a functional C-terminal fusion of the Cf-9 gene with the TAP (Tandem Affinity Purification) tag. In addition, we established a transient expression assay in Nicotiana benthamiana leaves for the production of functional Cf-9:myc and Cf-9:TAP. Transiently expressed Cf-9:myc and Cf-9:TAP proteins induced an Avr9-dependent hypersensitive response, consistent with previous results with stably transformed tobacco plants and derived cell suspension cultures expressing c-myc-tagged Cf-9. Gel filtration of microsomal fractions solubilized with octylglucoside revealed that the Cf-9 protein, either as c-myc or TAP fusions, migrated at a molecular mass of 350 to 475 kD. By using blue native gel electrophoresis, the molecular size was confirmed to be approximately 420 kD. Our results suggest that only one Cf-9 protein molecule is present in the Cf-9 complex and that Cf-9 is part of a membrane complex consisting of an additional glycoprotein partner(s). The high structural similarity between Cf proteins and Clavata2 (CLV2) of Arabidopsis, together with the similarity of molecular mass between Cf-9 and CLV complexes (420 and 450 kD, respectively), led us to investigate whether Cf-9 is integrated into membrane-associated protein complexes like those formed by CLV1 and CLV2. Unlike CLV2, the Cf-9 protein did not form disulfide-linked heterodimers, no ligand (Avr9)-dependent shift in the molecular mass of the Cf-9 complex was detected, and no Rho-GTPase-related proteins were found associated with Cf-9 under the conditions tested. Thus, Cf-9-dependent defense signaling and CLV2-dependent regulation of meristem development seem to be accomplished via distinct mechanisms, despite the structural similarity of their key components Cf-9 and CLV2.  相似文献   

18.
Here we describe the role of the Cladosporium fulvum nitrogen response factor 1 (Nrf1) gene in regulation of the expression of avirulence gene Avr9 and virulence on tomato. The Nrf1 gene, which was isolated by a polymerase chain reaction-based strategy, is predicted to encode a protein of 918 amino acid residues. The protein contains a putative zinc finger DNA-binding domain that shares 98% amino acid identity with the zinc finger of the major nitrogen regulatory proteins AREA and NIT2 of Aspergillus nidulans and Neurospora crassa, respectively. Functional equivalence of Nrf1 to areA was demonstrated by complementation of an A. nidulans areA loss-of-function mutant with Nrf1. Nrf1-deficient transformants of C. fulvum obtained by homologous recombination were unable to utilize nitrate and nitrite as a nitrogen source. In contrast to what was observed in the C. fulvum wild-type, the Avr9 gene was no longer induced under nitrogen-starvation conditions in Nrf1-deficient strains. On susceptible tomato plants, the Nrf1-deficient strains were as virulent as wild-type strains of C. fulvum, although the expression of the Avr9 gene was strongly reduced. In addition, Nrf1-deficient strains were still avirulent on tomato plants containing the functional Cf-9 resistance gene, indicating that in planta, apparently sufficient quantities of stable AVR9 elicitor are produced. Our results suggest that the NRF1 protein is a major regulator of the Avr9 gene.  相似文献   

19.
The Cf-9 gene encodes an extracytosolic leucine-rich repeat (LRR) protein that is membrane anchored near its C-terminus. The protein confers resistance in tomato to races of the fungus Cladosporium fulvum expressing the corresponding avirulence gene Avr9. In Nicotiana tabacum the Cf-9 transgene confers sensitivity to the Avr9 elicitor, and leads on elicitation to a subset of defence responses qualitatively similar to those normally seen in the tomato host. One of the earliest responses, both in the native and transgenic hosts, results in K+ salt loss from the infected tissues. However, the mechanism(s) underlying this solute flux and its control is poorly understood. We have explored the actions of Avr9 on Cf-9 transgenic Nicotiana using guard cells as a model. Much detail of guard cell ion channels and their regulation is already known. Measurements were carried out on intact guard cells in epidermal peels, and the currents carried by inward- (IK,in) and outward-rectifying (IK,out) K+ channels were characterized under voltage clamp. Exposures to Avr9-containing extracts resulted in a 2.5- to 3-fold stimulation of IK,out and almost complete suppression of IK,in within 3-5 min. The K+ channel responses were irreversible. They were specific for the Avr9 elicitor, were not observed in guard cells of Nicotiana lacking the Cf-9 transgene and, from kinetic analyses, could be ascribed to changes in channel gating. Both K+ channel responses were found to be saturable functions of Avr9 concentration and were completely blocked in the presence of 0.5 microM staurosporine and 100 microM H7, both broad-range protein kinase antagonists. These results demonstrate the ability of the Cf-9 transgene to couple Avr9 elicitation specifically to a concerted action on two discrete K+ channels and they indicate a role for protein phosphorylation in Avr9/Cf-9 signal transduction leading to transport control.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号