首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The species and amounts of intermediates formed by myosin in myofibrils during the ATPase reaction under relaxed conditions were examined. The amount of total nucleotides (ADP + ATP) bound to myofibrils, determined by a centrifugation method or a rapid filtration method, was 0.86 mol/mol myosin head. The amount of bound ADP, determined as the ADP remaining in the mixture after free ADP had been rapidly converted into ATP by an ATP-regenerating system, was found to be 0.67 mol/mol myosin head. We examined the time courses of free-Pi and total-Pi (TCA-Pi) formation after adding ATP to the myofibrils. The amount of Pi bound to myofibrils, calculated by subtracting the burst size of free Pi (0.23 mol/mol myosin head) from that of TCA-Pi (0.60 mol/mol myosin head), was found to be 0.37 mol/mol myosin head. The amount of tightly bound ATP determined by an ATP-quenching method was very low (0.03 mol/mol myosin head). If there is no myosin-phosphate complex, then the amounts of the myosin-phosphate-ADP complex, MADPP, and the tightly bound myosin-ATP complex, M*ATP, are 0.37 and 0.03 mol/mol myosin head, respectively, whereas the amounts of myosin-ADP and loosely bound myosin-ATP complexes are 0.30 and 0.16 mol/mol myosin head, respectively. Thus, half of the myosin heads forms MADPP or M*ATP, and the equilibrium between MADPP and M*ATP shifts to the MADPP side. These results agree with those obtained for myosin in solution (Inoue, A., Takenaka, H., Arata, T., & Tonomura, Y. (1979) Adv. Biophys. 13, 1-194). Therefore, in relaxed myofibrils the active site of myosin does not interact with actin.  相似文献   

2.
Ma Z  Csuhai E  Chow KM  Hersh LB 《Biochemistry》2001,40(31):9447-9452
Kinetic evidence suggests an acidic region in nardilysin binds polyamines and acts as a regulatory domain. The binding of approximately 5 mol of spermine/mol of nardilysin was demonstrated. The binding curve was sigmoidal exhibiting an IC(50) of approximately 118 microM and a Hill coefficient of 1.8. Spermine diminished the tryptophan fluorescence of the enzyme and increased its sensitivity to protease V8. The acidic stretch from mouse and human nardilysin were expressed as glutathione transferase fusion proteins. All fusion proteins bound spermine with an IC(50) of 40 to 110 microM. The mouse fusion protein bound approximately 7 mol of spermine exhibiting a sigmoidal binding curve and a Hill coefficient of 1.4. The human acidic stretch, containing fewer acidic residues, bound approximately 5 mol of spermine/mol with a hyperbolic binding curve. Chimeric fusion proteins containing the N-terminus of the mouse acidic region fused to the C-terminus of the human acidic region bound approximately 10 mol of spermine, while the opposite chimera bound approximately 4 mol of spermine/mol. The N-terminal region of the mouse acidic domain binds 3--4 mol spermine/mol exhibiting a Hill coefficient of 1.4, while the same region from human nardilysin binds 1 mol of spermine/mol. Spermine enhanced the sensitivity of the mouse acidic domain, but not the human acidic domain, to protease V8. Together the data support a model where the acidic stretch of nardilysin functions as an autonomous domain.  相似文献   

3.
Y Lee  F S Esch  M A DeLuca 《Biochemistry》1981,20(5):1253-1256
Firefly luciferase is 80-90% inactivated within 3 h upon incubation with the adenine nucleotide analogue p-fluorosulfonylbenzoyl-5'-adenosine (FSBA). Although 4 mol of 14C-FSBA/mol of enzyme is irreversibly bound during inactivation, only 1 mol of 14C-FSBA appears to be specifically directed to an adenine nucleotide binding site on the enzyme. The other 3 mol of 14C-FSBA is bound to the protein nonspecifically. The major radioactive peptide in a tryptic digest os labeled luciferase was isolated and shown to have the following amino acid sequence: *Lys-Gly-Glx-Asx-Ser-Lys, where *Lys is the radioactive derivative of the lysine residue that was sulfonylated during the inactivation.  相似文献   

4.
To determine whether or not the two heads of myosin from striated adductor muscles of scallop are nonidentical and the main intermediate of the ATPase reaction, MADPP, is produced only on one of the two heads, the Pi-burst size, the amount of total bound nucleotides and the amount of bound ADP during the ATPase reaction were measured in this study. The Pi-burst size was 1 mol per mol in the presence of 0.1-5 mM Mg2+ ions. The amount of total nucleotides bound to myosin was 2 mol per mol. Both the amounts of bound ADP and ATP at sufficiently high ATP concentrations were 1 mol per mol of striated adductor myosin, and the affinity for ADP binding was higher than that for ATP binding. These findings indicate that MADPP or MATP is produced on each of the two heads of striated adductor myosin on its interaction with ATP. The fluorescence intensity at 340 nm of striated adductor myosin was enhanced by about 7% upon addition of ATP. The time for the half maximum fluorescence enhancement, tau 1/2, at 5 microM ATP was 0.25 s, which was almost equal to the tau 1/2 values for the Pi-burst and for the dissociation of actomyosin reconstituted from striated adductor myosin and skeletal muscle F-actin. The dependences on ATP concentration of the extent of the fluorescence enhancement and the dissociation of actomyosin could be explained by assuming that these changes are associated with the formation of MADPP on one of the two heads of myosin. The Pi-burst size and the amount of bound ADP of smooth adductor myosin were slightly but significantly larger than 1 mol per mol. Both ATPase reactions of striated and smooth adductor myofibrils showed the substrate inhibition. The extent of substrate inhibition of ATPase of smooth adductor myofibrils was less than that of striated adductor myofibrils. All the present findings support the view that the nonidentical two-headed structure is required for substrate inhibition of the actomyosin ATPase reaction.  相似文献   

5.
The amount of Ca2+ bound to the Ca2+,Mg2+-dependent ATPase of deoxycholic acid-treated sarcoplasmic reticulum was measured during ATP hydrolysis by the double-membrane filtration method [Yamaguchi, M. & Tonomura, Y. (1979), J. Biochem. 86, 509--523]. The maximal amount of phosphorylated intermediate (EP) was adopted as the amount of active site of the ATPase. In the absence of ATP, 2 mol of Ca2+ bound cooperatively to 1 mol of active site with high affinity and were removed rapidly by addition of EGTA. AMPPNP did not affect the Ca2+ binding to the ATPase in the presence of MgCl2. Under the conditions where most EP and ADP sensitive at steady state (58 microM Ca2+, 50 microM EGTA, and 20 mM MgCl2 at pH 7.0 and 0 degrees C), bound Ca2+ increased by 0.6--0.7 mol per mol active site upon addition of ATP. The time course of decrease in the amount of bound 45Ca2+ on addition of unlabeled Ca2+ + EGTA was biphasic, and 70% of bound 45Ca2+ was slowly displaced with a rate constant similar to that of EP decomposition. Similar results were obtained for the enzyme treated with N-ethylmaleimide, which inhibits the step of conversion of ADP-sensitive EP to the ADP-insensitive one. Under the conditions where most EP was ADP insensitive at steady state (58 microM Ca2+, 30 microM EGTA, and 20 mM MgCl2 at pH 8.8 and 0 degrees C), the amount of bound Ca2+ increased slightly, then decreased slowly by 1 mol per mol of EP formed after addition of ATP. Under the conditions where about a half of EP was ADP sensitive (58 microM Ca2+, 25 microM EGTA, and 1 mM MgCl2 at pH 8.8 and 0 degrees C), the amount of bound Ca2+ did not change upon addition of ATP. These findings suggest that the Ca2+ bound to the enzyme becomes unremovable by EGTA upon formation of ADP-sensitive EP and is released upon its conversion to ADP-insensitive EP.  相似文献   

6.
1. When irradiated 8-azido-ATP becomes covalently bound (as the nitreno compound) to beef-heart mitochondrial ATPase (F1) as the triphosphate, either in the absence or presence of Mg2+, label covalently bound is not hydrolysed. 2. In the presence of Mg2+ the nitreno-ATP is bound to both the alpha and beta subunits, mainly (63%) to the alpha subunits. 3. After successive photolabelling of F1 with 8-azido-ATP (no Mg2+) and 8-azido-ADP (with Mg2+) 4 mol label is bound to F1, 2 mol to the alpha and 2 mol to the beta subunits. 4. When the order of photolabelling is reversed, much less 8-nitreno-ATP is bound to F1 previously labelled with 8-nitreno-ADP. It is concluded that binding to the alpha-subunits hinders binding to the beta subunits. 5. F1 that has been photolabelled with up to 4 mol label still contains 2 mol firmly bound adenine nucleotides per mol F1. 6. It is concluded that at least 6 sites for adenine nucleotides are present in isolated F1.  相似文献   

7.
The type I regulatory subunit (R-I) of rat brain cAMP-dependent protein kinase was expressed in E. coli and site-directed mutagenesis was used to substitute amino acids in the putative cAMP-binding sites. The wild-type recombinant R-I bound 2 mol of cAMP/mol subunit, while two mutant R-Is with a single amino acid substitution in one of the two intrachain cAMP-binding sites (clone N153:a glutamate for Gly-200, and clone C254:an aspartate for Gly-324) bound 1 mol of cAMP/mol subunit. When these two substitutions were made in one mutant, cAMP did not bind to this mutant, indicating that binding of cAMP to N153 or C254 was to their nonmutated sites. Competition experiments with site-selective analogs and dissociation of bound cAMP from mutant R-Is provided evidence for strong intrachain interactions between the two classes of cAMP-binding sites in R-I.  相似文献   

8.
Ricin from Ricinus communis was isolated and the binding of 3H-reductively alkylated or 125I-iodinated ricin was studied by incubating the toxic protein with ribosomes and isolating the ricin-ribosome complex by centrifugation. Neither of the labeled ricin derivatives nor 3H-labeled A chain bound Escherichia coli ribosomes, but both bound rat liver ribosomes in a reproducible manner. 3H-labeled ricin bound in a ratio of 1 mol/mol of ribosomes with a dissociation constant of 3 μm as calculated from a Scatchard plot. Similarly, 3H-labeled B chain isolated from ricin also bound in a one-to-one complex with a dissociation constant of 1 μm. The binding of ricin and ricin B chain was sensitive to lactose, while the binding of reduced ricin or ricin A chain was not prevented by lactose. Reduced 125I-labeled ricin in the presence of lactose and 3H-labeled A chain bound with a ratio of 2 mol/mol of ribosomes. It was further demonstrated that 3H-labeled ricin A chain bound only to the 60S ribosomal subunit and not to the 40S ribosomal subunit. The dissociation constant for the binding was 2 μm both in the presence and absence of lactose and 2 mol of A chain were bound per mole of 60S ribosomal subunit.  相似文献   

9.
The question of the stoichiometry of copper bound to dopamine beta-hydroxylase and the number of copper atoms required for maximal activity was addressed in this study. Incubation of tetrameric enzyme from bovine adrenal medulla with 64Cu2+ followed by rapid gel filtration yielded an enzyme containing 8.3-8.9 mol of Cu/mol of tetramer. An identical stoichiometry was obtained by analysis of bound copper by atomic absorption methods. NMR and EPR were used to monitor titrations of the enzyme with Cu2+ and showed that the longitudinal relaxation rate of solvent water protons and the amplitude of the signal at g approximately 2 increased linearly up to a copper to protein ratio of approximately 8. Additional titrations also indicate that an enzyme-Cu2+-tyramine-CN- inhibitory complex was formed when 8 mol of Cu2+ are bound per mol of enzyme. The rate of inactivation of dopamine beta-hydroxylase by the mechanism-based inhibitor 2-Br-3-(p-hydroxyphenyl)-1-propene was measured and used as a method to follow enzymatic catalysis. An increase in rate was observed with increasing Cu2+ up to a protein to Cu2+ ratio of 8 Cu/tetramer. The rate becomes constant after this ratio is achieved. These data indicate that dopamine beta-hydroxylase specifically binds 8 mol of Cu/tetramer and that this stoichiometry is required for maximal activity.  相似文献   

10.
Treatment of F1 by threefold fast-column centrifugation or by single ammonium sulphate precipitation followed by fast-column centrifugation resulted in enzyme preparations containing 2.5-2.8 mol of bound nucleotides per mol of F1. Short incubations of such F1 preparations in the presence of relatively low concentrations of [14C]ATP and 2-azido[alpha-32P]ATP (100-250 microM), followed by ammonium sulphate precipitation and fast-column centrifugation, resulted in exchange of about 1 mol of the bound nucleotide per mol of F1 not affecting the total amount of bound nucleotides. Exchange of bound nucleotides with 2-azidoATP, followed by ultraviolet irradiation, results in inhibition of the enzyme activity, full inhibition being obtained (via extrapolation) when 1 mol of 2-nitreno-adenosine 5'-tri- or diphosphate (2-N-AT(D)P) is covalently bound to the presumably catalytic site on the enzyme (Van Dongen, M.B.M., De Geus, J.P., Korver, T., Harton, A.F. and Berden, J.A. (1986) Biochim. Biophys. Acta 850, 359-368). In agreement with this, it was found that incorporated [gamma-32P]ATP was hydrolysed by more than 80%. Newly incorporated, not covalently bound radioactive nucleotides could be rapidly exchanged again by the addition of non-radioactive nucleotides, but a higher concentration of nucleotides was needed to fully exchange the incorporated nucleotide. Also, when F1 was depleted of most of its bound nucleotides by repeated ammonium sulphate precipitation, part of the residual nucleotides was still rapidly exchangeable. The ability of F1 to exchange (and hydrolyse) one of the bound nucleotides was not lost when one catalytic and one non-catalytic binding site were occupied by covalently bound 8-N-ATP. Similar results were obtained with F1 containing 2-nitrenoATP covalently bound to one of the catalytic sites. Also, after photolabelling of up to four binding sites with 8-N[( 2-3H]AT(D)P, part of the two remaining non-covalently bound nucleotides could still be rapidly exchanged. In this case the exchanged nucleotide was also hydrolysed. It is concluded that one of the two bound nucleotides became exchangeable when all four other sites (i.e., two catalytic and two non-catalytic) were occupied with covalently bound nucleotides. The site involved showed catalytic properties suggestive of localisation on a beta-subunit.  相似文献   

11.
Recombinant calreticulin and discrete domains of calreticulin were expressed in Escherichia coli, using the glutathione S-transferase fusion protein system, and their Ca2+ binding properties were determined. Native calreticulin bound 1 mol of Ca2+/mol of protein with high affinity, and also bound approximately 20 mol of Ca2+/mol of protein with low affinity. Both Ca2+ binding sites were present in the recombinant calreticulin indicating that proper folding of the protein was achieved using this system. Calreticulin is structurally divided into three distinct domains: the N-domain encompassing the first 200 residues; the P-domain which is enriched in proline residues (residue 187-317); and the C-domain which covers the carboxyl-terminal quarter of the protein (residues 310-401), and contains a high concentration of acidic residues. These domains were expressed in E. coli, isolated, and purified, and their Ca2+ binding properties were analyzed. The C-domain bound approximately 18 mol of Ca2+/mol of protein with a dissociation constant of approximately 2 mM. The P-domain bound approximately 0.6-1 mol of Ca2+/mol of protein with a dissociation constant of approximately 10 microM. The P-domain and the C-domain, when expressed together as the P+C-domain, bound Ca2+ with both high affinity and low affinity, reminiscent of both full length recombinant calreticulin and native calreticulin. In contrast the N-domain, did not bind any detectable amount of 45Ca2+. We conclude that calreticulin has two quite distinct types of Ca2+ binding sites, and that these sites are in different structural regions of the molecule. The P-domain binds Ca2+ with high affinity and low capacity, whereas the C-domain binds Ca2+ with low affinity and high capacity.  相似文献   

12.
We previously measured the amounts of Na+ and K+ ions bound to the Na+,K+-dependent ATPase [EC 3.6.1.3] purified from porcine kidney by a modified membrane filtration method [(1979) J. Biochem. 86, 509--523]. In this study, we improved the method for measuring the amount of the active site and measured the amount of Rb+ ions (a K+ congener) bound to the ATPase as well as those of Na+ and K+ ions to get more accurate information on the K+- and Na+-binding sites. The following results were obtained. Two kinds of cation-binding sites were found to exist on the ATPase molecule. One was the Na+-binding sites (3 mol per mol of active site). Na+ ions were bound to the sites cooperatively (Hill coefficient, 2.5--3), and the apparent dissociation constant was 0.20--0.32 mM. Three moles of Na+ ions bound to the sites was displaced by 1 mol of K+ ions bound to the ATPase (phi K, 24 microM). The other was the K+-binding sites (2 mol per mol of active site). Two moles of K+, Rb+, or Na+ ions was bound to the sites cooperatively (Hill coefficient, 1.5--2), and their apparent dissociation constants were 0.044, 0.024, and 2.2 mM, respectively. We measured the amounts of Na+ and Rb+ ions bound to the ATPase in the presence of 0.8 mM NaCl and 0.13 mM RbCl, and obtained unequivocal evidence for the simultaneous binding of 3 mol of Na+ ions and 2 mol of Rb+ ions per mol of active site of the ATPase.  相似文献   

13.
Nitric-oxide synthases (NOS) are homodimeric proteins and can form an intersubunit Zn(4S) cluster. We have measured zinc bound to NOS purified from pig brain (0.6 mol/mol of NOS) and baculovirus-expressed rat neuronal NOS (nNOS) (0.49 +/- 0.13 mol/mol of NOS), by on-line gel-filtration/inductively coupled plasma mass spectrometry. Cobalt, manganese, molybdenum, nickel, and vanadium were all undetectable. Baculovirus-expressed nNOS also bound up to 2. 00 +/- 0.58 mol of copper/mol of NOS. Diethylenetriaminepentaacetic acid (DTPA) reduced the bound zinc to 0.28 +/- 0.07 and the copper to 0.97 +/- 0.24 mol/mol of NOS. Desalting of samples into thiol-free buffer did not affect the zinc content but completely eliminated the bound copper ( or =75%) of the bound zinc was released from baculovirus-expressed rat nNOS by p-chloromercuriphenylsulfonic acid (PMPS). PMPS-treated nNOS was strongly (90 +/- 5%) inactivated. To isolate functional effects of zinc release from other effects of PMPS, PMPS-substituted thiols were unblocked by excess reduced thiol in the presence of DTPA, which hindered reincorporation of zinc. The resulting enzyme contained 0.12 +/- 0.05 mol of zinc but had a specific activity of 426 +/- 46 nmol of citrulline.mg(-1).min(-1), corresponding to 93 +/- 10% of non-PMPS-treated controls. PMPS also caused dissociation of nNOS dimers under native conditions, an effect that was blocked by the pteridine cofactor tetrahydrobiopterin (H(4)biopterin). H(4)biopterin did not affect zinc release. Even in the presence of H(4)biopterin, PMPS prevented conversion of NOS dimers to an SDS-resistant form. We conclude that zinc binding is a prerequisite for formation of SDS-resistant NOS dimers but is not essential for catalysis.  相似文献   

14.
The F1-ATPase from Micrococcus lysodeikticus is isolated in the absence of exogenous nucleotides. After removing loosely bound nucleotides from the isolated enzyme by gel permeation chromatography, analysis for tightly bound nucleotides revealed in 14 experiments 0.4 +/- 0.1 mol ADP, 0.5 +/- 0.2 mol GDP, and 0.8 +/- 0.2 mol ATP per mol of F1. Incubation of the isolated enzyme with Mg2+ or Ca2+ did not alter the endogenous nucleotide composition of the enzyme, indicating that endogenous ATP is not bound to a catalytic site. Incubation of the enzyme with P(i) decreased the amount of tightly bound ADP and GDP but did not effect the ATP content. Hydrolysis of MgATP in the presence of sulfite raised the tightly bound ADP and lowered tightly bound GDP on the enzyme. In the reciprocal experiment, hydrolysis of MgGTP in the presence of sulfite raised tightly bound GDP and lowered tightly bound ADP. Turnover did not affect the content of tightly bound ATP on the enzyme. These results suggest that endogenous ADP and GDP are bound to exchangeable catalytic sites, whereas endogenous ATP is bound to noncatalytic sites which do not exchange. The presence of endogenous GDP on catalytic sites of isolated F1 suggests that the F0F1-ATP synthase of M. lysodeikticus might synthesize both GTP and ATP under physiological conditions. In support of this hypothesis, we have found that plasma membrane vesicles derived from M. lysodeikticus synthesize [32P]GTP from [32P]P(i) using malate as electron donor for oxidative phosphorylation.  相似文献   

15.
In this paper we report a method for measuring ultrafiltrable zinc in human serum by electrothermal atomic absorption spectrophtometry. We show also that ultrafiltration permits to determine alpha-2 macroglobulin bound zinc and losely bound zinc if a strong zinc ligand (EDTA) is added to serum before ultrafiltration. This last fraction, after deduction of ultrafiltrable zinc, represents roughly all albumin bound zinc. In 20 controls we found that ultrafiltrable zinc amounted 0.311 μmol/L (S.D.=0.117 μmol/L), alpha-2 macroglobulin bound zinc 3.08 μmol/L (S.D.=0.221 μmol/L), and albumin bound zinc 12.11 μmol/L (S.D.=1.95 μmol/L). Our method needs only a small volume of serum, it is simple and rapid but also very accurate and reliable. The losely bound fraction is very dynamic and, representing the physiologically active part of serum zinc, it could be a good marker of zinc deficiency.  相似文献   

16.
Calcineurin, a calmodulin-regulated phosphatase, is composed of two distinct subunits (A and B) and requires certain metal ions for activity. The binding of the two most potent activators, Ni2+ and Mn2+, to calcineurin and its subunits has been studied. Incubation of the protein with 63Ni2+ (or 54Mn2+) followed by gel filtration to separate free and protein-bound ions indicated that calcineurin could maximally bind 2 mol/mol of Ni2+ or Mn2+. While isolated A subunit also bound 2 mol/mol of Ni2+, no Mn2+ binding was demonstrated for either isolated A or B subunit. When bindings were monitored by nitrocellulose filter assay, only 1 mol/mol bound Ni2+ or Mn2+ was detected, suggesting that the two Ni2+ (or Mn2+) binding sites had different relative affinities and that only metal ions bound at the higher affinity sites were detected by the filter assay. Preincubation of calcineurin with Mn2+ (or Ni2+) decreased the filter assay-measured Ni2+ (or Mn2+) binding by only 30%. Preincubation of the protein with Zn2+ decreased the filter assay-measured Ni2+ or Mn2+ binding by 90 or 17%, respectively. The results suggest that the higher affinity sites are a Ni2+-specific site and a distinct Mn2+-specific site. Preincubation of calcineurin with Mn2+ (or Ni2+) decreased the gel filtration-determined Ni2+ (or Mn2+) binding from 2 to 1 mol/mol suggesting that calcineurin also contains a site which binds either metal ion. The time course of Ni2+ (or Mn2+) binding was correlated with that of the enzyme activation, and the extent of deactivation of the Ni2+-activated calcineurin by EDTA or by incubation with Ca2+ and calmodulin (Pallen, C. J., and Wang, J. H. (1984) J. Biol. Chem. 259, 6134-6141) was correlated with the release of the bound ions, thus suggesting that the bound ion is directly responsible for enzyme activation.  相似文献   

17.
We have compared the reactions of trypsin with human alpha 2-macroglobulin (alpha 2M), and three rat plasma protease inhibitors, alpha 1-macroglobulin (alpha 1M), alpha 1-inhibitor III (alpha 1I3), and alpha 2M. All four of these proteins appear to contain reactive thiol esters. The electrophoretic mobility in agarose gels of human and rat alpha 2M is increased by 1 mol of trypsin, while the mobility of alpha 1M and alpha 1I3 is decreased. Treatment with methylamine causes similar mobility changes, except in the case of rat alpha 2M. Titration of human and rat macroglobulins by repeated small additions of trypsin and by assay of liberated SH groups or enhanced ligand fluorescence revealed a stoichiometry of about 1 mol of trypsin/mol of inhibitor. In contrast, addition of macroglobulin to a fixed amount of trypsin and detection of residual amidase or protease activity revealed a stoichiometry of about 2 mol of trypsin for 1 mol of human alpha 2M, about 1.4 mol for rat alpha 1M, and about 1 mol for rat alpha 2M. One mol of trypsin reacted with 2 or more mol of alpha 1I3 by the criteria of SH groups liberated or protease inhibition. Methylamine-treated rat alpha 2M binds a significant amount of trypsin releasing about 2 mol of SH. Radioactive beta-trypsin was covalently bound to subunits of the purified plasma inhibitors. The Mr of the labeled products with rat and human alpha 2M had molecular weights which suggested trypsin was bound to intact as well as cleaved subunit chains and also to multiple chains via cross-linking. Rat alpha 1M also produced a product which may be an intact subunit alpha chain plus trypsin. Greater than 80% of the trypsin was bound covalently to these inhibitors at low molar ratios.  相似文献   

18.
Selective binding of cholesterol by recombinant fatty acid binding proteins   总被引:3,自引:0,他引:3  
The sterol binding specificity of rat recombinant liver fatty acid binding protein (L-FABP) and intestinal fatty acid binding protein (I-FABP) was characterized with [3H]cholesterol and a fluorescent sterol analog dehydroergosterol. Ligand binding analysis, fluorescence spectroscopy, and activation of microsomal acyl-CoA:cholesterol acyltransferase activity showed that L-FABP-bound sterols. 1) Lipidex-1000 assay showed a dissociation constant Kd = 0.78 +/- 0.18 microM and stoichiometry of 0.47 +/- 0.16 mol/mol for [3H]cholesterol binding to L-PABP. 2) With [3H]cholesterol/phosphatidylcholine liposomes, the cholesterol binding parameters for L-FABP were Kd = 1.53 +/- 0.28 microM and stoichiometry 0.83 +/- 0.07 mol/mol. 3) L-FABP interaction with dehydroergosterol altered the fluorescence intensity and polarization of dehydroergosterol. Dehydroergosterol bound to L-FABP with Kd = 0.37 microM and a stoichiometry of 0.83 mol/mol. 4) Cholesterol and dehydroergosterol decreased L-FABP tyrosine lifetime. Dehydroergosterol binding produced sensitized emission of bound dehydroergosterol with longer lifetime.5) L-FABP bound two cis-parinaric acid molecules/molecule of protein. Cholesterol displaced one of these bound cis-parinaric acids. 6) L-FABP enhanced acyl-CoA:cholesterol acyltransferase in a concentration-dependent manner. In contrast, these assays indicated that I-FABP did not bind sterols. Thus, L-FABP appears able to bind 1 mol of cholesterol/mol of L-FABP, the L-FABP sterol binding site is equivalent to one of the two fatty acid binding sites, and L-FABP stimulates acyl-CoA:cholesterol acyltransferase by transfer of cholesterol.  相似文献   

19.
The influence of phosphorylation on the binding of microtubule-associated protein 2 (MAP2) to cellular microtubules was studied by microinjecting MAP2 in various phosphorylation states into rat-1 fibroblasts, which lack endogenous MAP2. Conventionally prepared brain MAP2, containing 10 mol of endogenous phosphate per mol (MAP2-P10), was completely bound to cellular microtubules within 2-3 min after injection. MAP2 prepared in the presence of phosphatase inhibitors, containing 25 mol/mol of phosphate (MAP2-P25), also bound completely. However, MAP2 whose phosphate content had been reduced to 2 mol phosphate per mol by treatment with alkaline phosphatase in vitro (MAP2-P2) did not initially bind to microtubules, suggesting that phosphorylation of certain sites in MAP2 is essential for binding to microtubules. MAP2-P10 was further phosphorylated in vitro via an endogenously bound protein kinase activity, adding 12 more phosphates, giving a total of 22 mol/mol. This preparation (MAP2-P10+12) also did not bind to microtubules. Assay of the binding of these preparations to taxol-stabilized tubulin polymers in vitro confirmed that their binding to tubulin depended on the state of phosphorylation, but the results obtained in microinjection experiments differed in some cases from in vitro binding. The results suggest that the site of phosphate incorporation rather than the amount is the critical factor in determining microtubule binding activity of MAP2. Furthermore, the interaction of MAP2 with cellular microtubules may be influenced by additional factors that are not evident in vitro.  相似文献   

20.
Two kinds of ATP binding sites were found on the ATPase molecule in deoxycholic acid-treated sarcoplasmic reticulum. One was the catalytic site (1 mol/mol active site) and its affinity was high. Upon addition of Ca2+, all the ATP bound to the catalytic site disappeared at 75 mM KCl, while a significant amount of ATP remained bound to the site at 0–2 mM KCl. The latter binding was found to be due to the formation of a slowly exchanging enzyme-ATP complex, which is in equilibrium with phosphoenzyme + ADP. The other binding site was the regulatory one (1 mol/mol active site) and its affinity was low, changing only insignificantly upon addition of Ca2+. The ATP binding to the regulatory site shifted the equilibrium between the slowly exchanging complex and EP toward EP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号