首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Parasite egg-induced granulomas are the primary pathogenic lesions in murine schistosomiasis mansoni. This cell-mediated granulomatous response is specific for soluble egg Ag and appears to be mediated predominantly by CD4+ Th2 cells. As infection progresses from the acute to the chronic phase, the cell-mediated anti-soluble egg Ag responses attenuate in a process termed modulation. In this study the hypothesis that modulation is effected by a chronic phase increase in Th2-inhibiting Th1 cell activity was investigated. Northern blot quantification of mRNA specific for the Th2 lymphokine, IL-4, and the Th1 lymphokines, IFN-gamma and IL-2, in the spleens, mesenteric lymph nodes, and granulomatous livers of mice infected for various lengths of time over the course of modulation was performed. Also, the capacity of mitogen- and Ag-stimulated spleen cells to produce message for these lymphokines was compared. Peak tissue levels of both IL-4 mRNA and IFN-gamma mRNA were seen in acutely infected mice, and levels of both messages declined as infection became chronic. Stimulated spleen cells from acutely infected mice also produced higher levels of IL-4 and IFN-gamma mRNA than cells from chronically infected mice. IL-2 mRNA was never detected in any tissue sample but was detected in the stimulated spleen cells, again with acute phase levels higher than chronic phase levels. Hence, this study shows no evidence for increased Th1 cell activity during chronic infection and suggests that modulation may be effected by a generalized suppression of lymphokine synthesis.  相似文献   

2.
During the course of a giardial infection, the host's immune system is presented with a variety of Giardia antigens as trophozoites differentiate, through encysting cells, to form the infective cysts. Previous studies examining the host's immune response during giardial infections have focused on trophozoite-derived antigens (Ags). In this study, we were interested to determine if the host's immune system reacts to cyst Ags during the acute and elimination phases, when there is cyst shedding. For this purpose, we used antigenic extracts from trophozoites (Troph), encysting cells (ENC), and purified giardial cyst walls (PCW), as well as purified recombinant cyst wall protein 2 (rCWP2). Comparative analysis of the parasite extracts using SDS-PAGE analysis and surface-enhanced laser desorption/ionization time of flight mass spectrometry resulted in the detection of 175 protein entities, of which 26 were Troph-specific proteins, 17 ENC-specific proteins, and 31 were PCW-specific proteins. On the other hand, we detected 34 proteins shared between Troph and ENC, 19 proteins that were shared between ENC and PCW, and 29 proteins that were common to Troph and PCW. Finally, we detected 19 proteins that were shared by all three extract samples. BALB/c mice were infected with 10(5)Giardia muris cysts and sacrificed either at the acute or elimination phases of infection (days 12 and 40, respectively), and lymphocytes were isolated from the Peyer's patches (PP). Using flow cytometry, we detected significant increases in the number of PP-derived CD4(+) and CD19(+), but not CD8(+) lymphocytes. Quantification of the number of mucosal IL-4 and IFN-gamma secreting T-lymphocytes by enzyme-linked immunosorbent spot assay showed that these cells reacted by secreting similar levels of IL-4 and IFN-gamma, regardless of the Ag or the phase of infection. Analysis of intestinal humoral immune responses by ELISA resulted in the detection of Ag-specific IgA and IgG intestinal antibodies. Regardless of the Ag tested, a trend was consistently observed where the concentration of local antibodies was found to be slightly increased by the acute phase, where we detected approximately 200microg/mg of specific IgA and approximately 300ng/ml of specific IgG in intestinal lavage of infected mice. By the elimination phase, the amount of specific antibodies was found to increase to approximately 600microg/mg of specific IgA and approximately 1300ng/ml of specific IgG antibodies. Finally, we tested the biological activity of these antibodies and found that they were able to reduce the ability of trophozoites to differentiate into cysts in vitro. Collectively, we believe these results demonstrate for the first time the existence of significant cellular and humoral immune responses against Giardia cyst Ags that may contribute to the reduction of cyst shedding in infected animals.  相似文献   

3.
Wang LF  Wu JT  Sun CC 《Cytokine》2002,19(3):147-152
Biphasic Th1/Th2 development plays a central role in the pathogenesis of atopic dermatitis. In the sensitization phase after protein antigen exposure, an immune response polarized toward Th2 differentiation, which is due to the hosts' genetic proneness to the disease, initiates the skin lesions. Th1/Th2 antagonism is a potential mechanism that could be manipulated to suppress the initial Th2 deviation. IL-12 is the key cytokine for Th1 differentiation. Interferon gamma (IFN-gamma) can assist Th1 development through several mechanisms and suppress Th2 differentiation. We took advantage of a recently developed murine model of atopic dermatitis elicited by epicutaneous sensitization with protein antigen through patch application to examine the effects of different routes of IFN-gamma administration on Th1/Th2 differentiation during the sensitization phase of antigen exposure. Our data showed that systemic administration of IFN-gamma during the sensitization phase could not promote serum levels of specific IgG(2a). However, local administration (intradermal injection or patch application) of IFN-gamma during the sensitization phase could promote serum levels of specific IgG(2a) and suppress serum levels of specific IgE. Moreover, pretreatment of local IFN-gamma with protein antigen has a long-term modulatory effect on serum levels of specific IgG(2a) and IgE after repeated antigen immunization. Our results demonstrate that local but not systemic administration of IFN-gamma during the sensitization phase of protein antigen immunization could suppress the Th2 deviation in this murine model of atopic dermatitis. Thus, this may represent a novel strategy for the treatment and prevention of atopic dermatitis.  相似文献   

4.
5.
Using Northern Blot analysis, the endogenous levels of IL-4 and IL-2 mRNA in the spleens, mesenteric lymph nodes, and granulomatous livers of male CBA/J mice in the acute phase of infection with Schistosoma mansoni have been quantified. High levels of IL-4 mRNA were detected in all three tissues from infected mice, whereas none was detected in tissues from normal, uninfected, age-matched mice. Isolation of the granulomas from the livers of infected mice and subsequent extraction of total RNA from these lesions resulted in a 70-fold enrichment of IL-4 message compared with the whole, unseparated granulomatous liver tissue. Hence, the predominant source of the IL-4 mRNA detected in livers from infected mice appears to be the schistosome egg-induced granulomas within these livers. In contrast, IL-2 mRNA was never detected in any of these tissues from either infected or normal mice. Control experiments were performed that ruled out the possibility that this inability to detect IL-2 mRNA was due to a difference in the efficacy of the IL-4 and IL-2 probes or due to a selective lability of IL-2 message. These data imply that IL-4-producing, Th2 lymphocytes are active in and possibly integral to the granulomatous, delayed-type hypersensitivity response characteristic of this infection, and directly challenges the current hypothesis that delayed-type hypersensitivity responses are exclusively mediated by Th1 lymphocytes.  相似文献   

6.
F Taguchi 《Journal of virology》1995,69(11):7260-7263
The receptor-binding capacity of the S2 subunit of the murine coronavirus S protein was examined by testing the inhibition of virus-receptor binding. Sp-4 virus and S1N(330), which consists of the N-terminal 330 amino acids of the S1 protein, both of which exhibited receptor-binding capacity, were able to prevent the binding of cl-2 virus to the receptor, while the mutant protein S1N(330)-159, which failed to bind to the receptor protein, and S2TM-, which lacks the transmembrane and cytoplasmic domains normally existing in the S2, were unable to prevent the binding of cl-2. By using cultured DBT cells, it was revealed that the infection of cells by cl-2 virus was significantly inhibited by S1N(330) but not by S2TM-. These results indicate that the S2 protein is not involved in the receptor binding of murine coronaviruses.  相似文献   

7.
8.
Bacteriophage lambda structural head protein D has physiochemical properties in common with eukaryotic chromosomal proteins. It has a low affinity for hydroxylapatite, it is heat stable and acid soluble. Moreover, it cross-reacts immunologically with histones H2A and H2B. The deduced primary structure of the D protein shows striking homology to calf chromosomal high mobility group HMG-14 protein. There are two clusters of four ( LSAK , ASDE ) and one of three (APA) identical amino acid residues. Additionally the cluster ETK of protein D occurs three times in HMG-14 and 14 single identical residues are present. A mechanism for an alternative to a nucleosomal mode of nuclear DNA condensation and a possible function of HMG proteins are discussed.  相似文献   

9.
Monokine induced by IFN-gamma (Mig; CXC chemokine ligand 9) is an IFN-gamma-inducible CXC chemokine that signals through the receptor CXCR3 and is known to function as a chemotactic factor for human T cells, particularly following T cell activation. The mig gene can be induced in multiple cell types and organs, and Mig has been shown to contribute to T cell infiltration into immune/inflammatory reactions in peripheral tissues in mice. We have investigated the expression and activities of Mig and CXCR3 in mouse cells and the role of Mig in models of host defense in mice. Murine (Mu)Mig functioned as a chemotactic factor for resting memory and activated T cells, both CD4(+) and CD8(+), and responsiveness to MuMig correlated with surface expression of MuCXCR3. Using mig(-/-) mice, we found that MuMig was not necessary for survival after infections with a number of intracellular pathogens. Surprisingly, however, we found that mig(-/-) mice showed reductions of 50-75% in Abs produced against the intracellular bacterium Francisella tularensis live vaccine strain. Furthermore, we found that MuMig induced both calcium signals and chemotaxis in activated B cells, and that B cell activation induced expression of MuCXCR3. In addition, IFN-gamma induced the expression of mumig in APCs, including CD8 alpha(+) and CD8 alpha(-) dendritic cells. Together, our data suggest that Mig and CXCR3 may be important not only to recruit T cells to peripheral inflammatory sites, but also in some cases to maximize interactions among activated T cells, B cells, and dendritic cells within lymphoid organs to provide optimal humoral responses to pathogens.  相似文献   

10.
Mannose-binding proteins play a role in first line host defense against a variety of pathogens. We report the molecular cloning of two mouse mannose-binding proteins designated A and C based on their close identity with their rat homologues. The deduced amino acid sequence of the mouse mannose-binding proteins, as with rat and the human forms, have an NH2 terminus that is rich in cysteine that stabilizes a collagen alpha helix followed by a carboxyl- terminal carbohydrate binding domain. We further show that the mouse mannose-binding protein A mRNA, as with the human, is induced like the acute phase reactant serum amyloid P protein, yet the expression of mouse mannose-binding protein C mRNA is not regulated above its low baseline level. The expression of both mannose-binding proteins A and C mRNA is restricted to the liver under basal and stress conditions.  相似文献   

11.
Lymphocyte proliferation in Con A- or LPS-stimulated murine splenic cell (SC) cultures was suppressed by the addition of excess macrophages. In Con A-stimulated cultures, suppression was associated with the expression of nitric oxide-synthesizing pathway (NOSP) activity as demonstrated by the accumulation of nitrite, a degradation product of nitric oxide (NO), in the culture supernatants. That NO, a cytotoxic and anti-proliferative metabolite of l-arginine, or other reactive nitrogen intermediates generated through the NOSP mediated the suppressive effect was suggested by the reversal of suppression brought about by the addition of a specific inhibitor of the NOSP (NG-monomethyl-l-arginine acetate) to the culture media. No NOSP activity was detectable in LPS-stimulated SC/macrophage cocultures. The role of T cell-derived IFN-gamma in the induction of the NOSP was investigated by the use of anti-IFN-gamma-mAb. Antibody-treated Con A supernatants failed to induce the NOSP in macrophages, and the addition of the mAb to Con A-stimulated SC/macrophage cocultures obviated the suppressive effects. Indomethacin and catalase only partially restored proliferation in Con A-stimulated SC/macrophage cocultures but were remarkably efficient in preventing macrophage-dependent suppression when LPS was used as the mitogenic stimulus. These results demonstrate a regulatory system of potential relevance in sites of predominant macrophage infiltration by which T cell-derived IFN-gamma activates the production of the mediator, NO, that suppresses T cell proliferation. In addition, these data demonstrate that, although the suppressive effects of excess macrophages appear to be expressed nonspecifically toward both T and B cells, suppression is mediated through a different mechanism in each case.  相似文献   

12.
Conditions that stress the endoplasmic reticulum (ER) in Saccharomyces cerevisiae can elicit a combination of an unfolded protein response (UPR) and an inositol response (IR). This results in increased synthesis of ER protein-folding factors and of enzymes participating in phospholipid biosynthesis. It was suggested that in cells grown on glucose or galactose medium, the UPR and the IR are linked and controlled by the ER stress sensor Ire1p. However, our studies suggest that during growth on oleate the IR is controlled both by an Ire1p-dependent pathway and by an Ire1p-independent pathway.  相似文献   

13.
The present study was performed to characterize the direct involvement of cAMP in the stimulation of bone resorption by parathyroid hormone (PTH), using Sp-cAMPS and Rp-cAMPS, which were the direct agonist and antagonist in the activation of cAMP-dependent protein kinase (PKA), respectively. Bone resorbing activity was estimated as the number of pits formed on the dentine slice and total area of pits per slice in bone marrow cells derived from 2 week-old mice. Dibutyryl cAMP (dbcAMP)(10(-4)M) and Sp-cAMPS (10(-4)M) caused the remarkable stimulation of bone resorption. Although Rp-cAMPS (10(-4)M) did not affect bone resorption by itself, it significantly inhibited dbcAMP- and Sp-cAMPS-induced stimulation of bone resorption. Moreover, Rp-cAMPS (10(-4)M) antagonized 10(-7)M human PTH-(1-34)-induced stimulation of bone resorption, although it did not affect 10(-8)M 1,25(OH)2D3-induced stimulation of bone resorption. Present study indicates the direct involvement of PKA in the stimulation of bone resorption by PTH.  相似文献   

14.
The genes encoding the four acidic ribosomal phosphoproteins have been inactivated in Saccharomyces cerevisae by recombination with truncated genes carrying different genetic markers. By crossing single haploid disruptants, strains harboring two simultaneously inactivated acidic protein genes were constructed. None of the six possible double disruptions was lethal, but the simultaneous inactivation of either YP1 alpha and YP1 beta(L44') or YP2 alpha(L44) and YP2 beta(L45) caused an important decrease in the cell growth rate. Ribosomes isolated from these slow-growing strains did not contain acidic proteins, not even the two polypeptides whose genes were still intact, although these proteins were present in the cell extracts and they seem to be able to form high-molecular weight protein complexes. Transformation of a slow-growing double transformant with a plasmid containing one of the disrupted genes restored the presence of the acidic proteins in the ribosomes and normal growth rates. The particles of the slow-growing strains were active in an in vitro amino acid polymerizing system, although their activity could be stimulated by the exogenous addition of the missing proteins. These results indicate that in the absence of either YP1 alpha and YP1 beta(L44') or YP2 alpha (L44) and YP2 beta(L45), the remaining acidic proteins are unable to interact with the ribosome in a stable manner, but that a strong interaction of these ribosomal components with the particle is not an absolute requirement for in vivo and in vitro protein synthesis.  相似文献   

15.
16.
Topoisomerase II is a multifunctional protein required during DNA replication, chromosome disjunction at mitosis, and other DNA-related activities by virtue of its ability to alter DNA supercoiling. The enzyme is encoded by two similar but nonidentical genes: the topoisomerase IIalpha and IIbeta genes. In HeLa cells synchronized by mitotic shake-off, topoisomeraseII alpha mRNA levels were found to vary as a function of cell cycle position, being 15-fold higher in late S phase (14 to 18 h postmitosis) than during G1 phase. Also detected was a corresponding increase in topoisomerase IIalpha protein synthesis at 14 to 18 h postmitosis which resulted in significantly higher accumulation of the protein during S and G2 phases. Topoisomerase IIalpha expression was not dependent on DNA synthesis during S phase, which could be inhibited without effect on the timing or level of mRNA expression. Mechanistically, topoisomerase IIalpha expression appears to be coupled to cell cycle position mainly through associated changes in mRNA stability. When cells are in S phase and mRNA levels are maximal, the half-life of topoisomerase IIalpha mRNA was determined to be approximately 30 min. A similar decrease in mRNA stability was also induced by two external factors known to delay cell cycle progression. Treatment of S-phase cells, at the time of maximum topoisomerase IIalpha mRNA stability, with either ionizing radiation (5 Gy) or heat shock (45 degrees C for 15 min) caused the accumulated topoisomerase IIalpha mRNA to decay. This finding suggests a potential relationship between stress-induced decreases in topoisomerase IIalpha expression and cell cycle progression delays in late S/G2.  相似文献   

17.
We developed a method, termed an H-blot, by which the poly(A) tract of any specific mRNA may be detected by RNA filter hybridization after its removal from the body of the mRNA by a RNase H-catalyzed endonucleolytic cleavage in the 3' untranslated region. Using this method, we studied the modulation of the length of the poly(A) tract of rat vasopressin mRNA in vivo during changes in the levels of this mRNA resulting from a physiologic stimulus, osmotic stress. The poly(A) tract of hypothalamic vasopressin mRNA in hydrated rats was, quite remarkably, approximately 250 nucleotides in length, in contrast to that of somatostatin mRNA, which was approximately 30 nucleotides long. Vasopressin mRNA poly(A) tail length increased progressively from approximately 250 to approximately 400 nucleotides with the application of the hyperosmotic stimulus and declined to base line after its removal; somatostatin mRNA poly(A) tail length did not change during osmotic stress. The poly(A) tract length of total hypothalamic mRNA was between 35 and 140 nucleotides and also did not change with osmotic stress. Modulation of poly(A) tract length of specific mRNAs during stimulation of gene expression may provide an additional level of genetic regulation.  相似文献   

18.
The cell-mediated immune (CMI) response to ectromelia virus infection in mice was studied. Virus doses from 4 × 102 up to 5 × 104 PFU of an attenuated strain inoculated intravenously (iv) all induced cytotoxic T cell responses in the spleen as measured in a 51Cr release assay using virus-infected target cells. Higher virus doses gave larger responses. There was little variation between individual animals, and mice ranging in age from 4–22 weeks gave similar responses. Following iv infection, virus grew logarithmically in spleen for 2 days, then titers declined to undetectable levels by day 5. The peak of the virus-specific cytotoxic T cell response occurred at 5–6 days post-infection, as determined by calculation of effector units based on a linear log-log relationship between killer cells added and targets lysed. T cells responsible for virus clearance in vivo gave similar kinetics, suggesting the possibility that both functions are mediated by the same T cell subset. Two other categories of cytotoxic activity were also generated at low levels in the spleen during ectromelia infection or during infection with a bacterium, Listeria monocytogenes. These activities were significantly sensitive to anti-δ and complement treatment, suggesting T cell dependence, but participation of other mechanisms has not been rigorously excluded. One category lysed allogenic target cells and reached a peak at 4 days post-infection. The other lysed H-2-compatible cells, syngeneic embryo cells, and some syngeneic tumor cells but not syngeneic macrophages, and was present at similar low levels through days 1–4. These different kinetics and evidence from “cold” target competition experiments suggested that the total cytotoxic activity of immune spleen cell populations was a composite of the activities of separate cellular subsets (probably mainly T cells), killing of any one target cell type being the responsibility of a subset with receptors at least partly specific for antigens on that target cell.  相似文献   

19.
20.
Ig VH repertoire differences between normal and x-linked immune deficiency- (xid) expressing mice are well established. To test the hypothesis that such differences might exist as early as the pre-B stage of ontogeny we generated panels of xid fetal liver derived Abelson murine leukemia virus transformants with H chain Ig VDJ rearrangements. Cells from CBA/Tufts.xid mice used VH genes from many families, with no demonstrable preference for 3' genes. Analysis of cells derived from (CBA/Tufts.xid X CBA/Tufts)F1 mice showed preferential usage of 3' family genes in the phenotypically normal females, even though V to DJ joins were made in vivo. The defective male mice did not show this marked preferential usage. A similar, but less marked, effect on VH gene usage was seen in mice with X-linked immune deficiency and a BALB/c background. Taken together, these results show that either X-linked immune deficiency, or a closely linked gene, affects fetal pre-B cells such that the usual pattern of predominant usage of 3' family genes is altered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号