首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CheW and CheY are single-domain proteins from a signal transduction pathway that transmits information from transmembrane receptors to flagellar motors in bacterial chemotaxis. In various bacterial and archaeal species, the cheW and cheY genes are usually encoded within homologous chemotaxis operons. We examined evolutionary changes in these two proteins from distantly related proteobacterial species, Escherichia coli and Azospirillum brasilense. We analyzed the functions of divergent CheW and CheY proteins from A. brasilense by heterologous expression in E. coli wild-type and mutant strains. Both proteins were able to specifically inhibit chemotaxis of a wild-type E. coli strain; however, only CheW from A. brasilense was able to restore signal transduction in a corresponding mutant of E. coli. Detailed protein sequence analysis of CheW and CheY homologs from the two species revealed substantial differences in the types of amino acid substitutions in the two proteins. Multiple, but conservative, substitutions were found in CheW homologs. No severe mismatches were found between the CheW homologs in positions that are known to be structurally or functionally important. Substitutions in CheY homologs were found to be less conservative and occurred in positions that are critical for interactions with other components of the signal transduction pathway. Our findings suggest that proteins from the same cellular pathway encoded by genes from the same operon have different evolutionary constraints on their structures that reflect differences in their functions.  相似文献   

2.
Van Dommelen  A.  Van Bastelaere  E.  Keijers  V.  Vanderleyden  J. 《Plant and Soil》1997,194(1-2):155-160
This paper describes molecular aspects of Azospirillum-plant root association with respect to nitrogen flux and carbon utilization. In the first part, biochemical and genetic data are reported on the transport of ammonium and methylammonium in A. brasilense cells. Ammonium excreting A. brasilense mutants reported so far appear to result from alterations in genes encoding for enzymes involved in ammonium assimilation. Solid genetic evidence is given on the occurrence of a postulated ammonium transporter in A. brasilense. In the second part, biochemical and genetic evidence is likewise given for the occurrence of a high-affinity uptake system for D-galactose in A. brasilense. A sugar- binding protein that is part of this uptake system is required for chemotaxis of A. brasilense towards particular sugars, including D-galactose.  相似文献   

3.
It has previously been reported that the alpha-proteobacterium Azospirillum brasilense undergoes methylation-independent chemotaxis; however, a recent study revealed cheB and cheR genes in this organism. We have constructed cheB, cheR, and cheBR mutants of A. brasilense and determined that the CheB and CheR proteins under study significantly influence chemotaxis and aerotaxis but are not essential for these behaviors to occur. First, we found that although cells lacking CheB, CheR, or both were no longer capable of responding to the addition of most chemoattractants in a temporal gradient assay, they did show a chemotactic response (albeit reduced) in a spatial gradient assay. Second, in comparison to the wild type, cheB and cheR mutants under steady-state conditions exhibited an altered swimming bias, whereas the cheBR mutant and the che operon mutant did not. Third, cheB and cheR mutants were null for aerotaxis, whereas the cheBR mutant showed reduced aerotaxis. In contrast to the swimming bias for the model organism Escherichia coli, the swimming bias in A. brasilense cells was dependent on the carbon source present and cells released methanol upon addition of some attractants and upon removal of other attractants. In comparison to the wild type, the cheB, cheR, and cheBR mutants showed various altered patterns of methanol release upon exposure to attractants. This study reveals a significant difference between the chemotaxis adaptation system of A. brasilense and that of the model organism E. coli and suggests that multiple chemotaxis systems are present and contribute to chemotaxis and aerotaxis in A. brasilense.  相似文献   

4.
The chemotactic properties of a number of Azospirillum brasilense natural strains have been studied. Azospirillum demonstrate the positive chemotactic reaction towards the organic acids salts but a poor reaction towards the presence of the attractants like hydrocarbons and aminoacids except for arabinose and glutamic acid. The series of Che- mutants deficient in general chemotaxis has been selected by introducing the transposon Tn5 into the cells of rifampicinresistant mutant strain Azospirillum brasilense 5T-2. The ability of the mutant cells to fast and solid adsorption on the roots of the sterile wheat sprouts is shown to be decreased 2-3 folds as compared with the one of the wild type strain. Chemotaxis is suggested to affect the adsorbtion ability of azospirillum and their associative properties.  相似文献   

5.
6.
Observations of free-swimming and antibody-tethered Azospirillum brasilense cells showed that their polar flagella could rotate in both clockwise and counterclockwise directions. Rotation in a counterclockwise direction caused forward movement of free-swimming cells, whereas the occasional change in the direction of rotation to clockwise caused a brief reversal in swimming direction. The addition of a metabolizable chemoattractant, e.g., malate or proline, had two distinct effects on the swimming behavior of the bacteria: (i) a short-term decrease in reversal frequency from 0.33 to 0.17 s-1 and (ii) a long-term increase in the mean population swimming speed from 13 to 23 microns s-1. A. brasilense therefore shows both chemotaxis and chemokinesis in response to temporal gradients of some chemoeffectors. Chemokinesis was dependent on the growth state of the cells and may depend on an increase in the electrochemical proton gradient above a saturation threshold. Analysis of behavior of a methionine auxotroph, assays of in vivo methylation, and the use of specific antibodies raised against the sensory transducer protein Tar of Escherichia coli all failed to demonstrate the methylation-dependent pathway for chemotaxis in A. brasilense. The range of chemicals to which A. brasilense shows chemotaxis and the lack of true repellents indicate an alternative chemosensory pathway probably based on metabolism of chemoeffectors.  相似文献   

7.
8.
Attraction of spermatozoa by way of chemotaxis to substances secreted from the egg or its surrounding cells has been demonstrated in marine species, amphibians, and mammals. This process is species- or family-specific in marine invertebrates: a chemoattractant for one marine species is usually not recognized by another species or by a member of another family. It is not known whether this selectivity is also the rule in other phyla. Furthermore, it is not at all obvious that such selectivity would be advantageous to species with internal fertilization. Here, using a directionality-based assay for chemotaxis, we studied in vitro the chemotactic response of human and rabbit spermatozoa to human, rabbit, and bovine egg-related factors. We found that spermatozoa from each of the two sources responded similarly well to egg-related factors obtained from any of the three species examined. These results indicate lack of chemotaxis-related, species specificity between these species, suggesting that their sperm chemoattractants are common or very similar. The findings further suggest that mammals do not rely on species specificity of sperm chemotaxis for avoidance of interspecies fertilization.  相似文献   

9.
The Azospirillum brasilense draT gene, encoding dinitrogenase reductase ATP-ribosyltransferase, and draG gene, encoding dinitrogenase reductase activating glycohydrolase, were cloned and sequenced. Two genes were contiguous on the A. brasilense chromosome and showed extensive similarity to the same genes from Rhodospirillum rubrum. Analysis of mutations introduced into the dra region on the A. brasilense chromosome showed that mutants affected in draT were incapable of regulating nitrogenase activity in response to ammonium. In contrast, a mutant with an insertion in draG was still capable of ADP-ribosylating dinitrogenase reductase in response to ammonium but was no longer able to recover activity after ammonium depletion. Plasmid-borne draTG genes from A. brasilense were introduced into dra mutants of R. rubrum and restored these mutants to an apparently wild-type phenotype. It is particularly interesting that dra mutants of R. rubrum containing draTG of A. brasilense can respond to darkness and light, since A. brasilense is a nonphotosynthetic bacterium and its dra system does not normally possess that regulatory response. The nifH gene of A. brasilense, encoding dinitrogenase reductase (the substrate of dinitrogenase reductase ADP-ribosyltransferase and dinitrogenase reductase-activating glycohydrolase), is located 1.9 kb from the start of draT and is divergently transcribed. Two insertion mutations in the region between draT and nifH showed no significant effect on nitrogenase activity or its regulation.  相似文献   

10.
11.
Energy taxis encompasses aerotaxis, phototaxis, redox taxis, taxis to alternative electron acceptors, and chemotaxis to oxidizable substrates. The signal for this type of behavior is originated within the electron transport system. Energy taxis was demonstrated, as a part of an overall behavior, in several microbial species, but it did not appear as the dominant determinant in any of them. In this study, we show that most behavioral responses proceed through this mechanism in the alpha-proteobacterium Azospirillum brasilense. First, chemotaxis to most chemoeffectors typical of the azospirilla habitat was found to be metabolism dependent and required a functional electron transport system. Second, other energy-related responses, such as aerotaxis, redox taxis, and taxis to alternative electron acceptors, were found in A. brasilense. Finally, a mutant lacking a cytochrome c oxidase of the cbb(3) type was affected in chemotaxis, redox taxis, and aerotaxis. Altogether, the results indicate that behavioral responses to most stimuli in A. brasilense are triggered by changes in the electron transport system.  相似文献   

12.
The Che1 chemotaxis-like pathway of Azospirillum brasilense contributes to chemotaxis and aerotaxis, and it has also been found to contribute to regulating changes in cell surface adhesive properties that affect the propensity of cells to clump and to flocculate. The exact contribution of Che1 to the control of chemotaxis and flocculation in A. brasilense remains poorly understood. Here, we show that Che1 affects reversible cell-to-cell clumping, a cellular behavior in which motile cells transiently interact by adhering to one another at their nonflagellated poles before swimming apart. Clumping precedes and is required for flocculation, and both processes appear to be independently regulated. The phenotypes of a ΔaerC receptor mutant and of mutant strains lacking cheA1, cheY1, cheB1, or cheR1 (alone or in combination) or with che1 deleted show that Che1 directly mediates changes in the flagellar swimming velocity and that this behavior directly modulates the transient nature of clumping. Our results also suggest that an additional receptor(s) and signaling pathway(s) are implicated in mediating other Che1-independent changes in clumping identified in the present study. Transient clumping precedes the transition to stable clump formation, which involves the production of specific extracellular polysaccharides (EPS); however, production of these clumping-specific EPS is not directly controlled by Che1 activity. Che1-dependent clumping may antagonize motility and prevent chemotaxis, thereby maintaining cells in a metabolically favorable niche.  相似文献   

13.
Selection of chemotaxis mutants of Dictyostelium discoideum   总被引:3,自引:7,他引:3       下载免费PDF全文
A method has been developed for the efficient selection of chemotaxis mutants of Dictyostelium discoideum. Mutants defective in the chemotactic response to folate could be enriched up to 30-fold in one round of selection using a chamber in which a compartment that contained the chemoattractant was separated by a sandwich of four nitrocellulose filters from a compartment that contained buffer. Mutagenized cells were placed in the center of the filter layer and exposed to the attractant gradient built up between the compartments for a period of 3-4 h. While wild-type cells moved through the filters in a wave towards the compartment that contained attractant, mutant cells remained in the filter to which they were applied. After several repetitions of the selection procedure, mutants defective in chemotaxis made up 10% of the total cell population retained in that filter. Mutants exhibiting three types of alterations were collected: motility mutants with either reduced speed of movement, or altered rates of turning; a single mutant defective in production of the attractant-degrading enzyme, folate deaminase; and mutants with normal motility but reduced chemotactic responsiveness. One mutant showed drastically reduced sensitivity in folate-induced cGMP production. Morphogenetic alterations of mutants defective in folate chemotaxis are described.  相似文献   

14.
Bacterial motility mechanisms, including swimming, swarming, and twitching, are known to have important roles in biofilm formation, including colonization and the subsequent expansion into mature structured surface communities. Directed motility requires chemotaxis functions that are conserved among many bacterial species. The biofilm-forming plant pathogen Agrobacterium tumefaciens drives swimming motility by utilizing a small group of flagella localized to a single pole or the subpolar region of the cell. There is no evidence for twitching or swarming motility in A. tumefaciens. Site-specific deletion mutations that resulted in either aflagellate, flagellated but nonmotile, or flagellated but nonchemotactic A. tumefaciens derivatives were examined for biofilm formation under static and flowing conditions. Nonmotile mutants were significantly deficient in biofilm formation under static conditions. Under flowing conditions, however, the aflagellate mutant rapidly formed aberrantly dense, tall biofilms. In contrast, a nonmotile mutant with unpowered flagella was clearly debilitated for biofilm formation relative to the wild type. A nontumbling chemotaxis mutant was only weakly affected with regard to biofilm formation under nonflowing conditions but was notably compromised in flow, generating less adherent biomass than the wild type, with a more dispersed cellular arrangement. Extragenic suppressor mutants of the chemotaxis-impaired, straight-swimming phenotype were readily isolated from motility agar plates. These mutants regained tumbling at a frequency similar to that of the wild type. Despite this phenotype, biofilm formation by the suppressor mutants in static cultures was significantly deficient. Under flowing conditions, a representative suppressor mutant manifested a phenotype similar to yet distinct from that of its nonchemotactic parent.  相似文献   

15.
A set of chemotaxis mutants of Bacillus subtilis was complemented by using SP beta c2 transducing bacteriophage either containing cloned segments of DNA or derived from abnormal excision of SP beta c2 dl2::Tn917 inserted into the chemotaxis region. Representative mutants were characterized in capillary assays for chemotaxis toward four amino acids and mannitol and in tethered-cell experiments for addition and removal of two attractants and two repellents. Twenty complementation groups were identified, in addition to the cheR previously characterized. All were found to be defective in chemotaxis toward all chemoeffectors. They were assigned the names cheA through cheU. The large number of general chemotaxis genes in B. subtilis, in contrast to the six in Escherichia coli, suggests fundamental differences in the mechanism of chemotaxis in the two species.  相似文献   

16.
Values of KI for nine proline analogs as inhibitors of proline chemotaxis and of proline transport were determined. Two of them inhibited transport at substantially lower concentrations than chemotaxis; two at substantially higher concentrations. Moreover, mutants, believed to be in the component that binds proline, were isolated that showed a shift of KM for transport to higher concentrations, one as much as 40-fold. However, chemotaxis was virtually unaffected. Therefore, unlike galactose chemotaxis and transport in Escherichia coli, which share the galactose-binding protein, proline chemotaxis and transport in Bacillus subtilis are independent.  相似文献   

17.
18.
19.
The coexistence of two different PII, proteins in Azospirillum brasilense was established by comparing proteins synthesized by the wild-type strain and two null mutants of the characterized glnB gene (encoding PII) adjacent to glnA. Strains were grown under conditions of nitrogen limitation or nitrogen excess. The proteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) or isoelectric focusing gel electrophoresis and revealed either by [32P]phosphate or [3H]uracil labeling or by cross-reaction with an anti-A. brasilense PII-antiserum. After SDS-PAGE, a single band of 12.5 kDa revealed by the antiserum in all conditions tested was resolved by isoelectric focusing electrophoresis into two bands in the wild-type strain, one of which was absent in the glnB null mutant strains. The second PII protein, named Pz, was uridylylated under conditions of nitrogen limitation. The amino acid sequence deduced from the nucleotide sequence of the corresponding structural gene, called glnZ, is very similar to that of PII. Null mutants in glnB were impaired in regulation of nitrogen fixation and in their swarming properties but not in glutamine synthetase adenylylation. No glnZ mutant is yet available, but it is clear that PII and Pz are not functionally equivalent, since glnB null mutant strains exhibit phenotypic characters. The two proteins are probably involved in different regulatory steps of the nitrogen metabolism in A. brasilense.  相似文献   

20.
By using the chemical-in-plug method, we found that glycerol and ethylene glycol caused negative chemotaxis in wild-type cells of Escherichia coli; the threshold concentration was about 10(-3) M for both chemicals. As with other known repellents, the addition of glycerol or ethylene glycol induced a brief tumble response in wild-type cells but not in generally nonchemotactic mutants. Experiments with mutants defective in various methyl-accepting chemotaxis proteins (MCPs) revealed that the presence of any one of three kinds of MCPs (MCP I, MCP II, or MCP III) was necessary to give a tumble response to these repellents. Consistently, it was found that the methylation-demethylation system of MCPs was involved in the adaptation of the cells to these repellents. The effect of glycerol or ethylene glycol was not enhanced by lowering the pH of the medium, and glycerol did not alter the membrane potential of the cells. All of these results suggest that glycerol and ethylene glycol are members of a new class of repellents which produce a tumble response in the cells by perturbing the MCPs in the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号