首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The binding site of the yeast 60S ribosomal subunit protein L25 on 26S rRNA was determined by RNase protection experiments. The fragments protected by L25 originate from a distinct substructure within domain IV of the rRNA, encompassing nucleotides 1465-1632 and 1811-1861. The protected fragments are able to rebind to L25 showing that they constitute the complete protein binding site. This binding site is remarkably conserved in all 23/26/28S rRNAs sequenced to date including Escherichia coli 23S rRNA. In fact heterologous complexes between L25 and E. coli 23S rRNA could be formed and RNase protection studies on these complexes demonstrated that L25 indeed recognizes the conserved structure. Strikingly the L25 binding site on 23S rRNA is virtually identical to the previously identified binding site of E. coli ribosomal protein EL23. Therefore EL23 is likely to be the prokaryotic counterpart of L25 in spite of the limited homology displayed by the amino acid sequences of the two proteins.  相似文献   

2.
The ribosomal protein complex L8 of Escherichia coli consists of two dimers of protein L7/L12 and one monomer of protein L10. This pentameric complex and ribosomal protein L11 bind in mutually cooperative fashion to 23 S rRNA and protect specific fragments of the latter from digestion with ribonuclease T1. Oligonucleotides protected either by the L8 complex alone or by the complex plus protein L11 were isolated from such digests and shown to rebind specifically to these proteins. They were also subjected to nucleotide sequence analysis. The longest oligonucleotide, protected by the L8 complex alone, consisted of residues 1028-1124 of 23 S rRNA and included all the other RNA fragments produced in this study. Previously, protein L11 had been shown to protect residues 1052-1112 of 23 S rRNA. It is concluded that the binding sites for the L8 protein complex and for protein L11 are immediately adjacent within 23 S rRNA of E. coli.  相似文献   

3.
Ribosomal protein L11 of Escherichia coli was bound to 23 S rRNA and the resultant complex was digested with ribonuclease T1. A single RNA fragment, protected by protein L11, was isolated from such digests and was shown to rebind specifically to protein L11. The nucleotide sequence of this RNA fragment was examined by two-dimensional fingerprinting of ribonuclease digests. It proved to be 61 residues long and the constituent oligonucleotides could be fitted perfectly between residues 1052 and 1112 of the nucleotide sequence of E. coli 23 S rRNA.  相似文献   

4.
Ribosomal protein L11 is a highly conserved protein that has been implicated in binding of elongation factors to ribosomes and associated GTP hydrolysis. Here, we have analyzed the ribosomal RNA neighborhood of Escherichia coli L11 in 50 S subunits by directed hydroxyl radical probing from Fe(II) tethered to five engineered cysteine residues at positions 19, 84, 85, 92 and 116 via the linker 1-(p -bromoacetamidobenzyl)-EDTA. Correct assembly of the L11 derivatives was analyzed by incorporating the modified proteins into 50 S subunits isolated from an E. coli strain that lacks L11 and testing for previously characterized L11-dependent footprints in domain II of 23 S rRNA. Hydroxyl radicals were generated from Fe(II) tethered to L11 and sites of cleavage in the ribosomal RNA were detected by primer extension. Strong cleavages were detected within the previously described binding site of L11, in the 1100 region of 23 S rRNA. Moreover, Fe(II) tethered to position 19 in L11 targeted the backbone of the sarcin loop in domain VI while probing from position 92 cleaved the backbone around bases 900 and 2470 in domains II and V, respectively. Fe(II) tethered to positions 84, 85 and 92 also generated cleavages in 5 S rRNA around helix II. These data provide new information about the positions of specific features of 23 S rRNA and 5 S rRNA relative to protein L11 in the 50 S subunit and show that L11 is near highly conserved elements of the rRNA that have been implicated in binding of tRNA and elongation factors to the ribosome.  相似文献   

5.
6.
Domain III of Saccharomyces cerevisiae 25 S rRNA contains the recognition site for the primary rRNA-binding ribosomal protein L25, which belongs to the functionally conserved EL23/L25 family of ribosomal proteins. The EL23/L25 binding region is very complex, consisting of several irregular helices held together by long-distance secondary and tertiary interactions. Moreover, it contains the eukaryote-specific V9 (D7a) expansion segment. Functional characterisation of the structural elements of this site by a detailed in vitro and in vivo mutational analysis indicates the presence of two separate regions that are directly involved in L25 binding. In particular, mutation of either of two conserved nucleotides in the loop of helix 49 significantly reduces in vitro L25 binding, thus strongly supporting their role as attachment sites for the r-protein. Two other helices appear to be primarily required for the correct folding of the binding site. Mutations that abolish in vitro binding of L25 block accumulation of 25 S rRNA in vivo because they stall pre-rRNA processing at the level of its immediate precursor, the 27 S(B) pre-rRNA. Surprisingly, several mutations that do not significantly affect L25 binding in vitro cause the same lethal defect in 27 S(B) pre-rRNA processing. Deletion of the V9 expansion segment also leads to under-accumulation of mature 25 S rRNA and a twofold reduction in growth rate. We conclude that an intact domain III, including the V9 expansion segment, is essential for normal processing and assembly of 25 S rRNA.  相似文献   

7.
8.
Micrococcin-resistant mutants of Bacillus megaterium that carry mutations affecting ribosomal protein L11 have been characterised. The mutants fall into two groups. "L11-minus" strains containing an L11 gene with deletions, insertions or nonsense mutations which grow 2.5-fold slower than the wild-type strain, whereas other mutants carrying single-site substitutions within an 11 amino acid residue segment of the N-terminal domain of L11 grow normally. Protein L11 binds to 23 S rRNA within the ribosomal GTPase centre which regulates GTP hydrolysis on ribosomal factors. Micrococcin binding within the rRNA component of this centre was probed on wild-type and mutant ribosomes, in vivo, using dimethyl sulphate where it generated an rRNA footprint indistinguishable from that produced in vitro, even after the cell growth had been arrested by treatment with either kirromycin or fusidic acid. No drug-rRNA binding was detected in vivo for the L11-minus mutants, while reduced binding (approximately 30-fold) was observed for two single-site mutants P23L and P26L. For the latter, the reduced drug affinity alone did not account for the resistance-phenotype because rapid cell growth occurred even at drug concentrations that would saturate the ribosomes. Micrococcin was also bound to complexes containing an rRNA fragment and wild-type or mutant L11, expressed as fusion proteins, and they were probed with proteinases. The drug produced strong protection effects on the wild-type protein and weak effects on the P23L and P26L mutant proteins. We infer that inhibition of cell growth by micrococcin, as for thiostrepton, results from the imposition of a conformational constraint on protein L11 which, in turn, perturbs the function(s) of the ribosomal factor-guanosine nucleotide complexes.  相似文献   

9.
Pakhomova ON  Yeh LC  Monette J  Lee JC 《Biochimie》1999,81(11):1015-1023
Binding of yeast ribosomal protein L5 with 5S rRNA has long been considered a promising model for studying molecular mechanisms of protein-RNA interactions. However, in vitro assembly of a ribonucleoprotein (RNP) complex from purified yeast ribosomal protein L5 (also known as L1, L1a, or YL3) and 5S rRNA proved to be difficult, thus limiting the utility of this model. In the present report, we present data on the successful in vitro assembly of a RNP complex using a fusion (MBP-L5) protein consisting of the yeast ribosomal protein L5 fused to the carboxyl terminus of the E. coli maltose-binding protein (MBP). We demonstrated that: 1) the MBP-L5 protein binds yeast 5S rRNA but not 5.8S rRNA in vitro; 2) the MBP protein itself does not bind yeast 5S rRNA; 3) formation of the RNP complex is proportional to the concentration of MBP-L5 protein and 5S rRNA; and 4) the MBP moiety of the fusion protein in the RNP complex can be removed with factor Xa. The electrophoretic mobility of the resultant RNP complex is indistinguishable from that of L5-5S rRNA complex isolated from the ribosome. Using this new experimental approach, we further showed that the RNA binding capability of a mutant L5 protein is decreased by 60% compared to the wild-type protein. Additionally, the mutant RNP complex migrates slower than the wild-type RNP complex suggesting that the mutant RNP complex has a less compact conformation. The finding provides a probable explanation for an earlier observation that the 60S ribosomal subunit containing the mutant protein is unstable.  相似文献   

10.
We have used chemical modification to examine the conformation of 23 S rRNA in Escherichia coli ribosomes bearing erythromycin resistance mutations in ribosomal proteins L22 and L4. Changes in reactivity to chemical probes were observed at several nucleotide positions scattered throughout 23 S rRNA. The L4 mutation affects the reactivity of G799 and U1255 in domain II and that of A2572 in domain V. The L22 mutation influences modification in domain II at positions m5U747, G748, and A1268, as well as at A1614 in domain III and G2351 in domain V. The reactivity of A789 is weakly enhanced by both the L22 and L4 mutations. None of these nucleotide positions has previously been associated with macrolide antibiotic resistance. Interestingly, neither of the ribosomal protein mutations produces any detectable effects at or within the vicinity of A2058 in domain V, the site most frequently shown to confer macrolide resistance when altered by methylation or mutation. Thus, while L22 and L4 bind primarily to domain I of 23 S rRNA, erythromycin resistance mutations in these ribosomal proteins perturb the conformation of residues in domains II, III and V and affect the action of antibiotics known to interact with nucleotide residues in the peptidyl transferase center of domain V. These results support the hypothesis that ribosomal proteins interact with rRNA at multiple sites to establish its functionally active three-dimensional structure, and suggest that these antibiotic resistance mutations act by perturbing the conformation of rRNA.  相似文献   

11.
12.
E. coli ribosomal protein L1 is a translational repressor of the synthesis in vitro of both proteins encoded in the L11 operon (L11 and L1). L1 is shown to act at a single target site within the first 160 bases of the bicistronic mRNA, near (or at) the translation initiation site of the L11 cistron. Synthesis of L1 apparently requires translation of the preceding L11 cistron, allowing regulation of the synthesis of both proteins from a single mRNA target site. This observation suggests a sequential translation mechanism that results in the equimolar synthesis rates of the two proteins observed in vivo. It was found that the presence of 23S rRNA, but not 16S rRNA, relieves translational inhibition by L1. L1 presumably recognizes structural features of the mRNA target site that are homologous to the L1-binding site of 23S rRNA. Although previous work indicated that translationally inhibited ribosomal protein mRNA is degraded in vivo, L1 repressor action in the present in vitro system was found not to involve mRNA degradation.  相似文献   

13.
14.
The ribosomal protein L22 is a core protein of the large ribosomal subunit interacting with all domains of the 23S rRNA. The triplet Met82-Lys83-Arg84 deletion in L22 from Escherichia coli renders cells resistant to erythromycin which is known as an inhibitor of the nascent peptide chain elongation. The crystal structure of the Thermus thermophilus L22 mutant with equivalent triplet Leu82-Lys83-Arg84 deletion has been determined at 1.8A resolution. The superpositions of the mutant and the wild-type L22 structures within the 50S subunits from Haloarcula marismortui and Deinococcus radiodurans show that the mutant beta-hairpin is bent inward the ribosome tunnel modifying the shape of its narrowest part and affecting the interaction between L22 and 23S rRNA. 23S rRNA nucleotides of domain V participating in erythromycin binding are located on the opposite sides of the tunnel and are brought to those positions by the interaction of the 23S rRNA with the L22 beta-hairpin. The mutation in the L22 beta-hairpin affects the orientation and distances between those nucleotides. This destabilizes the erythromycin-binding "pocket" formed by 23S rRNA nucleotides exposed at the tunnel surface. It seems that erythromycin, while still being able to interact with one side of the tunnel but not reaching the other, is therefore unable to block the polypeptide growth in the drug-resistant ribosome.  相似文献   

15.
16.
Photolabile oligonucleotides (PHONTs) bind to rRNA sequences to which they are complementary and, on photolysis, incorporate into neighboring ribosomal components. Here we report on photocrosslinking results obtained with PHONTs targeting 23S rRNA nucleotides 1882-1892, in the long lateral arm of the 50S subunit (PHONT 1892), and 1085-1093, in the L11 binding domain (PHONT 1093). Photolysis of the PHONT 1892.50S and PHONT 1093.50S complexes leads to formation of 'long-range' crosslinks from C1892 to U1094/A1095 and G1950, and from G1093 to U1712/1716 and U1926, that are clearly incompatible with published crystal structures of 50S subunits. These results provide strong evidence that within the 50S subunit (a) the L11 binding domain can extend in an arm-like fashion, accessing large areas of the ribosome, and (b) the lateral arm can bend about the noncanonical helix at its center. Such motions may have functional relevance in identifying regions that undergo major conformational change as the ribosome moves through its catalytic cycle.  相似文献   

17.
Ribosomal protein L9 consists of two globular alpha/beta domains separated by a nine-turn alpha-helix. We examined the rRNA environment of L9 by chemical footprinting and directed hydroxyl radical probing. We reconstituted L9, or individual domains of L9, with L9-deficient 50 S subunits, or with deproteinized 23 S rRNA. A footprint was identified in domain V of 23 S rRNA that was mainly attributable to N-domain binding. Fe(II) was tethered to L9 via cysteine residues introduced at positions along the alpha-helix and in the C-domain, and derivatized proteins were reconstituted with L9-deficient subunits. Directed hydroxyl radical probing targeted regions of domains I, III, IV, and V of 23 S rRNA, reinforcing the view that 50 S subunit architecture is typified by interwoven rRNA domains. There was a striking correlation between the cleavage patterns from the Fe(II) probes attached to the alpha-helix and their predicted orientations, constraining both the position and orientation of L9, as well as the arrangement of specific elements of 23 S rRNA, in the 50 S subunit.  相似文献   

18.
The proteins that bind to rat liver 5.8 S ribosomal ribonucleic acid were identified by affinity chromatography. The nucleic acid was oxidized with periodate and coupled by its 3'-terminus to Sepharose 4B through and adipic acid dihydrazide spacer. The ribosomal proteins that associate with the immobilized 5.8 S rRNA were identified by polyacrylamide gel electrophoresiss: they were L19, L8, and L6 from the 60 S subunit; and S13 and S9 from the small subparticle. Small amounts of L14, L17', L18, L27/L27', and L35', and of S11, S15, S23/S24, and S26 also were bound to the affinity column, but whether they associate directly and specifically with 5.8 S rRNA is not known. Escherichia coli ribosomal proteins did not bind to the rat liver 5.8 S rRNA affinity column.  相似文献   

19.
The 16S ribosomal RNA neighborhood of ribosomal protein S20 has been mapped, in both 30S subunits and 70S ribosomes, using directed hydroxyl radical probing. Cysteine residues were introduced at amino acid positions 14, 23, 49, and 57 of S20, and used for tethering 1-(p-bromoacetamidobenzyl)-Fe(II)-EDTA. In vitro reconstitution using Fe(II)-derivatized S20, together with the remaining small subunit ribosomal proteins and 16S ribosomal RNA (rRNA), yielded functional 30S subunits. Both 30S subunits and 70S ribosomes containing Fe(II)-S20 were purified and hydroxyl radicals were generated from the tethered Fe(II). Hydroxyl radical cleavage of the 16S rRNA backbone was monitored by primer extension. Different cleavage patterns in 16S rRNA were observed from Fe(II) tethered to each of the four positions, and these patterns were not significantly different in 30S and 70S ribosomes. Cleavage sites were mapped to positions 160-200, 320, and 340-350 in the 5' domain, and to positions 1427-1430 and 1439-1458 in the distal end of the penultimate stem of 16S rRNA, placing these regions near each other in three dimensions. These results are consistent with previous footprinting data that localized S20 near these 16S rRNA elements, providing evidence that S20, like S17, is located near the bottom of the 30S subunit.  相似文献   

20.
Functional large ribosomal subunits of Thermus aquaticus can be reconstituted from ribosomal proteins and either natural or in vitro transcribed 23 S and 5 S rRNA. Omission of 5 S rRNA during subunit reconstitution results in dramatic decrease of the peptidyl transferase activity of the assembled subunits. However, the presence of some ribosome-targeted antibiotics of the macrolide, ketolide or streptogramin B groups during 50 S subunit reconstitution can partly restore the activity of ribosomal subunits assembled without 5 S rRNA. Among tested antibiotics, macrolide RU69874 was the most active: activity of the subunits assembled in the absence of 5 S rRNA was increased more than 30-fold if antibiotic was present during reconstitution procedure. Activity of the subunits assembled with 5 S rRNA was also slightly stimulated by RU69874, but to a much lesser extent, approximately 1.5-fold. Activity of the native T. aquaticus 50 S subunits incubated in the reconstitution conditions in the presence of RU69874 was, in contrast, slightly decreased. The presence of antibiotics was essential during the last incubation step of the in vitro assembly, indicating that drugs affect one of the last assembly steps. The 5 S rRNA was previously shown to form contacts with segments of domains II and V of 23 S rRNA. All the antibiotics which can functionally compensate for the lack of 5 S rRNA during subunit reconstitution interact simultaneously with the central loop in domain V (which is known to be a component of peptidyl transferase center) and a loop of the helix 35 in domain II of 23 S rRNA. It is proposed that simultaneous interaction of 5 S rRNA or of antibiotics with the two domains of 23 S rRNA is essential for the successful assembly of ribosomal peptidyl transferase center. Consequently, one of the functions of 5 S rRNA in the ribosome can be that of assisting the assembly of ribosomal peptidyl transferase by correctly positioning functionally important segments of domains II and V of 23 S rRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号