首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zusammenfassung V?gel stellen den Bezug zum Ziel indirekt über ein externes Referenzsystem her. Der Navigationsproze? besteht deshalb aus zwei Schritten: zun?chst wird die Richtung zum Ziel als Kompa?kurs festgelegt, dann wird dieser Kurs mit Hilfe eines Kompa?mechanismus aufgesucht. Das Magnetfeld der Erde und Himmelsfaktoren werden von den V?gel als Kompa? benutzt. In der vorliegenden Arbeit werden der Magnetkompa?, der Sonnenkompa? und der Sternkompa? der V?gel in ihrer Funktionsweise, ihrer Entstehung und ihrer biologischen Bedeutung vorgestellt. Der Magnetkompa? erwies sich als Inklinationskompa?, der nicht auf der Polarit?t, sondern auf der Neigung der Feldlinien im Raum beruht; er unterscheidet „polw?rts“ und „?quatorw?rts“ statt Nord und Süd. Er ist ein angeborener Mechanismus und wird beim Vogelzug und beim Heimfinden benutzt. Seine eigentliche Bedeutung liegt jedoch darin, da? er ein Referenzsystem bereitstellt, mit dessen Hilfe andere Orientierungsfaktoren zueinander in Beziehung gesetzt werden k?nnen. Der Sonnenkompa? beruht auf Erfahrung; Sonnenazimut, Tageszeit und Richtung werden durch Lernprozesse miteinander verknüpft, wobei der Magnetkompa? als Richtungsreferenzsystem dient. Sobald er verfügbar ist, wird der Sonnenkompa? bei der Orientierung im Heimbereich und beim Heimfinden bevorzugt benutzt; beim Vogelzug spielt er, wahrscheinlich wegen seiner Abh?ngigkeit von der geographischen Breite, kaum eine Rolle. Der Sternkompa? arbeitet ohne Beteiligung der Inneren Uhr; die V?gel leiten Richtungen aus den Konfigurationen der Sterne zueinander ab. Lernprozesse erstellen den Sternkompa? in der Phase vor dem ersten Zug; dabei fungiert die Himmelsrotation als Referenzsystem. Sp?ter, w?hrend des Zuges, übernimmt der Magnetkompa? diese Rolle. Die relative Bedeutung der verschiedenen Kompa?systeme wurde in Versuchen untersucht, bei denen Magnetfeld und Himmelsfaktoren einander widersprechende Richtungs-information gaben. Die erste Reaktion der V?gel war von Art zu Art verschieden; langfristig scheinen sich die V?gel jedoch nach dem Magnetkompa? zu richten. Dabei werden die Himmelsfaktoren umgeeicht, so da? magnetische Information und Himmelsinformation wieder im Einklang stehen. Der Magnetkompa? und die Himmelsfaktoren erg?nzen einander: der Magnetkompa? ersetzt Sonnen- und Sternkompa? bei bedecktem Himmel; die Himmelsfaktoren erleichtern den V?geln das Richtungseinhalten, zu dem der Magnetkompa? offenbar wenig geeignet ist. Magnetfeld und Himmelsfaktoren sollten deshalb als integrierte Komponenten eines multifaktoriellen Systems zur Richtungsorientierung betrachtet werden.
The orientation system of birds — I. Compass mechanisms
Summary Because of the large distances involved, birds establish contact with their goal indirectly via an external reference. Hence any navigation is a two-step process: in the first step, the direction to the goal is determined as a compass course; in the second step, this course is located with a compass. The geomagnetic field and celestial cues provide birds with compass information. The magnetic compass of birds, the sun compass the star compass and the interactions between the compass mechanisms are described in the present paper. Magnetic compass orientation was first demonstrated by testing night-migrating birds in experimentally altered magnetic fields: the birds changed their directional tendencies according to the deflected North direction. The avian magnetic compass proved to be an inclination compass: it does not use polarity; instead it is based on the axial course of the field lines and their inclination in space, distinguishing “poleward” and “equatorward” rather than North and South. Its functional range is limited to intensities around the local field strength, but this biological window is flexible and can be adjusted to other intensities. The magnetic compass is an innate mechanism that is widely used in bird migration and in homing. Its most important role, however, is that of a basic reference system for calibrating other kinds of orientation cues. Sun compass orientation is demonstrated by clock-shift experiments: Shifting the birds' internal clock causes them to misjudge the position of the sun, thus leading to typical deflections which indicate sun compass use. The analysis of the avian sun compass revealed that it is based only on sun azimuth and the internal clock; the sun's altitude is not involved. The role of the pattern of polarized light associated with the sun is unclear; only at sunset has it been shown to be an important cue for nocturnal migrants, being part of the sun compass. The sun compass is based on experience; sun azimuth, time of day and direction are combined by learning processes during a sensitive period, with the magnetic compass serving as directional reference. When established, the sun compass becomes the preferred compass mechanism for orientation tasks within the home region and homing: in migration, however, its role is minimal, probably because of the changes of the sun's arc with geographic latitude. The star compass was demonstrated in night-migrating birds by projecting the northern stars in different directions in a planetarium. The analysis of the mechanism revealed that the internal clock is not involved; birds derive directions from the spatial relationship of the star configurations. The star compass is also established by experience; the directional reference is first provided by celestial rotation, later, during migration, by the magnetic compass. The relative importance of the various compass mechanisms has been tested in experiments in which celestial and magnetic cues gave conflicting information. The first response of birds to conflicting cues differs considerably between species; after repeated exposures, however, the birds oriented according to magnetic North, indicating a long-term dominance of the magnetic compass. Later tests in the absence of magnetic information showed that celestial cues were not simply ignored, but recalibrated so that they were again in agreement with magnetic cues. The magnetic compass and celestial cues complement each other: the magnetic field ensures orientation under overcast sky; celestial cues facilitate maintaining directions, for which the magnetic compass appears to be ill suited. In view of this, the magnetic field and celestial cues should be regarded as integrated components of a multifactorial system for directional orientation.
  相似文献   

2.
The magnetic compass of a migratory bird, the European robin (Erithacus rubecula), was shown to be lateralized in favour of the right eye/left brain hemisphere. However, this seems to be a property of the avian magnetic compass that is not present from the beginning, but develops only as the birds grow older. During first migration in autumn, juvenile robins can orient by their magnetic compass with their right as well as with their left eye. In the following spring, however, the magnetic compass is already lateralized, but this lateralization is still flexible: it could be removed by covering the right eye for 6 h. During the following autumn migration, the lateralization becomes more strongly fixed, with a 6 h occlusion of the right eye no longer having an effect. This change from a bilateral to a lateralized magnetic compass appears to be a maturation process, the first such case known so far in birds. Because both eyes mediate identical information about the geomagnetic field, brain asymmetry for the magnetic compass could increase efficiency by setting the other hemisphere free for other processes.  相似文献   

3.
生物磁学在鸟类定向研究中的进展   总被引:5,自引:0,他引:5  
地球上广泛存在的地磁场能够为导航提供可靠的信息,因此很多鸟类在迁徙和归巢过程中都使用地磁信息来保证航行方向的正确,在迁徙的鸟类中已经发现有18种是利用地磁罗盘进行定向和导航的。本文从鸟类使用的磁罗盘、航行地图以及磁感应机制等几方面阐述了目前在鸟类生物磁学方面的研究进展。  相似文献   

4.
The Earth's geomagnetic field (GMF) is known to act as a sensory cue for magnetoreceptive animals such as birds, sea turtles, and butterflies in long‐distance migration, as well as in flies, cockroaches, and cattle in short‐distance movement or body alignment. Despite a wealth of information, the way that GMF components are used and the functional modality of the magnetic sense are not clear. A GMF component, declination, has never been proven to be a sensory cue in a defined biological context. Here, we show that declination acts as a compass for horizontal food foraging in fruit flies. In an open‐field test, adopting the food conditioning paradigm, food‐trained flies significantly orientated toward the food direction under ambient GMF and under eastward‐turned magnetic field in the absence of other sensory cues. Moreover, a declination change within the natural range, by alteration only of either the east–west or north–south component of the GMF, produced significant orientation of the trained flies, indicating that they can detect and use the difference in these horizontal GMF components. This study proves that declination difference can be used for horizontal foraging, and suggests that flies have been evolutionarily adapted to incorporate a declination compass into their multi‐modal sensorimotor system.  相似文献   

5.
We report evidence for magnetic compass orientation by larval Drosophila melanogaster. Groups of larvae were exposed from the time of hatching to directional ultraviolet (365 nm) light emanating from one of four magnetic directions. Larvae were then tested individually on a circular agar plate under diffuse light in one of four magnetic field alignments. The larvae exhibited magnetic compass orientation in a direction opposite that of the light source in training. Evidence for a well-developed magnetic compass in a larval insect that moves over distances of at most a few tens of centimeters has important implications for understanding the adaptive significance of orientation mechanisms like the magnetic compass. Moreover, the development of an assay for studying magnetic compass orientation in larval D. melanogaster will make it possible to use a wide range of molecular genetic techniques to investigate the neurophysiological, biophysical, and molecular mechanisms underlying the magnetic compass.  相似文献   

6.
昆虫定向机制研究进展   总被引:1,自引:1,他引:1  
高月波  翟保平 《昆虫知识》2010,47(6):1055-1065
许多昆虫具有定向运动的行为。对部分社会性昆虫和迁飞性昆虫定向行为的大量研究已经初步阐明太阳、地磁场、天体、风及地面标志物等都可能成为昆虫返巢和迁飞定向的线索。社会性昆虫具有对不同定向线索进行整合而实现精确导航的能力。日间迁飞性昆虫利用时间补偿太阳罗盘进行定向的机制亦已明确,但夜间迁飞昆虫的定向机制尚需深入研究。迁飞性害虫定向机制的明确将有助于判断害虫迁飞路径及降落区域,为迁飞害虫的准确预测提供科学依据。本文对昆虫的定向机制研究进展进行了综述。  相似文献   

7.
Aquatic and terrestrial amphibians integrate acoustic, magnetic, mechanical, olfactory and visual directional information into a redundant-multisensory orientation system. The sensory information is processed to accomplish homing following active or passive displacement by either path integration, beaconing, pilotage, compass orientation or true navigation. There is evidence for two independent compass systems, a time-compensated compass based on celestial cues and a light-dependent magnetic inclination compass. Beaconing along acoustic or olfactory gradients emanating from the home site, as well as pilotage along fixed visual landmarks also form an important part in the behaviour of many species. True navigation has been shown in only one species, the aquatic salamander Notophthalmus viridescens. Evidence on the nature of the navigational map obtained so far is compatible with the magnetic map hypothesis.  相似文献   

8.
Polarized light (PL) sensitivity is relatively well studied in a large number of invertebrates and some fish species, but in most other vertebrate classes, including birds, the behavioural and physiological mechanism of PL sensitivity remains one of the big mysteries in sensory biology. Many organisms use the skylight polarization pattern as part of a sun compass for orientation, navigation and in spatial orientation tasks. In birds, the available evidence for an involvement of the skylight polarization pattern in sun-compass orientation is very weak. Instead, cue-conflict and cue-calibration experiments have shown that the skylight polarization pattern near the horizon at sunrise and sunset provides birds with a seasonally and latitudinally independent compass calibration reference. Despite convincing evidence that birds use PL cues for orientation, direct experimental evidence for PL sensitivity is still lacking. Avian double cones have been proposed as putative PL receptors, but detailed anatomical and physiological evidence will be needed to conclusively describe the avian PL receptor. Intriguing parallels between the functional and physiological properties of PL reception and light-dependent magnetoreception could point to a common receptor system.  相似文献   

9.
The avian magnetic compass works in a fairly narrow functional window around the intensity of the local geomagnetic field, but adjusts to intensities outside this range when birds experience these new intensities for a certain time. In the past, the geomagnetic field has often been much weaker than at present. To find out whether birds can obtain directional information from a weak magnetic field, we studied spontaneous orientation preferences of migratory robins in a 4 µT field (i.e. a field of less than 10 per cent of the local intensity of 47 µT). Birds can adjust to this low intensity: they turned out to be disoriented under 4 µT after a pre-exposure time of 8 h to 4 µT, but were able to orient in this field after a total exposure time of 17 h. This demonstrates a considerable plasticity of the avian magnetic compass. Orientation in the 4 µT field was not affected by local anaesthesia of the upper beak, but was disrupted by a radiofrequency magnetic field of 1.315 MHz, 480 nT, suggesting that a radical-pair mechanism still provides the directional information in the low magnetic field. This is in agreement with the idea that the avian magnetic compass may have developed already in the Mesozoic in the common ancestor of modern birds.  相似文献   

10.
Dellis AT  Kominis IK 《Bio Systems》2012,107(3):153-157
Magnetic-sensitive radical-ion-pair reactions are understood to underlie the biochemical magnetic compass used by avian species for navigation. Recent experiments have provided growing evidence for the radical-ion-pair magnetoreception mechanism, while recent theoretical advances have unravelled the quantum nature of radical-ion-pair reactions, which were shown to manifest a host of quantum-information-science concepts and effects, like quantum measurement, quantum jumps and the quantum Zeno effect. We here show that the quantum Zeno effect provides for the robustness of the avian compass mechanism, and immunizes its magnetic and angular sensitivity against the deleterious and molecule-specific exchange and dipolar interactions.  相似文献   

11.
Behavioral researchers have attached magnets to birds during orientation experiments, assuming that such magnets will disrupt their ability to obtain magnetic information. Here, we investigate the effect of an attached magnet on the ability to derive directional information from a radical-pair based compass mechanism. We outline in some detail the geometrical symmetries that would allow a bird to identify magnetic directions in a radical-pair based compass. We show that the artificial field through an attached magnet will quickly disrupt the birds' ability to distinguish pole-ward from equator-ward headings, but that much stronger fields are necessary to disrupt their ability to detect the magnetic axis. Together with estimates of the functional limits of a radical-pair based compass, our calculations suggest that artificial fields of comparable size to the geomagnetic field are not generally sufficient to render a radical-pair based compass non-functional.  相似文献   

12.
Zusammenfassung Ein erster Versuch von Bellrose, die Evolution des Orientierungssystems der Vögel zu beschreiben, ging von der Annahme aus, Kompaßorientierung und die Fähigkeit zur Navigation habe sich im Zusammenhang mit dem Vogelzug entwickelt. Kompaßmechanismen sowie die Mosaik- und die Navigationskarte spielen jedoch bereits bei der Orientierung im Heimbereich entscheidende Rollen, müssen sich also dort entwickelt haben unter dem Selektionsdruck, die täglichen Flugwege zu optimieren, vielleicht schon bei den Vorfahren der Vögel.Magnetkompaßorientierung erscheint als der einfachste Orientierungsmechanismus und müßte deshalb an den ältesten Orientierungsstrategien beteiligt gewesen sein. Ein Magnetkompaß ist bei Wirbeltieren weit verbreitet, doch gibt es Hinweise auf unterschiedliche Funktionsprinzipien. Es ist deshalb offen, ob die Vögel ihn von ihren Vorfahren übernommen oder eigenständig entwickelt haben. Das gleiche gilt für den Sonnenkompaß. Die entscheidende Rolle des Magnetkompaß bei der ontogenetischen Entwicklung des Sonnenkompaß läßt eine ähnliche Beziehung bei der phylogenetischen Entwicklung vermuten.Über kurze Entfernungen kann man sich Orientierung durch Wegumkehr allein mit Kompaßmechanismen vorstellen, wobei Umwege integriert werden müssen. Bei dieser Strategie akkumulieren sich jedoch die Fehler; die bei größeren Entfernungen resultierende Ungenauigkeit erzeugte einen Selektionsdruck, der das Benutzen von Ortsinformation begünstigte. Dies führte zur Entstehung der Mosaikkarte, die auf Kompaßorientierung und Landmarken beruht. Sie ist heute als eigenständiger Mechanismus anzusehen, der nach angeborenen Regeln aufgebaut wird. Die Navigationskarte entsteht, indem die gleichen Regeln auf Faktoren mit Gradienten-Charakter angewandt werden; sie hat sich offenbar aus der Mosaikkarte entwickelt. Ob sie eine Sonderentwicklung der Vögel infolge ihrer Flugfähigkeit ist, muß offen bleiben. Da die Vögel die Grundelemente ihres Orientierungssystems wahrscheinlich von ihren Vorfahren übernommen haben, würden wir erwarten, daß diese Mechanismen bei allen Vögel gleich sind bzw. nach den gleichen Regeln erstellt werden.Vorstufen des Vogelzugs waren zunächst ungerichtete Flüge auf der Suche nach günstigeren Bedingungen; in diesem Stadium reichten die vorhandenen Navigationsmechanismen zur Orientierung zwischen den verschiedenen Gebieten aus. Als aus diesen ersten Ortsbewegungen ein regelmäßiger Zug zwischen zwei Regionen wurde, begann sich das Zugprogramm zu entwickeln, wobei sich zunächst eine spontane Richtungstendenz herausbildete. Der Magnetkompaß konnte als erstes Referenzsystem für diese Zugrichtung dienen. Später erhielt die Himmelsrotation ihre entscheidende Bedeutung, wobei die Vögel die Referenzrichtung Süd zunächst aus dem Polarisationsmuster am Tage ableiteten. Im Laufe der Zeit entstanden die differenzierten Zugprogramme mit Richtungsfolgen, steuernden Zeitprogrammen und Triggermechanismen. Die Zugrichtung und Länge der Zugstrecke unterliegen auch weiterhin einer ständigen Selektion, die für optimale Anpassung an die jeweiligen Umweltbedingungen sorgt. Der Übergang vom Tag- zum Nachtzug bereitete keine Probleme, denn die Vögel mußten zunächst keine neuen Orientierungsmechanismen entwickeln, da sich der Magnetkompaß zu jeder Tageszeit einsetzen läßt. Später entstand der Sternkompaß, der in seinen Funktionseigenschaften hervorragend auf die Bedürfnisse von Zugvögeln angepaßt ist und als eigenständige Entwicklung der Nachtzieher angesehen werden muß. Dazu erwarben die Nachtzieher die Fähigkeit, die Information der Himmelsrotation aus der Bewegung der Sterne abzuleiten und direkt auf den Sternkompaß zu übertragen. Da das Zugverhalten bei Vögeln mehrfach unabhängig voneinander entstanden ist, muß man Entsprechendes auch von den Mechanismen der Zugorientierung annehmen. Das bedeutet, daß sich die betreffenden Mechanismen bei den verschiedenen Arten unterschiedlich entwickelt haben könnten, doch ist mit konvergenten Entwicklungen zu rechnen.
The orientation system of birds — IV. Evolution
Summary In a first attempt to explain the evolution of the avian navigational system, Bellrose suggested that compass mechanisms and the ability for true navigation had developed in connection with migration across increasing distances. Yet birds use compasses, the mosaic and the navigational maps even close to home and for homing. This means that those mechanisms must have developed for orientation within the home range, with the necessity to optimize the everyday flights acting as selective pressure. In view of this, any attempt to reconstruct the evolution of the avian navigational system must start out with the non-flying ancestors of birds.Considering the requirements of orientation by landmarks and by using a compass, compass orientation with the help of the magnetic field appears to be the simplest mechanism; consequently, it must be assumed to belong to the most ancient orientation strategies. The magnetic compass is wide-spread among animals, but it appears to function according to different principles among the various groups of vertebrates so that it is unclear whether birds inherited their magnetic compass from their reptilian ancestors or developed a mechanism of their own. The same is true for the sun compass. The crucial role of the magnetic compass in the ontogenetic development of the sun compass might indicate a similar relationship for the phylogenetic development.Over short distances within the home range, orientation based solely on compass orientation appears possible, using the strategy of route reversal, with non-straight routes being integrated. Since this strategy accumulates errors, it becomes inaccurate over longer distances, thus causing selective pressure to use local site-specific information. This leads to the formation of the mosaic map, a mechanism that includes landmarks as well as compass orientation. Today, the mosaic map of landmarks is a mechanism by itself, established according to innate learning principles that associate information on path integration with site-specific information, thus forming a directionally oriented mental representation of the distribution of landmarks. The navigational map is formed by applying the same principles to factors of the nature of gradients; it thus appears to have developed from the mosaic map. Whether or not it is a special development of birds associated with their flying ability is unclear. Because the birds probably inherited the basic mechanisms of orientation from their ancestors, one would expect these mechanisms to be similar in all birds. For the mechanisms involving learned components, this means that they are established following common rules. Birds improved those mechanisms and adapted them to their specific needs.Migration is assumed to have begun with non-directed search movements for regions offering better conditions. At this stage, the already existing mechanisms of homing were sufficient for navigation between the various areas. When these first movements turned into regular migration between two regions, the migratory program began to evolve, starting out with spontaneous tendencies in a preferred direction. The magnetic compass may have served as first reference system for the migratory direction; later, celestial rotation, indicated by the changing pattern of polarized light during the day, obtained its important role in indicating the reference direction geographic South. In the course of time, sophisticated migration programs with changes in direction, controlling time programs, responses to trigger mechanisms etc. developed. The migratory direction and distance, i.e. the amount of migratory activity, continue to be subject to selective pressure so that birds can respond to the environmental conditions in an optimal way. The transition from daytime migration to night migration did not require new mechanisms, as the magnetic compass can be used at any time of the day. Later, however, the star compass evolved, which is to be considered a special development of night-migrating birds, with its way of functioning well adapted to the specific needs of migrants. Birds also developed the ability to derive information on celestial rotation from the rotating stars at night and to transfer this information directly to the star compass. Since migratory habits evolved many times independently among birds, the same has to be assumed for the specific mechanisms of migratory orientation. This means that they need not necessarily be identical in all bird migrants. We are to expect convergent developments, however, leading to mechanisms of the most suitable type.
  相似文献   

13.
Rachel  Muheim  Susanne  Åkesson  Thomas  Alerstam 《Oikos》2003,103(2):341-349
The use of celestial or geomagnetic orientation cues can lead migratory birds along different migration routes during the migratory journeys, e.g. great circle routes (approximate), geographic or magnetic loxodromes. Orientation cage experiments have indicated that migrating birds are capable of detecting magnetic compass information at high northern latitudes even at very steep angles of inclination. However, starting a migratory journey at high latitudes and following a constant magnetic course often leads towards the North Magnetic Pole, which means that the usefulness of magnetic compass orientation at high latitudes may be questioned. Here, we compare possible long‐distance migration routes of three species of passerine migrants breeding at high northern latitudes. The initial directions were based on orientation cage experiments performed under clear skies and simulated overcast and from release experiments under natural overcast skies. For each species we simulated possible migration routes (geographic loxodrome, magnetic loxodrome and sun compass route) by extrapolating from the initial directions and assessing a fixed orientation according to different compass mechanisms in order to investigate what orientation cues the birds most likely use when migrating southward in autumn. Our calculations show that none of the compass mechanisms (assuming fixed orientation) can explain the migration routes followed by night‐migrating birds from their high Nearctic breeding areas to the wintering sites further south. This demonstrates that orientation along the migratory routes of arctic birds (and possibly other birds as well) must be a complex process, involving different orientation mechanisms as well as changing compass courses. We propose that birds use a combination of several compass mechanisms during a migratory journey with each of them being of a greater or smaller importance in different parts of the journey, depending on environmental conditions. We discuss reasons why birds developed the capability to use magnetic compass information at high northern latitudes even though following these magnetic courses for any longer distance will lead them along totally wrong routes. Frequent changes and recalibrations of the magnetic compass direction during the migratory journey are suggested as a possible solution.  相似文献   

14.
Many animals are now known to have a magnetic sense which they use when moving from one place to another. Among insects, this sense has only been studied in any detail in the honey bee. A role for a magnetic compass sense in cross-country migration has not so far been demonstrated for any insect. On clear nights the large yellow underwing moth, Noctua pronuba, has been shown to orientate by both the moon and the stars. However, radar studies have shown moths to be well-oriented on overcast nights as well as clear nights. We report here that when large yellow underwings are placed in an orientation cage on overcast nights and the Earth's normal magnetic field is reversed, there is a corresponding reversal in the orientation of the moth. We conclude that this species makes use of the Earth's magnetic field in maintaining compass orientation on overcast nights. We also show that the preferred compass orientation to the Earth's magnetic field is the same as the compass direction that results from orientation to the moon and stars.  相似文献   

15.
Although magnetic compass orientation has been reported in a number of invertebrate and vertebrate taxa, including about a dozen migratory bird species, magnetic orientation capabilities in animals remain somewhat controversial. We have hand-raised a large number of Savannah sparrows (Passerculus sandwichensis) to study the ontogeny of orientation behavior. Young birds with a variety of early experience with visual and magnetic orientation cues have been tested for magnetic orientation during their first autumn migration. Here we present data from 80 hand-raised sparrows, each tested several times in both normal and shifted magnetic fields. Birds reared indoors with no experience with visual orientation cues showed axial north-south orientation that shifted by almost exactly the magnitude of 90° clockwise and counterclockwise shifts in the direction of magnetic north. Other groups of birds with varying early experience with visual orientation cues showed different preferred orientation directions, but all groups shifted orientation direction in response to shifts in the magnetic field. The data thus demonstrate a robust magnetic orientation ability in this species.  相似文献   

16.
To analyze the wavelength dependency of magnetic compass orientation, European robins were tested during spring migration under light of various wavelengths. Under 565-nm green light (control) the birds showed excellent orientation in their migratory direction; a 120° deflection of magnetic North resulted in a corresponding shift in the birds' directional tendencies, indicating the use of the magnetic compass. Under 443-nm blue light, the robins were likewise well oriented. Under 590-nm yellow, however, oriented behavior was no longer observed, although the activity was at the same level as under blue and green light. The spectral range where magnetic orientation is possible thus differs from the range of vision, the former showing parallels to that of rhodopsin absorption. The interpretation of the abrupt change in behavior observed between 565 green to 590 yellow is unclear. There is no simple relationship between magnetoreception and the known color receptors of birds. Accepted: 17 December 1998  相似文献   

17.
Small vertebrates were inventoried within three habitat types in a degraded dry forest region of Panama. Animals were classified as frugivorous if they were observed foraging on fruit or if fecal samples contained mostly or exclusively seeds. Overall, we found that eight bat species and 21 bird species consumed fruit. The greatest numbers of birds were observed within live fences and bird species richness was greatest within riparian forests. Bat assemblages were not significantly different between habitats. The implication is that ecosystem services such as seed dispersal may still be functional in this landscape.  相似文献   

18.
Bats respond to polarity of a magnetic field   总被引:1,自引:0,他引:1  
Bats have been shown to use information from the Earth's magnetic field during orientation. However, the mechanism underlying this ability remains unknown. In this study we investigated whether bats possess a polarity- or inclination-based compass that could be used in orientation. We monitored the hanging position of adult Nyctalus plancyi in the laboratory in the presence of an induced magnetic field of twice Earth-strength. When under the influence of a normally aligned induced field the bats showed a significant preference for hanging at the northern end of their roosting basket. When the vertical component of the field was reversed, the bats remained at the northern end of the basket. However, when the horizontal component of the field was reversed, the bats changed their positions and hung at the southern end of the basket. Based on these results, we conclude that N. plancyi, unlike all other non-mammalian vertebrates tested to date, uses a polarity-based compass during orientation in the roost, and that the same compass is also likely to underlie bats' long-distance navigation abilities.  相似文献   

19.
The magnetic compass of birds is embedded in the visual system and it has been hypothesized that the primary sensory mechanism is based on a radical pair reaction. Previous models of magnetoreception have assumed that the radical pair-forming molecules are rigidly fixed in space, and this assumption has been a major objection to the suggested hypothesis. In this article, we investigate theoretically how much disorder is permitted for the radical pair-forming, protein-based magnetic compass in the eye to remain functional. Our study shows that only one rotational degree of freedom of the radical pair-forming protein needs to be partially constrained, while the other two rotational degrees of freedom do not impact the magnetoreceptive properties of the protein. The result implies that any membrane-associated protein is sufficiently restricted in its motion to function as a radical pair-based magnetoreceptor. We relate our theoretical findings to the cryptochromes, currently considered the likeliest candidate to furnish radical pair-based magnetoreception.  相似文献   

20.
地磁场和生物体问的相互作用关系是一个很有趣的未解之迷.虽然对地磁场的生物学作用至今还知之不多,为过近来有关鸟类利用地磁场信息定向的研究取得了较大的进展.很多鸟类能够对地磁场和外加磁场信息做出反应,这些反应可能通过磁场一生物化学过程介导.对此,目前有两种被广为接受的解释,一种认为在鸟喙上方存在一个磁场信息感受器,另一种认为通过视觉成像系统感受磁场信息.另外,最近研究发现磁场信息的感知分析功能有明显的单侧优势特征.虽然目前有关鸟类利用磁场信息定向的研究取得了很多进展,但是要想解释并利用鸟类的磁场定向功能还有很多工作要做.本文结合最近的研究发现对这一有趣的问题进行了综述.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号