首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lens cells demonstrate a terminal differentiation process with loss of their organelles including nuclei. Chromatin disappearance is characterised by the same changes as most apoptotic cells, i.e. condensation of chromatin and cleavage into high molecular weight fragments and oligonucleosomes. The endo-deoxyribonucleases (bicationic (Ca2+, Mg2+), mono-cationic (Ca2+ or Mg2+) and acidic non-cationic dependent nucleases) are present in lens fibre cells. Our results suggest that the acidic non-cationic nuclease (DNase II) plays a major role in chromatin cleavage. This nuclease, known to be lysosomal, is found in lens fibre nuclei and only an antibody directed against DNase II inhibits the acidic DNA cleavage of lens fibre nuclei. In addition, there must be another DNase implicated in the process which is not DNase I but appears to be a Ca2+, Mg2+ dependent molecule. Regulation of these DNase activities may be accomplished by the effect of post-translational modifications, acidic pH, mitochondrial release molecules, growth factors or oncogenes. Finally, fibre cells lose organelles without cytoplasmic elimination. The survival of these differentiated cells might be due to the action of survival factors such as FGF 1.  相似文献   

2.
In the lens, epithelial cells from the equatorial zone differentiate into postmitotic elongated fibers. One aspect of this differentiation is nuclear shape transformation and DNA degradation. This process is controlled by DNase activity which in fiber nuclei increases with development. DNase activity is also present in the epithelial cell nuclei which appears to be non-functional but could be activated in vitro by exogenous addition of Ca2+. We have analyzed the possible selective action of endogenous DNase on 3 genes involved in lens terminal differentiation, namely delta-crystallin, beta-tubulin and vimentin, and on 1 gene not thought to participate in this process, ovalbumin. We have compared restriction DNA patterns of these genes in nuclei isolated from 11-day-old chick embryos and incubated in Ca2+-free medium or in fresh epithelial and fiber lens tissue at 11 and 18 days of development. During incubation in vitro of 11-day fiber nuclei, there is a net increase in the sensitivity of the delta-crystallin, beta-tubulin, ovalbumin and vimentin chromatin to the endogenous DNase. The vimentin gene appears to be more stable than the beta-tubulin and delta-crystallin genes indicating a degree of specificity of the endogenous DNase activity. In the epithelial nuclei, the lens-specific genes appear to be more stable but paradoxically there is a net degradation of the ovalbumin gene. In freshly isolated tissues the 4 genes were detected in epithelial and fiber cells at 11 and 18 days. Furthermore, in the mature fibers in which the nuclei were degenerating, the latter genes were still not completely digested.  相似文献   

3.
4.
5.
6.
Histone H2AX is a ubiquitous member of the H2A histone family that differs from the other H2A histones by the presence of an evolutionarily conserved C-terminal motif, -KKATQASQEY. The serine residue in this motif becomes rapidly phosphorylated in cells and animals when DNA double-stranded breaks are introduced into their chromatin by various physical and chemical means. In the present communication we show that this phosphorylated form of H2AX, referred to as gamma-H2AX, appears during apoptosis concurrently with the initial appearance of high molecular weight DNA fragments. gamma-H2AX forms before the appearance of internucleosomal DNA fragments and the externalization of phosphatidylserine to the outer membrane leaflet. gamma-H2AX formation is inhibited by N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone and the inhibitor of caspase-activated DNase, and it is induced when DNase I and restriction enzymes are introduced into cells, suggesting that any apoptotic endonuclease is sufficient to induce gamma-H2AX formation. These results indicate that gamma-H2AX formation is an early chromatin modification following initiation of DNA fragmentation during apoptosis.  相似文献   

7.
We have shown previously that electrophoretically and immunologically homogeneous polyclonal IgGs from the sera of autoimmune-prone MRL mice possess DNase activity. Here we have analyzed for the first time activation of DNase antibodies (Abs) by different metal ions. Polyclonal DNase IgGs were not active in the presence of EDTA or after Abs dialysis against EDTA, but could be activated by several externally added metal (Me(2+)) ions, with the level of activity decreasing in the order Mn(2+)> or =Mg(2+)>Ca(2+)> or =Cu(2+)>Co(2+)> or =Ni(2+)> or =Zn(2+), whereas Fe(2+) did not stimulate hydrolysis of supercoiled plasmid DNA (scDNA) by the Abs. The dependencies of the initial rate on the concentration of different Me(2+) ions were generally bell-shaped, demonstrating one to four maxima at different concentrations of Me(2+) ions in the 0.1-12 mM range, depending on the particular metal ion. In the presence of all Me(2+) ions, IgGs pre-dialyzed against EDTA produced only the relaxed form of scDNA and then sequence-independent hydrolysis of relaxed DNA followed. Addition of Cu(2+), Zn(2+), or Ca(2+) inhibited the Mg(2+)-dependent hydrolysis of scDNA, while Ni(2+), Co(2+), and Mn(2+) activated this reaction. The Mn(2+)-dependent hydrolysis of scDNA was activated by Ca(2+), Ni(2+), Co(2+), and Mg(2+) ions but was inhibited by Cu(2+) and Zn(2+). After addition of the second metal ion, only in the case of Mg(2+) and Ca(2+) or Mn(2+) ions an accumulation of linear DNA (single strand breaks closely spaced in the opposite strands of DNA) was observed. Affinity chromatography on DNA-cellulose separated DNase IgGs into many subfractions with various affinities to DNA and very different levels of the relative activity (0-100%) in the presence of Mn(2+), Ca(2+), and Mg(2+) ions. In contrast to all human DNases having a single pH optimum, mouse DNase IgGs demonstrated several pronounced pH optima between 4.5 and 9.5 and these dependencies were different in the presence of Mn(2+), Ca(2+), and Mg(2+) ions. These findings demonstrate a diversity of the ability of IgG to function at different pH and to be activated by different optimal metal cofactors. Possible reasons for the diversity of polyclonal mouse abzymes are discussed.  相似文献   

8.
9.
10.
This laboratory recently reported the development of a biotin-cellulose/streptavidin affinity chromatography method based on the DNase I sensitivity of active chromatin to isolate a DNA fraction from murine erythroleukemia (MEL) cells that is more than 15-fold enriched in active genes (Dawson et al.: Journal of Biological Chemistry 264:12830-12837, 1989). We now report the extension of this technique to isolate and characterize chromatin that is enriched in active genes. In this approach, DNA in nuclei isolated from MEL cells was nicked with DNase I at a concentration that does not digest the active beta-globin gene, followed by repair of the nicks with a cleavable biotinylated nucleotide analog, 5-[(N-biotin-amido)hexanoamido-ethyl-1,3'-dithiopropionyl-3- aminoallyl]-2'- deoxyuridine 5'-triphosphate (Bio-19-SS-dUTP), during a nick-translation reaction. After shearing and sonication of the nuclei to solubilize chromatin, chromatin fragments containing biotin were separated from non-biotinylated fragments by sequential binding to streptavidin and biotin cellulose. The bound complex contained approximately 10% of the bulk DNA. Reduction of the disulfide bond in the biotinylated nucleotide eluted approximately one-half of the affinity isolated chromatin. Hybridization analysis of DNA revealed that whereas inactive albumin sequences were equally distributed among the chromatin fractions, virtually all of the active beta-globin sequences were associated with chromatin fragments which had bound to the affinity complex. Western blot assessment for ubiquitinate histones revealed that ubiquitinated histone H2A (uH2A) was uniformly distributed among active (bound) and inactive (unbound) chromatin fractions.  相似文献   

11.
Erythroblast cell differentiation involves self-controlled and limited nuclear proteolysis prior nucleus loss. Early evidence suggests that apoptotic-like pathways are activated during this process. The chromatin of developing erythroblasts becomes fragmented in vivo, however, the exact mechanisms and molecules involved remain elusive. In this study, erythroblasts were differentiated in culture from CD34-enriched umbilical cord blood progenitor cells and the characteristics of DNA fragmentation were examined. This analysis shows that the chromatin of differentiating erythroblasts is cleaved into discrete fragments of 50-200 kb. This process most likely involves one or several endonucleases as we detect in vivo double strand DNA cleavage. However, major players of the apoptotic DNA degradation, caspase activated DNase and apoptosis inducing factor, are not activated in these cells. Therefore, our data suggests that erythroblast chromatin degradation may involve enzymes distinct form those active in apoptotic cells.  相似文献   

12.
13.
Lens is an organ composed of a layer of epithelial cells and a mass of fibers. During terminal differentiation, epithelial cells from the equatorial region elongate into fibers, nuclei change shape, the chromatin appears much condensed in the last step of differentiation and the DNA breaks down into nucleosomes. The pattern of DNAase activities has been recorded at different chick embryonic stages (11 and 18 days) using polyacrylamide gel electrophoresis with DNA substrate in the gel matrix. Two DNAases (30 and 40 kDa) have been observed in lens epithelia and fibers at both stages. However, the activities of both of the enzymes are augmented in fiber cells. The 30 kDa DNAase requires and Ca2+ and Mg2+ (5-15 mM) to hydrolyze the DNA substrate while the 40 kDa-activity is inhibited by added divalent cations (5-15 mM). The 30 kDa protein is inhibited by Na+ and is probably an endonuclease. Both nuclease activities probably are involved in the cleavage of fiber chromatin into nucleosomes during lens terminal differentiation, but variables such as chromatin configuration, unmasked DNA sequences, presence of cations, and pH gradients probably determine the extent of involvement of each DNAase.  相似文献   

14.
15.
T W Brotherton  G D Ginder 《Biochemistry》1986,25(11):3447-3454
High mobility group (HMG) proteins 14 and 17 bind to mononucleosomes in vitro, but the exact nature of this binding has not been clearly established. A new method was developed to allow direct membrane transfer of DNA from HMG 14/17 bound and unbound nucleosomes, which have been separated by acrylamide gel electrophoresis. Hybridization analysis of membranes obtained by this method revealed that the HMG 14/17 bound nucleosomes of avian erythrocytes and rat hepatic tumor (HTC) cells were enriched, about 2-fold, in actively transcribed genes and also inactive but DNase I sensitive genes. Nucleosomes containing inactive, DNase I resistant genes were bound by HMG 14/17, but not preferentially. Several factors that have been reported to greatly influence the binding of HMG 14/17 to nucleosomes in vitro were tested and shown to not account for the preferential binding to DNase I sensitive chromatin. These factors include nucleosomal linker DNA length, single-stranded DNA nicks, and DNA bulk hypomethylation. An additional factor, histone acetylation, was preferentially associated with the HMG 14/17 bound chromatin fraction of avian erythrocytes, but it was not associated with the HMG 14/17 bound chromatin fraction of metabolically active HTC cells. The latter finding was true for all kinetic forms of histone acetylation.  相似文献   

16.
To analyse the relationship between DNA undermethylation at some sites in the ovalbumin and conalbumin gene regions (1) and the expression of these genes in chick oviduct, digestions with HhaI, which differentiates between methylated and unmethylated HhaI restriction sites, was performed on DNA isolated from chicken erythrocyte or oviduct chromatin treated with DNase I which degrades preferentially "active" chromatin. This was followed by analysis with ovalbumin- and conalbumin-specific hybridization probes. We conclude that the residual DNA methylation found at some sites of the ovalbumin and conalbumin gene regions is derived from the fraction of cells in which the chromatin of these genes is not in an "active" form. On the other hand, the ovalbumin and conalbumin sites which are partially unmethylated in erythrocyte DNA correspond to chromatin regions which are not DNase I-senitive. We have also detected a site about 1 kb downstream from the 3' end of the conalbumin gene that is hypersensitive to DNase I in all tissues tested.  相似文献   

17.
The effects of inhibiting histone deacetylation on the maturation of newly replicated chromatin have been examined. HeLa cells were labeled with [3H]thymidine in the presence or absence of sodium butyrate; control experiments demonstrated that butyrate did not significantly inhibit DNA replication for at least 70 min. Like normal nascent chromatin, chromatin labeled for brief periods (0.5-1 min) in the presence of butyrate was more sensitive to digestion with DNase I and micrococcal nuclease than control bulk chromatin. However, chromatin replicated in butyrate did not mature as in normal replication, but instead retained approximately 50% of its heightened sensitivity to DNase I. Incubation of mature chromatin in butyrate for 1 h did not induce DNase I sensitivity: therefore, the presence of sodium butyrate was required during replication to preserve the increased digestibility of nascent chromatin DNA. In contrast, sodium butyrate did not inhibit or retard the maturation of newly replicated chromatin when assayed by micrococcal nuclease digestion, as determined by the following criteria: 1) digestion to acid solubility, 2) rate of conversion to mononucleosomes, 3) repeat length, and 4) presence of non-nucleosomal DNA. Consistent with the properties of chromatin replicated in butyrate, micrococcal nuclease also did not preferentially attack the internucleosomal linkers of chromatin regions acetylated in vivo. The observation of a novel chromatin replication intermediate, which is highly sensitive to DNase I but possesses normal resistance to micrococcal nuclease, suggests that nucleosome assembly and histone deacetylation are not obligatorily coordinated. Thus, while deacetylation is required for chromatin maturation, histone acetylation apparently affects chromatin organization at a level distinct from that of core particle or linker, possibly by altering higher order structure.  相似文献   

18.
The chromatin structure of the Xenopus oocyte-specific 5S rRNA genes was examined at high resolution in immature oocyte and somatic cell chromosomes by DNase I footprinting. On oocyte chromatin, where the genes are active, the cleavage preferences over the entire gene region showed a periodic pattern of sensitivity and were dramatically different from the patterns obtained with deproteinized DNA or somatic cell chromatin. Further, the normal binding site for TFIIIA over the internal promoter region was preferentially sensitive to cleavage, indicating that TFIIIA was not bound in the manner predicted by in vitro experiments. In somatic cell chromatin, the oocyte-type 5S genes displayed a cleavage pattern largely similar to deproteinized DNA suggesting the absence of positioned nucleosomes on these inactive genes, although the presence of uncharacterized repressor complexes could not be ruled out. These data are discussed in terms of potential forms of the chromatin structure and alternative mechanisms of oocyte-type gene activation.  相似文献   

19.
In situ nick-translation allows the visualization of nuclease-sensitive chromatin regions in interphase nuclei. We have analyzed the three-dimensional (3-D) distribution of DNase I-sensitive regions of chromatin in nuclei from mouse P19 embryonal carcinoma cells by making optical sections using confocal scanning laser microscopy. In undifferentiated as well as embryonal carcinoma cells differentiated in vitro, DNase I-sensitive regions of chromatin are observed as discrete spots in the nucleus. These spots represent clusters of DNase I-sensitive sites. By optical sectioning, we show that these spots are preferentially, but not exclusively, localized at the nuclear periphery. No differences were observed in the spatial distribution of DNase I-sensitive sites in P19 EC cells or the differentiated P19 END-2 cells. Furthermore, we did not observe differences in the distribution of DNase I-sensitive chromatin regions during the cell cycle. These findings indicate, at least for P19 mouse embryonal carcinoma cells and their differentiated derivative END-2, that the compartmentalization of DNase I-sensitive chromatin regions is a general characteristic of the nucleus, independent of cell cycle stage or differentiation state. Since evidence has been presented that DNase I-sensitive sites are associated with actively transcribed chromatin, our results indicate that active transcribing chromatin is compartmentalized, preferentially in the periphery of the nucleus.  相似文献   

20.
Overall changes in chromatin sensitivity to DNase I during differentiation   总被引:1,自引:0,他引:1  
The DNase I sensitivity of total chromatin was studied in fixed cells and nuclei isolated from proliferating and terminally differentiated cells, by measuring the incorporation of labelled nucleotides into DNase-sensitive sites, and electrophoresis of DNA isolated from DNase-treated nuclei. The unfixed nuclei were sensitive to digestion at around 10 micrograms/ml, the fixed cells at 30 ng/ml DNase I concentration. Proliferating Rauscher leukemia cells were more digestible than normal spleen cells. The DNase I sensitivity of the human HL60 leukemia line decreased upon DMSO-induced differentiation but still exceeded the digestibility of nuclei from normal human peripheral blood. A novel flow-cytometric technique was developed to study DNase sensitivity at the cell level. It confirmed the relative resistance of differentiated cells to DNase I and ruled out the possibility that this could be due to an altered distribution of cell cycle phases. The overall DNase I sensitivity of chromatin was compared with the sensitivity of the c-myc gene and the myc-associated hypersensitive sites. The latter sites were detected at 1 microgram/ml DNase I in HL60 nuclei. They disappeared partially upon DMSO-induced differentiation. At 10 micrograms/ml, myc was degraded in both growing and differentiating HL60, but not in HPB cells. These data suggest that a progressive condensation of the chromatin occurs during terminal differentiation which gradually involves specific genes that need to be inactivated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号