首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
《植物生态学报》1958,44(8):791
不同的草原利用方式(围封、放牧和割草等)随着大气氮沉降的不断加剧, 改变了凋落物输入量。凋落物作为连接地上-地下碳循环过程的关键环节, 对草原生态系统生产力和碳循环过程影响显著。氮是草原生产力的主要限制因子, 凋落物输入量的变化对草原生态系统结构和功能的影响仍缺乏长期实验证据支持。该研究在内蒙古半干旱典型草原建立一个凋落物输入变化和氮添加控制实验平台, 通过连续6年对群落生产力和功能群组成的监测, 研究了凋落物添加与去除和氮添加对半干旱草原群落生产力和功能群组成的影响。研究发现: 1)凋落物输入量增加和氮添加均显著提高了群落生产力, 在对照和氮添加处理下, 凋落物去除处理导致生产力分别降低了8.4%和7.6%, 而凋落物添加处理使生产力分别提高了10.7%和6.3%; 2)不同植物功能群对凋落物输入变化和氮添加的响应存在差异, 导致群落功能群结构发生变化。随着凋落物输入量增加和氮添加, 群落优势功能群多年生禾草(包括多年生丛生禾草和多年生根茎禾草)的生物量显著提高, 对群落生产力的贡献增加, 在群落中的优势地位增强; 而另一优势功能群多年生杂类草生物量对凋落物和氮添加处理均无显著响应, 进而导致在氮添加处理下其对群落生物量的贡献比例显著降低; 3)凋落物输入主要改善土壤水分状况, 而氮添加则主要通过提高土壤养分含量, 促进群落生产力, 并通过影响主要功能群生物量, 导致群落结构发生变化。以上结果表明, 适当的草原管理方式如围封禁牧和降低放牧强度等都能通过增加凋落物的输入来提高草原生产力, 维持生态系统稳定性。而适量的氮等养分添加管理也有助于提高草原生产力, 促进其恢复。  相似文献   

2.
不同的草原利用方式(围封、放牧和割草等)随着大气氮沉降的不断加剧, 改变了凋落物输入量。凋落物作为连接地上-地下碳循环过程的关键环节, 对草原生态系统生产力和碳循环过程影响显著。氮是草原生产力的主要限制因子, 凋落物输入量的变化对草原生态系统结构和功能的影响仍缺乏长期实验证据支持。该研究在内蒙古半干旱典型草原建立一个凋落物输入变化和氮添加控制实验平台, 通过连续6年对群落生产力和功能群组成的监测, 研究了凋落物添加与去除和氮添加对半干旱草原群落生产力和功能群组成的影响。研究发现: 1)凋落物输入量增加和氮添加均显著提高了群落生产力, 在对照和氮添加处理下, 凋落物去除处理导致生产力分别降低了8.4%和7.6%, 而凋落物添加处理使生产力分别提高了10.7%和6.3%; 2)不同植物功能群对凋落物输入变化和氮添加的响应存在差异, 导致群落功能群结构发生变化。随着凋落物输入量增加和氮添加, 群落优势功能群多年生禾草(包括多年生丛生禾草和多年生根茎禾草)的生物量显著提高, 对群落生产力的贡献增加, 在群落中的优势地位增强; 而另一优势功能群多年生杂类草生物量对凋落物和氮添加处理均无显著响应, 进而导致在氮添加处理下其对群落生物量的贡献比例显著降低; 3)凋落物输入主要改善土壤水分状况, 而氮添加则主要通过提高土壤养分含量, 促进群落生产力, 并通过影响主要功能群生物量, 导致群落结构发生变化。以上结果表明, 适当的草原管理方式如围封禁牧和降低放牧强度等都能通过增加凋落物的输入来提高草原生产力, 维持生态系统稳定性。而适量的氮等养分添加管理也有助于提高草原生产力, 促进其恢复。  相似文献   

3.
氮是陆地生态系统生产力的主要限制性因素, 土壤微生物是土壤氮转化的主要驱动因子, 随着大气氮沉降的增加, 盐渍化草地土壤微生物对不同水平氮输入的响应尚不清晰。在山西右玉黄土高原草地生态系统定位观测研究站不同水平氮添加平台(0、1、2、4、8、16、24和32 g·m-2·a-1), 在实验处理的第4年(2020年)测定生长季(5-9月)氨氧化细菌(AOB)和氨氧化古菌(AOA)丰度, 土壤真菌和细菌组成, 以及土壤微生物生物量碳(MBC)、氮(MBN)含量, 探讨土壤微生物特征对不同氮输入水平的响应机制。研究表明: (1)在2020年生长季的5-9月, 由于土壤温度和水分的差异, 取样日期显著影响氨氧化微生物、细菌和真菌的数量及MBC、MBN含量。(2)氮添加仅显著影响AOB丰度, 对MBC、MBN含量及细菌和真菌丰度的影响均不显著。(3)氮添加对AOB丰度的影响与取样日期有关, 在生长季早期和高峰期(5-8月), 24和32 g·m-2·a-1氮添加显著提高AOB丰度, 在生长季后期(9月)氮添加对AOB丰度的影响不显著。(4)土壤阳离子浓度和土壤pH对AOB丰度的变异具有较高的解释度, 分别解释了土壤微生物特征变异的21.8%和17.2%。由于不同水平氮添加并未显著改变土壤阳离子浓度和土壤pH, 土壤MBC、MBN含量, 细菌和真菌的丰度对氮输入的响应不敏感, 仅在高氮处理显著提高了AOB的丰度, 说明高氮添加可能会促进盐渍化草地土壤氮的转化速率。  相似文献   

4.
5.
Thirty microalgal strains were screened in the laboratory for their biomass productivity and lipid content. Four strains (two marine and two freshwater), selected because robust, highly productive and with a relatively high lipid content, were cultivated under nitrogen deprivation in 0.6-L bubbled tubes. Only the two marine microalgae accumulated lipid under such conditions. One of them, the eustigmatophyte Nannochloropsis sp. F&M-M24, which attained 60% lipid content after nitrogen starvation, was grown in a 20-L Flat Alveolar Panel photobioreactor to study the influence of irradiance and nutrient (nitrogen or phosphorus) deprivation on fatty acid accumulation. Fatty acid content increased with high irradiances (up to 32.5% of dry biomass) and following both nitrogen and phosphorus deprivation (up to about 50%). To evaluate its lipid production potential under natural sunlight, the strain was grown outdoors in 110-L Green Wall Panel photobioreactors under nutrient sufficient and deficient conditions. Lipid productivity increased from 117 mg/L/day in nutrient sufficient media (with an average biomass productivity of 0.36 g/L/day and 32% lipid content) to 204 mg/L/day (with an average biomass productivity of 0.30 g/L/day and more than 60% final lipid content) in nitrogen deprived media. In a two-phase cultivation process (a nutrient sufficient phase to produce the inoculum followed by a nitrogen deprived phase to boost lipid synthesis) the oil production potential could be projected to be more than 90 kg per hectare per day. This is the first report of an increase of both lipid content and areal lipid productivity attained through nutrient deprivation in an outdoor algal culture. The experiments showed that this marine eustigmatophyte has the potential for an annual production of 20 tons of lipid per hectare in the Mediterranean climate and of more than 30 tons of lipid per hectare in sunny tropical areas.  相似文献   

6.
Decompression sickness (DCS; 'the bends') is a disease associated with gas uptake at pressure. The basic pathology and cause are relatively well known to human divers. Breath-hold diving marine mammals were thought to be relatively immune to DCS owing to multiple anatomical, physiological and behavioural adaptations that reduce nitrogen gas (N(2)) loading during dives. However, recent observations have shown that gas bubbles may form and tissue injury may occur in marine mammals under certain circumstances. Gas kinetic models based on measured time-depth profiles further suggest the potential occurrence of high blood and tissue N(2) tensions. We review evidence for gas-bubble incidence in marine mammal tissues and discuss the theory behind gas loading and bubble formation. We suggest that diving mammals vary their physiological responses according to multiple stressors, and that the perspective on marine mammal diving physiology should change from simply minimizing N(2) loading to management of the N(2) load. This suggests several avenues for further study, ranging from the effects of gas bubbles at molecular, cellular and organ function levels, to comparative studies relating the presence/absence of gas bubbles to diving behaviour. Technological advances in imaging and remote instrumentation are likely to advance this field in coming years.  相似文献   

7.
Dissolved inorganic nitrogen (DIN) uptake by marine heterotrophic bacteria has important implications for the global nitrogen (N) and carbon (C) cycles. Bacterial nitrate utilization is more prevalent in the marine environment than traditionally thought, but the taxonomic identity of bacteria that utilize nitrate is difficult to determine using traditional methodologies. (15) N-based DNA stable isotope probing was applied to document direct use of nitrate by heterotrophic bacteria on the West Florida Shelf. Seawater was incubated in the presence of 2 μM (15) N ammonium or (15) N nitrate. DNA was extracted, fractionated via CsCl ultracentrifugation, and each fraction was analyzed by terminal restriction fragment length polymorphism (TRFLP) analysis. TRFs that exhibited density shifts when compared to controls that had not received (15) N amendments were identified by comparison with 16S rRNA gene sequence libraries. Relevant marine proteobacterial lineages, notably Thalassobacter and Alteromonadales, displayed evidence of (15) N incorporation. RT-PCR and functional gene microarray analysis could not demonstrate the expression of the assimilatory nitrate reductase gene, nasA, but mRNA for dissimilatory pathways, i.e. nirS, nirK, narG, nosZ, napA, and nrfA was detected. These data directly implicate several bacterial populations in nitrate uptake, but suggest a more complex pattern for N flow than traditionally implied.  相似文献   

8.
Predator–prey relationships and trophic levels are indicators of community structure, and are important for monitoring ecosystem changes. Mammals colonized the marine environment on seven separate occasions, which resulted in differences in species'' physiology, morphology and behaviour. It is likely that these changes have had a major effect upon predator–prey relationships and trophic position; however, the effect of environment is yet to be clarified. We compiled a dataset, based on the literature, to explore the relationship between body mass, trophic level and predator–prey ratio across terrestrial (n = 51) and marine (n = 56) mammals. We did not find the expected positive relationship between trophic level and body mass, but we did find that marine carnivores sit 1.3 trophic levels higher than terrestrial carnivores. Also, marine mammals are largely carnivorous and have significantly larger predator–prey ratios compared with their terrestrial counterparts. We propose that primary productivity, and its availability, is important for mammalian trophic structure and body size. Also, energy flow and community structure in the marine environment are influenced by differences in energy efficiency and increased food web stability. Enhancing our knowledge of feeding ecology in mammals has the potential to provide insights into the structure and functioning of marine and terrestrial communities.  相似文献   

9.
1. Stable isotope ratios of aquatic invertebrates, aquatic mosses and leaves of riparian plants were used to determine whether marine‐derived nutrients from breeding colonies of the Westland petrel (Procellaria westlandica) were incorporated into the food webs of small streams in New Zealand. 2. The δ15N signatures of all plants and animals examined were higher by 3.6–4.6‰ in small streams draining catchments with petrel colonies than in nearby streams where petrels were absent. δ13C values of leaves from terrestrial plants were also enriched by about 2‰ where petrels were present, but the carbon ratios of aquatic species were depleted in 13C, rather than enriched, suggesting that any marine signal was over‐ridden by isotopic shifts related to photosynthetic fractionation. 3. A high marine‐nitrogen signal was maintained along the 3 km length of Scotchman Creek with the δ15N values of leptophlebiid mayflies and predatory insects ranging from 7.4–9.5 and 9.2–11.9‰, respectively. 4. Most nutrients derived from petrels are likely to be translocated to streams via the soil, which they enter in the form of excreta, spilled food, feathers, dead chicks, and abandoned eggs. However, because changes in δ15N values are brought about by soil processes such as volatilisation of ammonia, nitrification and denitrification, it is difficult to predict the exact isotope signature of nitrogen entering a stream. Tentative estimates of the proportion of marine‐derived nitrogen in stream biota, calculated using a mass‐balance approach, ranged from 28–38%. 5. Our findings indicate that marine nutrients transported inland by seabirds can be incorporated into the food webs of streams. In pre‐human times when there were many more seabird colonies on mainland New Zealand than exist today, marine‐derived nutrients introduced by birds may have had significant effects on nitrogen cycling and the productivity of New Zealand streams.  相似文献   

10.
Nutrients and energy derived from marine autotrophs subsidize shore ecosystems, increasing productivity and affecting food web dynamics and structure. In this study we examined how the inland reach of such inflow effects depends on vectors carrying the marine inflow inland and on landscape structure. We used stable isotopes of carbon and nitrogen to examine the roles of arthropod vectors in carrying marine-derived nutrients inland in two very different shore ecosystems: shore meadows in Sweden with marine inflows of algae and emerging chironomid midges; and sandy beaches and shore dunes in south-western Australia with marine inflows of algae and seagrass. In a colonization experiment, we found that deposited wrack on the beach is quickly colonized by both grazers and predators. However, in both systems we found a larger inland reach of the marine subsidy than could be accounted for by deposited macrophytes on shores alone, and that dipterans and spiders potentially functioned as vectors for the inflow. Our results indicate that marine inflows are important for near-shore terrestrial ecosystems well above the water’s edge, and that this effect is largely due to arthropod vectors (mainly dipterans and spiders) in both low-productivity sandy beach ecosystems at the Indian Ocean coast of Australia, and more productive shore meadows on the Baltic Sea coast of Sweden. Our findings also suggest that the type of vector transporting marine material inland may be as important as the productivity contrast between ecosystems for explaining the degree of marine influence on the terrestrial system.  相似文献   

11.
Competition between marine mammals and fisheries for marine resources-whether real or perceived-has become a major issue for several countries and in international fora. We examined trophic interactions between marine mammals and fisheries based on a resource overlap index, using seven Ecopath models including marine mammal groups. On a global scale, most food consumed by marine mammals consisted of prey types that were not the main target of fisheries. For each ecosystem, the primary production required (PPR) to sustain marine mammals was less than half the PPR to sustain fisheries catches. We also developed an index representing the mean trophic level of marine mammal's consumption (TL(Q)) and compared it with the mean trophic level of fisheries' catches (TL(C)). Our results showed that overall TL(Q) was lower than TL(C) (2.88 versus 3.42). As fisheries increasingly exploit lower-trophic level species, the competition with marine mammals may become more important. We used mixed trophic impact analysis to evaluate indirect trophic effects of marine mammals, and in some cases found beneficial effects on some prey. Finally, we assessed the change in the trophic structure of an ecosystem after a simulated extirpation of marine mammal populations. We found that this lead to alterations in the structure of the ecosystems, and that there was no clear and direct relationship between marine mammals' predation and the potential catch by fisheries. Indeed, total biomass, with no marine mammals in the ecosystem, generally remained surprisingly similar, or even decreased for some species.  相似文献   

12.
中国亚热带主要稻作制农田生态系统的养分平衡   总被引:2,自引:0,他引:2  
傅庆林  孟赐福 《生态学杂志》1994,13(3):53-56,34
中国亚热带主要稻作制农田生态系统的养分平衡傅庆林,孟赐福(浙江省农科院土肥所,杭州310021)NutrientBalanceinFarmlaudEcosystemUnderMajorRice-BasedCroppingSystemsinSubtro...  相似文献   

13.
Community structure and diversity are influenced by patterns of disturbance and input of food. In Antarctica, the marine ecosystem undergoes highly seasonal changes in availability of light and in primary production. Near research stations, organic input from human activities can disturb the regular productivity regime with a consistent input of sewage. McMurdo Sound has both high-productivity and low-productivity habitats, thereby providing an ideal test bed for community recovery dynamics under polar conditions. We used experimental manipulations of the subtidal communities to test the hypotheses that (1) benthic communities respond differently to disturbance from organic enrichment versus burial and (2) community response also varies in areas with different natural patterns of food supply. Both in low- and high-food habitats, the strongest community response was to organic enrichment and resulted in dominance of typical organic-enrichment specialists. In habitats with highly seasonal productivity, community response was predictable and recovery was rapid. In habitats with low productivity, community variability was high and caging treatments suggested that inconsistencies were due to patchy impacts by scavengers. In areas normally subject to regular organic enrichment, either from primary production or from further up the food web (defecation by marine mammals), recovery of benthic communities takes only years even in a polar system. However, a low-productivity regime is as common in near shore habitats around the continent; under these conditions, recovery of benthic communities from disturbance is likely to be much slower and follow a variable ecological trajectory.  相似文献   

14.
Accelerated mass loss from the Greenland ice sheet leads to glacier retreat and an increasing input of glacial meltwater to the fjords and coastal waters around Greenland. These high latitude ecosystems are highly productive and sustain important fisheries, yet it remains uncertain how they will respond to future changes in the Arctic cryosphere. Here we show that marine‐terminating glaciers play a crucial role in sustaining high productivity of the fjord ecosystems. Hydrographic and biogeochemical data from two fjord systems adjacent to the Greenland ice sheet, suggest that marine ecosystem productivity is very differently regulated in fjords influenced by either land‐terminating or marine‐terminating glaciers. Rising subsurface meltwater plumes originating from marine‐terminating glaciers entrain large volumes of ambient deep water to the surface. The resulting upwelling of nutrient‐rich deep water sustains a high phytoplankton productivity throughout summer in the fjord with marine‐terminating glaciers. In contrast, the fjord with only land‐terminating glaciers lack this upwelling mechanism, and is characterized by lower productivity. Data on commercial halibut landings support that coastal regions influenced by large marine‐terminating glaciers have substantially higher marine productivity. These results suggest that a switch from marine‐terminating to land‐terminating glaciers can substantially alter the productivity in the coastal zone around Greenland with potentially large ecological and socio‐economic implications.  相似文献   

15.
Nitrogen limitation on land and in the sea: How can it occur?   总被引:15,自引:0,他引:15  
The widespread occurrence of nitrogen limitation to net primary production in terrestrial and marine ecosystems is something of a puzzle; it would seem that nitrogen fixers should have a substantial competitive advantage wherever nitrogen is limiting, and that their activity in turn should reverse limitation. Nevertheless, there is substantial evidence that nitrogen limits net primary production much of the time in most terrestrial biomes and many marine ecosystems. We examine both how the biogeochemistry of the nitrogen cycle could cause limitation to develop, and how nitrogen limitation could persist as a consequence of processes that prevent or reduce nitrogen fixation. Biogeochemical mechansism that favor nitrogen limitation include:
  • the substantial mobility of nitrogen across ecosystem boundaries, which favors nitogen limitation in the “source” ecosystem — especially where denitrification is important in sediments and soils, or in terrestrial ecosystems where fire is frequent;
  • differences in the biochemistry of nitrogen as opposed to phosphorus (with detrital N mostly carbon-bonded and detrital P mostly ester-bonded), which favor the development of nitrogen limitation where decomposition is slow, and allow the development of a positive feedback from nitrogen limitation to producers, to reduced decomposition of their detritus, and on to reduced nitrogen availability; and
  • other more specialized, but perhaps no less important, processes.
  • A number of mechanisms could keep nitrogen fixation from reversing nitrogen limitation. These include:
  • energetic constraints on the colonization or activity of nitrogen fixers;
  • limitation of nitrogen fixers or fixation by another nutrient (phosphorus, molybdenum, or iron) — which would then represent the ultimate factor limiting net primary production;
  • other physical and ecological mechanisms.
  • The possible importance of these and other processes is discussed for a wide range of terrestrial, freshwater, and marine ecosystems.  相似文献   

    16.
    氮、磷对小新月菱形藻无机碳利用与碳酸酐酶活性的影响   总被引:1,自引:0,他引:1  
    夏建荣  黄瑾 《生态学报》2010,30(15):4085-4092
    在实验室条件下研究了氮磷浓度变化对小新月菱形藻无机碳利用与碳酸酐酶活性的影响,结果显示小新月菱形藻随培养液中氮、磷浓度的升高比生长速率明显提高。低氮浓度导致胞外碳酸酐酶活性丧失,但胞内碳酸酐酶活性依然存在。高氮浓度下胞内、外碳酸酐酶活性均明显升高。胞内碳酸酐酶活性在高磷浓度下明显升高,但胞外碳酸酐酶活性并没有受到磷浓度变化的影响。高氮、磷浓度培养下的小新月菱形藻的最大光合作用速率(Vmax)、对CO2亲和力(K0.5(CO2))和光系统II最大光化学效率(Fv/Fm)均明显提高。以上结果表明小新月菱形藻可以通过改变胞内、外碳酸酐酶活性调节无机碳利用以适应不同氮磷浓度的环境。  相似文献   

    17.
    This study used naturally occurring carbon and nitrogen stable isotopes of teeth to study the diets of marine mammals. The isotopic ratios of nonchemically preserved teeth from eight species of marine mammals, representing 87 individuals that spanned the trophic continuum, were found to reflect nutritional sources. The δ13C signals distinguished animals that lived in waters dominated by different primary producers (e. g., seagrass, kelp, and phytoplankton), and δ15N values indicated the diet and trophic level of the species. This research suggests that isotopic signatures of teeth can be used in dietary studies to show differences and similarities among age classes, genders, geographic locations, and time periods.  相似文献   

    18.
    Stapp P  Polis GA 《Oecologia》2003,134(4):496-504
    Inputs of energy and nutrients from one ecosystem may subsidize consumers in adjacent ones, with significant consequences for local communities and food webs. We used stable isotope and faecal pellet analysis to quantify use of ocean-derived resources by small mammals on islands in the Gulf of California, Mexico. Rodents were live-trapped on grids originating near shore and extending 125-200 m inland to evaluate the extent to which rodents transport marine nutrients inland, and to determine whether marine foods subsidize island populations, permitting higher densities than would be possible based on terrestrial resources alone. Both faeces and stable carbon and nitrogen isotopes revealed that omnivorous mice (Peromyscus maniculatus) consume ocean-derived prey, including littoral and supralittoral invertebrates, and that their diets differed markedly from those of granivorous rodents (Chaetodipus rudinoris). On a small, seabird roosting island, marine prey were important in the diet of mice regardless of their proximity to shore, underscoring the pervasive influence of the ocean on small islands with relatively large coastline area. On a large island, however, consumption of marine foods declined sharply > or =50 m from shore, which suggests that mice are poor conduits of inland movement of energy and nutrients from the sea. Marine resources seemed to act as subsidies for omnivorous rodents: more P. maniculatus were captured near shore than farther inland and there was an inverse relationship between island area and rodent abundance, suggesting that small islands with large amounts of marine inputs support the highest population densities. Patterns of local and island-wide abundance of P. maniculatus are likely the result of several interacting factors, including frustrated dispersal, competition with C. rudinoris, and the absence of predators. We speculate, however, that the availability of marine resources allows P. maniculatus to reach high densities and to persist on small islands in the Gulf despite low and unpredictable terrestrial productivity. Spatial trophic subsidies thus provide a possible mechanistic explanation for the widely reported inverse relationship between population density and island or habitat area.  相似文献   

    19.
    The nitrogen (N) cycle is essentially 'leaky'. The losses of small amounts of nitrate to waters and of ammonia and nitrous oxide to the atmosphere are a part of the global biogeo-chemical N cycle. However, intensive agricultural production, industry and vehicle use have more than doubled the amount of 'reactive' N in the environment, resulting in eutrophication, ecosystem change and health concerns. Research has identified agricultural practices that cause large losses of N and, in some cases, developed solutions. This paper discusses the problems of maintaining productivity while reducing N losses, compares conventional with low input (integrated) and organic farming systems, and discusses wider options. It also looks at the need to integrate studies on N with other environmental impacts, set in the context of the whole farm system, to provide truly sustainable agricultural systems.  相似文献   

    20.
    Spatially separated ecosystems are often linked by nutrient fluxes. Nutrient inputs may be transferred by physical vectors (i.e., wind and water) or by biotic vectors. In this study, we examine the role of green turtles (Chelonia mydas) as biotic transporters of nutrients from marine to terrestrial ecosystems, where they deposit eggs. We compare low and high nest density sites at Tortuguero, Costa Rica, the largest green turtle rookery in the western hemisphere. Four plant species (Costus woodsonii, Hibiscus pernanbucensis, Hymenocallis littoralis, Ipomoea pes‐caprae) were analyzed at both nest density sites for 15N, total carbon, nitrogen, and phosphorus, and vegetation cover. Sand was analyzed for 15N and total nitrogen. Vegetation at high nest density sites had higher total nitrogen, which was correlated with higher δ15N values, suggesting nutrient input from a marine source. The dominant plant species changed between low and high nest density sites, indicating that turtle‐derived nutrients may alter the plant community composition. The trend in δ15N values of sand was similar, although less pronounced than that of the vegetation. Sand may be a poor integrator of nutrient input due to low nutrient adsorption and high rate of leaching. Sea turtles have previously been shown to deposit considerable amounts of nutrients and energy on nesting beaches. In this study, we estimate annual nitrogen and phosphorus contributions at Tortuguero are 507 and 45 kg/km, respectively, and we demonstrate that beach vegetation likely assimilates a portion of these marine‐derived nutrients.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号