首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M K Aalto  H Ronne    S Kernen 《The EMBO journal》1993,12(11):4095-4104
The yeast SEC1 gene encodes a hydrophilic protein that functions at the terminal stage in secretion. We have cloned two yeast genes, SSO1 and SSO2, which in high copy number can suppress sec1 mutations and also mutations in several other late acting SEC genes, such as SEC3, SEC5, SEC9 and SEC15. SSO1 and SSO2 encode small proteins with N-terminal hydrophilic domains and C-terminal hydrophobic tails. The two proteins are 72% identical in sequence and together perform an essential function late in secretion. Sso1p and Sso2p show significant sequence similarity to six other proteins. Two of these, Sed5p and Pep12p, are yeast proteins that function in transport from ER to Golgi and from Golgi to the vacuole, respectively. Also related to Sso1p and Sso2p are three mammalian proteins: epimorphin, syntaxin A/HPC-1 and syntaxin B. A nematode cDNA product also belongs to the new protein family. The new protein family is thus present in a wide variety of eukaryotic cells, where its members function at different stages in vesicular transport.  相似文献   

2.
Laxman S  Tu BP 《PloS one》2011,6(10):e26081

Background

The budding yeast Saccharomyces cerevisiae undergoes differentiation into filamentous-like forms and invades the growth medium as a foraging response to nutrient and environmental stresses. These developmental responses are under the downstream control of effectors regulated by the cAMP/PKA and MAPK pathways. However, the upstream sensors and signals that induce filamentous growth through these signaling pathways are not fully understood. Herein, through a biochemical purification of the yeast TORC1 (Target of Rapamycin Complex 1), we identify several proteins implicated in yeast filamentous growth that directly associate with the TORC1 and investigate their roles in nitrogen starvation-dependent or independent differentiation in yeast.

Methodology

We isolated the endogenous TORC1 by purifying tagged, endogenous Kog1p, and identified associated proteins by mass spectrometry. We established invasive and pseudohyphal growth conditions in two S. cerevisiae genetic backgrounds (Σ1278b and CEN.PK). Using wild type and mutant strains from these genetic backgrounds, we investigated the roles of TORC1 and associated proteins in nitrogen starvation-dependent diploid pseudohyphal growth as well as nitrogen starvation-independent haploid invasive growth.

Conclusions

We show that several proteins identified as associated with the TORC1 are important for nitrogen starvation-dependent diploid pseudohyphal growth. In contrast, invasive growth due to other nutritional stresses was generally not affected in mutant strains of these TORC1-associated proteins. Our studies suggest a role for TORC1 in yeast differentiation upon nitrogen starvation. Our studies also suggest the CEN.PK strain background of S. cerevisiae may be particularly useful for investigations of nitrogen starvation-induced diploid pseudohyphal growth.  相似文献   

3.
4.
Saccharomyces cerevisiae contains two SNAP25 paralogues, Sec9 and Spo20, which mediate vesicle fusion at the plasma membrane and the prospore membrane, respectively. Fusion at the prospore membrane is sensitive to perturbation of the central ionic layer of the SNARE complex. Mutation of the central glutamine of the t-SNARE Sso1 impaired sporulation, but does not affect vegetative growth. Suppression of the sporulation defect of an sso1 mutant requires expression of a chimeric form of Spo20 carrying the SNARE helices of Sec9. Mutation of two residues in one SNARE domain of Spo20 to match those in Sec9 created a form of Spo20 that restores sporulation in the presence of the sso1 mutant and can replace SEC9 in vegetative cells. This mutant form of Spo20 displayed enhanced activity in in vitro fusion assays, as well as tighter binding to Sso1 and Snc2. These results demonstrate that differences within the SNARE helices can discriminate between closely related SNAREs for function in vivo.  相似文献   

5.
Exocytosis in Saccharomyces cerevisiae requires the specific interaction between the plasma membrane t-SNARE complex (Sso1/2p;Sec9p)and a vesicular v-SNARE (Snc1/2p). While SNARE proteins drive membrane fusion, many aspects of SNARE assembly and regulation are ill defined. Plasma membrane syntaxin homologs (including Sso1p) contain a highly charged juxtamembrane region between the transmembrane helix and the "SNARE domain" or core complex domain. We examined this region in vitro and in vivo by targeted sequence modification, including insertions and replacements. These modified Sso1 proteins were expressed as the sole copy of Sso in S. cerevisiae and examined for viability. We found that mutant Sso1 proteins with insertions or duplications show limited function, whereas replacement of as few as three amino acids preceding the transmembrane domain resulted in a nonfunctional SNARE in vivo. Viability is also maintained when two proline residues are inserted in the juxtamembrane of Sso1p, suggesting that helical continuity between the transmembrane domain and the core coiled-coil domain is not absolutely required. Analysis of these mutations in vitro utilizing a reconstituted fusion assay illustrates that the mutant Sso1 proteins are only moderately impaired in fusion. These results suggest that the sequence of the juxtamembrane region of Sso1p is vital for function in vivo, independent of the ability of these proteins to direct membrane fusion.  相似文献   

6.
Upon nutrient limitation, budding yeasts like Saccharomyces cerevisiae can be induced to adopt alternate filament-like growth patterns called diploid pseudohyphal or invasive haploid growth. Here, we report a novel constitutive pseudohyphal growth state, sharing some characteristics with classic forms of filamentous growth, but differing in crucial aspects of morphology, growth conditions and genetic regulation. The constitutive pseudohyphal state is observed in fus3 mutants containing various septin assembly defects, which we refer to as sadF growth (septin assembly defect induced filamentation) to distinguish it from classic filamentation pathways. Similar to other filamentous states, sadF cultures comprise aggregated chains of highly elongated cells. Unlike the classic pathways, sadF growth occurs in liquid rich media, requiring neither starvation nor the key pseudohyphal proteins, Flo8p and Flo11p. Moreover sadF growth occurs in haploid strains of S288C genetic background, which normally cannot undergo pseudohyphal growth. The sadF cells undergo highly polarized bud growth during prolonged G2 delays dependent on Swe1p. They contain septin structures distinct from classical pseudo-hyphae and FM4-64 labeling at actively growing tips similar to the Spitzenkörper observed in true hyphal growth. The sadF growth state is induced by synergism between Kss1p-dependent signaling and septin assembly defects; mild disruption of mitotic septins activates Kss1p-dependent gene expression, which exacerbates the septin defects, leading to hyper-activation of Kss1p. Unlike classical pseudo-hyphal growth, sadF signaling requires Ste5, Ste4 and Ste18, the scaffold protein and G-protein β and γ subunits from the pheromone response pathway, respectively. A swe1 mutation largely abolished signaling, breaking the positive feedback that leads to amplification of sadF signaling. Taken together, our findings show that budding yeast can access a stable constitutive pseudohyphal growth state with very few genetic and regulatory changes.  相似文献   

7.
8.

Background

Septins, novel cytoskeletal proteins, form rings at the bases of emerging round buds in yeasts and at the bases of emerging elongated hyphal initials in filamentous fungi.

Methodology/Principal Findings

When introduced into the yeast Saccharomyces cerevisiae, the septin AspC from the filamentous fungus Aspergillus nidulans induced highly elongated atypical pseudohyphae and spore-producing structures similar to those of hyphal fungi. AspC induced atypical pseudohyphae when S. cerevisiae pseudohyphal or haploid invasive genes were deleted, but not when the CDC10 septin gene was deleted. AspC also induced atypical pseudohyphae when S. cerevisiae genes encoding Cdc12-interacting proteins Bem4, Cla4, Gic1 and Gic2 were deleted, but not when BNI1, a Cdc12-interacting formin gene, was deleted. AspC localized to bud and pseudohypha necks, while its S. cerevisiae ortholog, Cdc12, localized only to bud necks.

Conclusions/Significance

Our results suggest that AspC competes with Cdc12 for incorporation into the yeast septin scaffold and once there alters cell shape by altering interactions with the formin Bni1. That introduction of the A. nidulans septin AspC into S. cerevisiae induces a shift from formation of buds to formation of atypical pseudohyphae suggests that septins play an important role in the morphological plasticity of fungi.  相似文献   

9.

Background

Phosphatidic acid (PA) is a key regulated intermediate and precursor for de novo biosynthesis of all glycerophospholipids. PA can be synthesized through the acylation of lysophosphatidic acid (LPA) by 1-acyl-3-phosphate acyltransferase (also called lysophosphatidic acid acyltransferase, LPAAT). Recent findings have substantiated the essential roles of acyltransferases in various biological functions.

Methodologies/Principal Findings

We used a flow-injection-based lipidomic approach with ∼200 multiple reaction monitoring (MRM) transitions to pre-screen fatty acyl composition of phospholipids in the yeast Saccharomyces cerevisiae mutants. Dramatic changes were observed in fatty acyl composition in some yeast mutants including Slc1p, a well-characterized LPAAT, and Cst26p, a recently characterized phosphatidylinositol stearoyl incorporating 1 protein and putative LPAAT in S. cerevisiae. A comprehensive high-performance liquid chromatography–based multi-stage MRM approach (more than 500 MRM transitions) was developed and further applied to quantify individual phospholipids in both strains to confirm these changes. Our data suggest potential fatty acyl substrates as well as fatty acyls that compensate for defects in both Cst26p and Slc1p mutants. These results were consistent with those from a non-radioactive LPAAT enzymatic assay using C17-LPA and acyl-CoA donors as substrates.

Conclusions

We found that Slc1p utilized fatty acid (FA) 18:1 and FA 14:0 as substrates to synthesize corresponding PAs; moreover, it was probably the only acyltransferase responsible for acylation of saturated short-chain fatty acyls (12:0 and 10:0) in S. cerevisiae. We also identified FA 18:0, FA 16:0, FA 14:0 and exogenous FA 17:0 as preferred substrates for Cst26p because transformation with a GFP-tagged CST26 restored the phospholipid profile of a CST26 mutant. Our current findings expand the enzymes and existing scope of acyl-CoA donors for glycerophospholipid biosynthesis.  相似文献   

10.
11.
Additional copies of the centromeric DNA (CEN) region induce pseudohyphal growth in a dimorphic yeast, Candida maltosa (T. Nakazawa, T. Motoyama, H. Horiuchi, A. Ohta, and M. Takagi, J. Bacteriol. 179:5030–5036, 1997). To understand the mechanism of this transition, we screened the gene library of C. maltosa for sequences which could suppress this morphological change. As a result, we isolated the 5′ end of a new gene, EPD1 (for essential for pseudohyphal development), and then cloned the entire gene. The predicted amino acid sequence of Epd1p was highly homologous to those of Ggp1/Gas1/Cwh52p, a glycosylphosphatidylinositol-anchored protein of Saccharomyces cerevisiae, and Phr1p and Phr2p of Candida albicans. The expression of EPD1 was moderately regulated by environmental pH. A homozygous EPD1 null mutant showed some morphological defects and reduction in growth rate and reduced levels of both alkali-soluble and alkali-insoluble β-glucans. Moreover, the mutant could not undergo the transition from yeast form to pseudohyphal form induced by additional copies of the CEN sequence at pH 4 or by n-hexadecane at pH 4 or pH 7, suggesting that EPD1 is not essential for yeast form growth but is essential for transition to the pseudohyphal form. Overexpression of the amino-terminal part of Epd1p under the control of the GAL promoter suppressed the pseudohyphal development induced by additional copies of the CEN sequence, whereas overexpression of the full-length EPD1 did not. This result and the initial isolation of the 5′ end of EPD1 as a suppressor of the pseudohyphal growth induced by the CEN sequence suggest that the amino-terminal part of Epd1p may have a dominant-negative effect on the functions of Epd1p in the pseudohyphal growth induced by the CEN sequence.  相似文献   

12.
The soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) family of proteins is required for eukaryotic intracellular membrane fusions. Vesicle fusion for formation of the prospore membrane (PSM), a membrane compartment that forms de novo during yeast sporulation, requires SNARE function, phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2], and the activity of the phospholipase D (PLD) Spo14p, which generates phosphatidic acid (PA). The SNARE syntaxin Sso1p is essential for PSM production while the functionally redundant homolog in vegetative growth, Sso2p, is not. We demonstrate that Sso1p and Sso2p bind similarly in vitro to PA or phosphoinositide-containing liposomes and that the conserved SNARE (H3) domain largely mediates PA-binding. Both green fluorescent protein-Sso fusion proteins localize to the developing PSM in wild-type cells and to the spindle pole body in spo14Δ cells induced to sporulate. However, the autoregulatory region of Sso1p binds PI(4,5)P2-containing liposomes in vitro with a greater ability than the equivalent region of Sso2p. Overexpression of the phosphatidylinositol-4-phosphate 5-kinase MSS4 in sso1Δ cells induced to sporulate stimulates PSM production; PLD activity is not increased under these conditions, indicating that PI(4,5)P2 has roles in addition to stimulating PLD in PSM formation. These data suggest that PLD-generated PA and PI(4,5)P2 collaborate at multiple levels to promote SNARE-mediated fusion for PSM formation.The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family of proteins is required for the fusion of vesicles to target membranes in eukaryotic cells (53). The process of SNARE-mediated fusion is both structurally and mechanistically similar in different intracellular transport pathways and is evolutionarily conserved from yeast to human (18, 31, 34). In vitro experiments demonstrated that SNAREs have the ability to effect fusions of liposomes in the absence of other components, indicating that these proteins directly mediate the fusion event (56). SNAREs can be broadly categorized as either vesicle SNAREs (v-SNAREs) or target membrane SNAREs (t-SNAREs), respectively. The interaction of SNAREs on apposed membranes can overcome the energy barrier generated by charged headgroups of lipids comprising the bilayers. As an incoming vesicle approaches its target membrane, the v-SNAREs and t-SNAREs assemble via their SNARE domains into a four-helix bundle termed a SNAREpin, bringing the two bilayers into closer proximity (3, 55, 56). The outer membrane layers of both the vesicle and target membrane mix, forming a hemifusion intermediate before full fusion of the membranes occurs (23, 24, 29, 58).The helices comprising the SNAREpin are supplied by three different SNARE subfamilies. Two of these subfamily members, syntaxin and SNAP-25, are t-SNAREs; the former contributes one helix while the latter contributes two helices (16). The syntaxin and SNAP-25 homologs heterodimerize to form the t-SNARE complex before the trans-interaction with the helix of vesicle-associated membrane protein/synaptobrevin v-SNARE (42). Discrete intracellular fusion events are mediated by SNAREpins comprising different constituent syntaxin, SNAP-25, and vesicle-associated membrane protein homologs (18, 53).In addition to SNAREs, lipids facilitate membrane fusion events for both membrane curvature induction required for procession through intermediate states of fusion and direct regulation of SNARE molecules (32, 33). Cone-shaped lipids such as diacylglycerol and phosphatidic acid (PA) induce negative (concave) curvature while inverted cone shapes, such as lysophosphatidic acid (LPA), have the opposite effect (26, 27). The assembly of SNARE complexes requires correct lipid composition at the fusion site; addition of inverted cone-shaped lipids antagonized in vitro SNARE complex assembly (35). Recent studies have shown that phosphatidylinositides also play roles in SNARE-mediated fusions. Phosphatidylinositol-3-phosphate [PI(3)P] interacts with the Saccharomyces cerevisiae SNARE Vam7p via its phox homology domain and appears to facilitate targeting to the vacuole (15). Additionally, phosphoinositides increased the rates of in vitro fusion of proteoliposomes that approximated physiological protein and lipids in vivo (36). Phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] was shown to bind to the juxtamembrane region of syntaxin-1 in PC12 cells and has both stimulatory and inhibitory effects on in vitro fusion rates (20).The activity of the lipid-modifying enzyme phospholipase D (PLD) also appears to be important for vesicle fusions. PLD catalyzes the hydrolysis of phosphatidylcholine (PC) to PA in a PI(4,5)P2-dependent manner (22, 49). In S. cerevisiae, PLD activity is required for the de novo formation of a novel compartment, the prospore membrane (PSM), during sporulation (48). Vesicles trafficked from the Golgi and endosomal compartments dock at the spindle pole body (SPB) and participate in SNARE-mediated fusions for PSM formation (38, 40, 41). Cells induced to sporulate that lack the yeast PLD Spo14p show docked but unfused vesicles at the SPB (40, 44). Interestingly, cells lacking Sso1p, a syntaxin functionally redundant with Sso2p at the plasma membrane (PM), display a similar phenotype while sso2Δ cells display no sporulation defect (2, 21, 40). The specific requirement for Sso1p in sporulation is not fully understood although the Sso1p autoregulatory Habc motif is important (43).In this study, we demonstrate that Sso1p acts downstream of Spo14p (PLD)-generated PA during PSM formation. Sso1p and Sso2p bind PA and additional phosphoinositide species; PA binding is mediated by the conserved H3 motif. Additionally, the Sso1p Habc domain shows a greater ability to interact with PIP2-containing liposomes in vitro than the equivalent region of Sso2p. Overexpression of the PI(4)P 5-kinase Mss4p results in PSM formation in sso1Δ cells induced to sporulate. Together, these data indicate that both PA and PI(4,5)P2 are required for efficient fusion and furthermore suggest a novel role for PI(4,5)P2 in the regulation of specialized SNARE fusion events.  相似文献   

13.
The Sec1/Munc18 protein family members perform an essential, albeit poorly understood, function in association with soluble n-ethylmaleimide sensitive factor adaptor protein receptor (SNARE) complexes in membrane fusion. The Saccharomyces cerevisiae Sec1p has a C-terminal tail that is missing in its mammalian homologues. Here we show that deletion of the Sec1p tail (amino acids 658-724) renders cells temperature sensitive for growth, reduces sporulation efficiency, causes a secretion defect, and abolishes Sec1p-SNARE component coimmunoprecipitation. The results show that the Sec1p tail binds preferentially ternary Sso1p-Sec9p-Snc2p complexes and it enhances ternary SNARE complex formation in vitro. The bimolecular fluorescence complementation (BiFC) assay results suggest that, in the SNARE-deficient sso2-1 Δsso1 cells, Mso1p, a Sec1p binding protein, helps to target Sec1p(1-657) lacking the C-terminal tail to the sites of secretion. The results suggest that the Mso1p C terminus is important for Sec1p(1-657) targeting. We show that, in addition to Sec1p, Mso1p can bind the Rab-GTPase Sec4p in vitro. The BiFC results suggest that Mso1p acts in close association with Sec4p on intracellular membranes in the bud. This association depends on the Sec4p guanine nucleotide exchange factor Sec2p. Our results reveal a novel binding mode between the Sec1p C-terminal tail and the SNARE complex, and suggest a role for Mso1p as an effector of Sec4p.  相似文献   

14.

Background  

In Saccharomyces cerevisiae, nutrient limitation stimulates diploid cells to undergo DNA replication and meiosis, followed by the formation of four haploid spores. Septins are a family of proteins that assemble a ring structure at the mother-daughter neck during vegetative growth, where they control cytokinesis. In sporulating cells, the septin ring disassembles and septins relocalize to the prospore membrane.  相似文献   

15.

Background

The S. cerevisiae α-factor receptor, Ste2p, is a G-protein coupled receptor that plays key roles in yeast signaling and mating. Oligomerization of Ste2p has previously been shown to be important for intracellular trafficking, receptor processing and endocytosis. However the role of ligand in receptor oligomerization remains enigmatic.

Methods

Using functional recombinant forms of purified Ste2p, atomic force microscopy, dynamic light scattering and chemical crosslinking are applied to investigate the role of ligand in Ste2p oligomerization.

Results

Atomic force microscopy images indicate a molecular height for recombinant Ste2p in the presence of α-factor nearly double that of Ste2p alone. This observation is supported by complementary dynamic light scattering measurements which indicate a ligand-induced increase in the polydispersity of the Ste2p hydrodynamic radius. Finally, chemical cross-linking of HEK293 plasma membranes presenting recombinant Ste2p indicates α-factor induced stabilization of the dimeric form and higher order oligomeric forms of the receptor upon SDS-PAGE analysis.

Conclusions

α-factor induces oligomerization of Ste2p in vitro and in membrane.

General significance

These results provide additional evidence of a possible role for ligand in mediation of Ste2p oligomerization in vivo.  相似文献   

16.
17.

Background

The evolutionarily conserved Ccr4-Not and Bur1/2 kinase complexes are functionally related in Saccharomyces cerevisiae. In this study, we further explore the relationship between the subunits Not4p and Bur2p.

Methodology/Principal Findings

First, we investigated the presence of post-translational modifications on the Ccr4-Not complex. Using mass spectrometry analyses we identified several SP/TP phosphorylation sites on its Not4p, Not1p and Caf1p subunits. Secondly, the influence of Not4p phosphorylation on global H3K4 tri-methylation status was examined by immunoblotting. This histone mark is severely diminished in the absence of Not4p or of Bur2p, but did not require the five identified Not4p phosphorylation sites. Thirdly, we found that Not4p phosphorylation is not affected by the kinase-defective bur1-23 mutant. Finally, phenotypic analyses of the Not4p phosphomutant (not4S/T5A) and bur2Δ strains showed overlapping sensitivities to drugs that abolish cellular stress responses. The double-mutant not4S/T5A and bur2Δ strain even revealed enhanced phenotypes, indicating that phosphorylation of Not4p and BUR2 are active in parallel pathways for drug tolerance.

Conclusions

Not4p is a phospho-protein with five identified phosphorylation sites that are likely targets of a cyclin-dependent kinase(s) other than the Bur1/2p complex. Not4p phosphorylation on the five Not4 S/T sites is not required for global H3K4 tri-methylation. In contrast, Not4p phosphorylation is involved in tolerance to cellular stresses and acts in pathways parallel to BUR2 to affect stress responses in Saccharomyces cerevisiae.  相似文献   

18.

Background

Hif1p is an H3/H4-specific histone chaperone that associates with the nuclear form of the Hat1p/Hat2p complex (NuB4 complex) in the yeast Saccharomyces cerevisiae. While not capable of depositing histones onto DNA on its own, Hif1p can act in conjunction with a yeast cytosolic extract to assemble nucleosomes onto a relaxed circular plasmid.

Results

To identify the factor(s) that function with Hif1p to carry out chromatin assembly, multiple steps of column chromatography were carried out to fractionate the yeast cytosolic extract. Analysis of partially purified fractions indicated that Hif1p-dependent chromatin assembly activity resided in RNA rather than protein. Fractionation of isolated RNA indicated that the chromatin assembly activity did not simply purify with bulk RNA. In addition, the RNA-mediated chromatin assembly activity was blocked by mutations in the human homolog of Hif1p, sNASP, that prevent the association of this histone chaperone with histone H3 and H4 without altering its electrostatic properties.

Conclusions

These results suggest that specific RNA species may function in concert with histone chaperones to assemble chromatin.  相似文献   

19.
We have engineered pH sensitive binding proteins for the Fc portion of human immunoglobulin G (hIgG) (hFc) using two different strategies – histidine scanning and random mutagenesis. We obtained an hFc-binding protein, Sso7d-hFc, through mutagenesis of the Sso7d protein from the hyperthermophilic archaeon Sulfolobus solfataricus; Sso7d-hFc was isolated from a combinatorial library of Sso7d mutants using yeast surface display. Subsequently, we identified a pH sensitive mutant, Sso7d-his-hFc, through systematic evaluation of Sso7d-hFc mutants containing single histidine substitutions. In parallel, we also developed a yeast display screening strategy to isolate a different pH sensitive hFc binder, Sso7d-ev-hFc, from a library of mutants obtained by random mutagenesis of a pool of hFc binders. In contrast to Sso7d-hFc, both Sso7d-his-hFc and Sso7d-ev-hFc have a higher binding affinity for hFc at pH 7.4 than at pH 4.5. The Sso7d-mutant hFc binders can be recombinantly expressed at high yield in E. coli and are monomeric in solution. They bind an epitope in the CH3 domain of hFc that has high sequence homology in all four hIgG isotypes (hIgG1–4), and recognize hIgG1–4 as well as deglycosylated hIgG in western blotting assays. pH sensitive hFc binders are attractive candidates for use in chromatography, to achieve elution of IgG under milder pH conditions. However, the surface density of immobilized hFc binders, as well as the avidity effect arising from the multivalent interaction of dimeric hFc with the capture surface, influences the pH dependence of dissociation from the capture surface. Therefore, further studies are needed to evaluate if the Sso7d mutants identified in this study are indeed useful as affinity ligands in chromatography.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号