首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmodium falciparum is a protozoan parasite responsible for the most severe forms of human malaria. All the clinical symptoms and pathological changes seen during human infection are caused by the asexual blood stages of Plasmodium. Within host red blood cells, the parasite undergoes enormous developmental changes during its maturation. In order to analyse the expression of genes during intraerythrocytic development, DNA microarrays were constructed and probed with stage-specific cDNA. Developmental upregulation of specific mRNAs was found to cluster into functional groups and revealed a co-ordinated programme of gene expression. Those involved in protein synthesis (ribosomal proteins, translation factors) peaked early in development, followed by those involved in metabolism, most dramatically glycolysis genes. Adhesion/invasion genes were turned on later in the maturation process. At the end of intraerythrocytic development (late schizogony), there was a general shut-off of gene expression, although a small set of genes, including a number of protein kinases, were turned on at this stage. Nearly all genes showed some regulation over the course of development. A handful of genes remained constant and should be useful for normalizing mRNA levels between stages. These data will facilitate functional analysis of the P. falciparum genome and will help to identify genes with a critical role in parasite progression and multiplication in the human host.  相似文献   

2.
In triacylglycerol (TAG)-accumulating organisms, the physiological roles of diacylglycerol acyltransferase (DGAT), a principal enzyme in the major biosynthetic pathway for TAG, appear to be diverse. Apicomplexan parasite, Plasmodium falciparum, shows unique features in TAG metabolism and trafficking during intraerythrocytic development, and unlike most eukaryotes, only one open reading frame (ORF) encoding a candidate DGAT could be found in its genome. However, whether this candidate ORF encodes P. falciparum DGAT and its physiological relevance have not been assessed. Here, we demonstrate that the ORF is transcribed as a approximately 3.6 kb single mRNA throughout intraerythrocytic development, markedly elevated at trophozoite, schizont, and segmented schizont, and indeed encodes a protein exhibiting DGAT activity. Further, we provide evidence that the parasite in which the ORF was disrupted via double crossover recombination cannot be enriched, implying a fundamental role of PfDGAT in intraerythrocytic proliferation.  相似文献   

3.
4.
Malaria parasites in human hosts depend on glycolysis for most of their energy production, and the mitochondrion of the intraerythrocytic form is acristate. Although the genes for all tricarboxylic acid (TCA) cycle members are found in the parasite genome, the presence of a functional TCA cycle in the intraerythrocytic stage is still controversial. To elucidate the physiological role of Plasmodium falciparum mitochondrial complex II (succinate-ubiquinone reductase (SQR) or succinate dehydrogenase (SDH)) in the TCA cycle, the gene for the flavoprotein subunit (Fp) of the enzyme, pfsdha (P.falciparum gene for SDH subunit A, PlasmoDB ID: PF3D7_1034400) was disrupted. SDH is a well-known marker enzyme for mitochondria. In the pfsdha disruptants, Fp mRNA and polypeptides were decreased, and neither SQR nor SDH activity of complex II was detected. The suppression of complex II caused growth retardation of the intraerythrocytic forms, suggesting that complex II contributes to intraerythrocytic parasite growth, although it is not essential for survival. The growth retardation in the pfsdha disruptant was rescued by the addition of succinate, but not by fumarate. This indicates that complex II functions as a quinol-fumarate reductase (QFR) to form succinate from fumarate in the intraerythrocytic parasite.  相似文献   

5.
A number of cyclosporins, including certain non-immunosuppressive ones, are potent inhibitors of the intraerythrocytic growth of the human malarial parasite Plasmodium falciparum. The major cyclosporin-binding proteins of P. falciparum were investigated by affinity chromatography on cyclosporin-Affigel followed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, Western blotting, and peptide mass fingerprinting. The two bands obtained on gels were shown to correspond to cyclophilins, PfCyP-19A (formerly PfCyP-19) and PfCyP-19B, whose genes had been characterised previously. PfCyP-19B was an abundant protein of intraerythrocytic P. falciparum (up to 0.5% of parasite protein) that was present in the highest amounts in schizont-stage parasites. Unexpectedly, given its apparent signal sequence, it was located primarily in the cytosol of the parasite. The peptidyl-prolyl cis-trans isomerase activity of recombinant PfCyP-19B had the same profile of susceptibility to cyclosporin derivatives as the bulk isomerase activity of crude P. falciparum extracts. The binding of cyclosporins to cyclophilins may be relevant to the mechanism of action of the drug in the parasite.  相似文献   

6.
Molecular aspects of malaria pathogenesis   总被引:4,自引:0,他引:4  
  相似文献   

7.
8.
9.
Coordinated regulation of gene expression is a hallmark of the Plasmodium falciparum asexual blood-stage development cycle. We report that carbon catabolite repressor protein 4 (CCR4)-associated factor 1 (CAF1) is critical in regulating more than 1,000 genes during malaria parasites' intraerythrocytic stages, especially egress and invasion proteins. CAF1 knockout results in mistimed expression, aberrant accumulation and localization of proteins involved in parasite egress, and invasion of new host cells, leading to premature release of predominantly half-finished merozoites, drastically reducing the intraerythrocytic growth rate of the parasite. This study demonstrates that CAF1 of the CCR4-Not complex is a significant gene regulatory mechanism needed for Plasmodium development within the human host.  相似文献   

10.
Plasmodium falciparum, the causative agent of the most lethal form of human malaria, is incapable of de novo purine synthesis, and thus, purine acquisition from the host is an indispensable nutritional requirement. This purine salvage process is initiated by the transport of preformed purines into the parasite. We have identified a gene encoding a nucleoside transporter from P. falciparum, PfNT1, and analyzed its function and expression during intraerythrocytic parasite development. PfNT1 predicts a polypeptide of 422 amino acids with 11 transmembrane domains that is homologous to other members of the equilibrative nucleoside transporter family. Southern analysis and BLAST searching of The Institute for Genomic Research (TIGR) malaria data base indicate that PfNT1 is a single copy gene located on chromosome 14. Northern analysis of RNA from intraerythrocytic stages of the parasite demonstrates that PfNT1 is expressed throughout the asexual life cycle but is significantly elevated during the early trophozoite stage. Functional expression of PfNT1 in Xenopus laevis oocytes significantly increases their ability to take up naturally occurring D-adenosine (K(m) = 13.2 microM) and D-inosine (K(m) = 253 microM). Significantly, PfNT1, unlike the mammalian nucleoside transporters, also has the capacity to transport the stereoisomer L-adenosine (K(m) > 500 microM). Inhibition studies with a battery of purine and pyrimidine nucleosides and bases as well as their analogs indicate that PfNT1 exhibits a broad substrate specificity for purine and pyrimidine nucleosides. These data provide compelling evidence that PfNT1 encodes a functional purine/pyrimidine nucleoside transporter whose expression is strongly developmentally regulated in the asexual stages of the P. falciparum life cycle. Moreover, the unusual ability to transport L-adenosine and the vital contribution of purine transport to parasite survival makes PfNT1 an attractive target for therapeutic evaluation.  相似文献   

11.
12.
Lipoate is an essential cofactor for key enzymes of oxidative metabolism. Plasmodium falciparum possesses genes for lipoate biosynthesis and scavenging, but it is not known if these pathways are functional, nor what their relative contribution to the survival of intraerythrocytic parasites might be. We detected in parasite extracts four lipoylated proteins, one of which cross-reacted with antibodies against the E2 subunit of apicoplast-localized pyruvate dehydrogenase (PDH). Two highly divergent parasite lipoate ligase A homologues (LplA), LipL1 (previously identified as LplA) and LipL2, restored lipoate scavenging in lipoylation-deficient bacteria, indicating that Plasmodium has functional lipoate-scavenging enzymes. Accordingly, intraerythrocytic parasites scavenged radiolabelled lipoate and incorporated it into three proteins likely to be mitochondrial. Scavenged lipoate was not attached to the PDH E2 subunit, implying that lipoate scavenging drives mitochondrial lipoylation, while apicoplast lipoylation relies on biosynthesis. The lipoate analogue 8-bromo-octanoate inhibited LipL1 activity and arrested P. falciparum in vitro growth, decreasing the incorporation of radiolabelled lipoate into parasite proteins. Furthermore, growth inhibition was prevented by lipoate addition in the medium. These results are consistent with 8-bromo-octanoate specifically interfering with lipoate scavenging. Our study suggests that lipoate metabolic pathways are not redundant, and that lipoate scavenging is critical for Plasmodium intraerythrocytic survival.  相似文献   

13.
The 96 tR antigen is a heat stable protein produced during the late stages of the intraerythrocytic development of the malaria parasite Plasmodium falciparum and is released into the culture supernatant or the sera of infected patients at the time of schizont rupture. This antigen, identified as a putative protective antigen, was shown to be identical to the glycophorin-binding protein GBP 130 (Perkins 1988, Bonnefoy et al. 1988). We report here that the gene contains a small undescribed intervening sequence located immediately after the sequence coding for the signal sequence. This shows that in P. falciparum, all the genes described so far coding for proteins exported outside the parasitophorous vacuole share a common organization.  相似文献   

14.
15.
16.
17.
Resistance of Plasmodium falciparum to chloroquine hinders malaria control in endemic areas. Current hypotheses on the action mechanism of chloroquine evoke its ultimate interference with the parasite's oxidative defence systems. Through carbonyl derivatization by 2,4-dinitrophenylhydrazine and proteomics, we compared oxidatively modified proteins across the parasite's intraerythrocytic stages in untreated and transiently IC(50) chloroquine-treated cultures of the chloroquine-resistant P. falciparum strain Dd2. Functional plasmodial protein groups found to be most oxidatively damaged were among those central to the parasite's physiological processes, including protein folding, proteolysis, energy metabolism, signal transduction, and pathogenesis. While an almost constant number of oxidized proteins was detected across the P. falciparum life cycle, chloroquine treatment led to increases in both the extent of protein oxidation and the number of proteins oxidized as the intraerythrocytic cycle progressed to mature stages. Our data provide new insights into early molecular effects produced by chloroquine in the parasite, as well as into the normal protein-oxidation modifications along the parasite cycle. Oxidized proteins involved in the particular parasite drug-response suggest that chloroquine causes specific oxidative stress, sharing common features with eukaryotic cells. Targeting these processes might provide ways of combating chloroquine-resistance and developing new antimalarial drugs.  相似文献   

18.
Rhodamine 123 (Rh123) has been used to probe the functional status of the mitochondrion present within the asexual, intraerythrocytic stages of the malarial parasite Plasmodium falciparum. This cationic fluorescent dye accumulates specifically in negatively charged cellular compartments, such as mitochondria. Using epifluorescence microscopy the development of what appears to be a single mitochondrion has been followed through the intraerythrocytic cycle. Mitochondrial development progresses from a fine thread-like organelle that becomes longer and eventually branched. Each daughter merozoite receives a branch or piece of the parent organelle. Cytoplasmic Rh123 accumulation was also observed, indicating that there exists a transmembrane potential across the outer plasma and parasitophorous vacuolar membranes of the parasite. The effects of uncouplers (protonophores), ionophores, and inhibitors were examined by monitoring Rh123 accumulation and retention. Our results demonstrate that the mitochondrion of P. falciparum actively maintains a high transmembrane potential, the function of which is as yet undefined.  相似文献   

19.
The human malaria parasite Plasmodium falciparum utilises a mechanism of antigenic variation to avoid the antibody response of its human host and thereby generates a long-term, persistent infection. This process predominantly results from systematic changes in expression of the primary erythrocyte surface antigen, a parasite-produced protein called PfEMP1 that is encoded by a repertoire of over 60 var genes in the P. falciparum genome. var genes exhibit extensive sequence diversity, both within a single parasite's genome as well as between different parasite isolates, and thus provide a large repertoire of antigenic determinants to be alternately displayed over the course of an infection. Whilst significant work has recently been published documenting the extreme level of diversity displayed by var genes found in natural parasite populations, little work has been done regarding the mechanisms that lead to sequence diversification and heterogeneity within var genes. In the course of producing transgenic lines from the original NF54 parasite isolate, we cloned and characterised a parasite line, termed E5, which is closely related to but distinct from 3D7, the parasite used for the P. falciparum genome nucleotide sequencing project. Analysis of the E5 var gene repertoire, as well as that of the surrounding rif and stevor multi-copy gene families, identified examples of frequent recombination events within these gene families, including an example of a duplicative transposition which indicates that recombination events play a significant role in the generation of diversity within the antigen encoding genes of P. falciparum.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号