首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary. The polyamines spermidine and spermine have been hypothesized to possess different functions in the protection of DNA from reactive oxygen species. The growth and survival of mouse fibroblasts unable to synthesize spermine were compared to their normal counterparts in their native and polyamine-depleted states in response to oxidative stress. The results of these studies suggest that when present at normal or supraphysiological concentrations, either spermidine or spermine can protect cells from reactive oxygen species. However, when polyamine pools are pharmacologically manipulated to produce cells with low levels of predominately spermine or spermidine, spermine appears to be more effective. Importantly, when cells are depleted of both glutathione and endogenous polyamines, they exhibit increased sensitivity to hydrogen peroxide as compared to glutathione depletion alone, suggesting that polyamines not only play a role in protecting cells from oxidative stress but this role is distinct from that played by glutathione.  相似文献   

2.
The ability of estrogens to protect against DNA damage induced by either hydrogen peroxide or arachidonic acid alone or in combination with Cu2+ was investigated. DNA strand breaks were determined by conversion of double stranded supercoiled ØX-174 RFI DNA to double stranded open circular DNA and linear single stranded DNA. Estradiol-17β significantly decreased the formation of single and double strand breaks in DNA induced by H2O2 alone or with Cu2+. Equilin (an equine estrogen) was more effective than estradiol-17β at the doses tested. Arachidonic acid in the presence of Cu2+ caused the formation of high levels of linear DNA which was protected by estrogen with equilen being more effective. These studies suggest that estrogens through this protective effect on DNA damage might contribute to cardioprotection.  相似文献   

3.
The pcbA1 mutation allows DNA replication dependent on DNA polymerase I at the restrictive temperature in polC(Ts) strains. Cells which carry pcbA1, a functional DNA polymerase I, and a temperature-sensitive DNA polymerase III gene were used to study the role of DNA polymerase III in DNA repair. At the restrictive temperature for DNA polymerase III, these strains were more sensitive to the alkylating agent methyl methanesulfonate (MMS) and hydrogen peroxide than normal cells. The same strains showed no increase in sensitivity to bleomycin, UV light, or psoralen at the restrictive temperature. The sensitivity of these strains to MMS and hydrogen peroxide was not due to the pcbAl allele, and normal sensitivity was restored by the introduction of a chromosomal or cloned DNA polymerase III gene, verifying that the sensitivity was due to loss of DNA polymerase III alpha-subunit activity. A functional DNA polymerase III is required for the reformation of high-molecular-weight DNA after treatment of cells with MMS or hydrogen peroxide, as demonstrated by alkaline sucrose sedimentation results. Thus, it appears that a functional DNA polymerase III is required for the optimal repair of DNA damage by MMS or hydrogen peroxide.  相似文献   

4.
Although oxidative stress is a key aspect of innate immunity, little is known about how host‐restricted pathogens successfully repair DNA damage. Base excision repair is responsible for correcting nucleobases damaged by oxidative stress, and is essential for bloodstream infection caused by the human pathogen, Neisseria meningitidis. We have characterized meningococcal base excision repair enzymes involved in the recognition and removal of damaged nucleobases, and incision of the DNA backbone. We demonstrate that the bi‐functional glycosylase/lyases Nth and MutM share several overlapping activities and functional redundancy. However, MutM and other members of the GO system, which deal with 8‐oxoG, a common lesion of oxidative damage, are not required for survival of N. meningitidis under oxidative stress. Instead, the mismatch repair pathway provides back‐up for the GO system, while the lyase activity of Nth can substitute for the meningococcal AP endonuclease, NApe. Our genetic and biochemical evidence shows that DNA repair is achieved through a robust network of enzymes that provides a flexible system of DNA repair. This network is likely to reflect successful adaptation to the human nasopharynx, and might provide a paradigm for DNA repair in other prokaryotes.  相似文献   

5.
6.
7.
Oxidative DNA damage has been implicated in diverse biological processes including mutagenesis, carcinogenesis, aging, radiation effects, and chemotherapy. We examined the in vitro effect of low concentrations of Cu(II) or H2O2 alone and in combination on supercoiled plasmid DNA. As much as 10(-2) M Cu(II) or 10(-2) M H2O2 alone did not break the DNA. However, a mixture of 10(-6) M Cu(II) plus 10(-5) M H2O2 produced strand breaks and inactivated transforming ability. Strand breakage was proportional to incubation time, temperature, and Cu(II) and H2O2 concentrations. Abasic sites were not detected. Strand breakage was inhibited by metal chelators, catalase, and by high levels of free radical scavengers implying that Cu(II), Cu(I), H2O2, and .OH were involved in the reaction. The extent of DNA strand breakage was not affected by superoxide dismutase indicating that superoxide was not a major contributor to the DNA damage. DNA sequence analysis demonstrated that hot piperidine-sensitive DNA lesions were produced preferentially at sites of 2 or more adjacent guanosine residues. This sequence specificity was observed with Cu(II) plus H2O2 but not with Cu(I) alone. Polyguanosine sequence specificity for DNA damage induction appears to be unique among simple chemical systems. This reaction may be important in mechanisms of oxidative damage in vivo.  相似文献   

8.
Oceanographic studies have shown that heterotrophic bacteria can protect marine cyanobacteria against oxidative stress caused by hydrogen peroxide (H2O2). Could a similar interspecific protection play a role in freshwater ecosystems? In a series of laboratory experiments and two lake treatments, we demonstrate that freshwater cyanobacteria are sensitive to H2O2 but can be protected by less-sensitive species such as green algae. Our laboratory results show that green algae degrade H2O2 much faster than cyanobacteria. Consequently, the cyanobacterium Microcystis was able to survive at higher H2O2 concentrations in mixtures with the green alga Chlorella than in monoculture. Interestingly, even the lysate of destructed Chlorella was capable to protect Microcystis, indicating a two-component H2O2 degradation system in which Chlorella provided antioxidant enzymes and Microcystis the reductants. The level of interspecific protection provided to Microcystis depended on the density of Chlorella. These findings have implications for the mitigation of toxic cyanobacterial blooms, which threaten the water quality of many eutrophic lakes and reservoirs worldwide. In several lakes, H2O2 has been successfully applied to suppress cyanobacterial blooms. Our results demonstrate that high densities of green algae can interfere with these lake treatments, as they may rapidly degrade the added H2O2 and thereby protect the bloom-forming cyanobacteria.  相似文献   

9.
The responses of Escherichia coli to X rays and hydrogen peroxide were examined in mutants which are deficient in one or more DNA repair genes. Mutant cells deficient in either exonuclease III (xthA) or endonuclease IV (nfo) had normal resistance to X rays, but an xthA-nfo double mutant showed a sensitivity increased over that of either parental strain. A DNA polymerase I mutant (polA) was more sensitive than the xthA-nfo mutant. Cells bearing mutations in all of the polA, xthA, and nfo genes were more sensitive to X rays than polA and xthA-nfo mutants. Similar repair responses were obtained by exposing these mutant cells to hydrogen peroxide, with the exception of the xthA mutant, which was hypersensitive to this agent. The DNA polymerase III mutant (polC(Ts)) was slightly more sensitive to the agents than the wild-type strain at the restrictive temperature. The sensitivity of the polC-xthA-nfo mutant to X rays and hydrogen peroxide was greater than that of polC but almost the same as that of the xthA-nfo mutant. From these results it appears that there are at least four repair pathways, the DNA polymerase I-, exonuclease III/endonuclease IV and DNA polymerase I-, exonuclease III/endonuclease IV and DNA polymerase III-, and exonuclease III/endonuclease IV-dependent pathways, for the repair of oxidative DNA damages in E. coli.  相似文献   

10.
The high susceptibility of mitochondrial DNA to reactive oxygen species and other damaging agents has been supposed to result from the absence of histones. Here we show that DNA-binding proteins of mitochondrial nucleoids can shield mtDNA from X-ray radiation and hydrogen peroxide just as nuclear histones do. Mitochondria, mitochondrial nucleoid proteins, and histones were isolated from mouse liver and assessed for mtDNA protection by the yield of PCR products. In vitro, mtDNA in complex either with nucleoid proteins or with nuclear histones proved to be much less damaged than naked mtDNA, with little difference in protective efficacy. Most probably, in mitochondria the nucleoid proteins also protect mtDNA against reactive oxygen species and thus attenuate the oxidative damage.  相似文献   

11.
Neisseria gonorrhoeae (Gc) pili undergo antigenic variation when the amino acid sequence of the pilin protein is changed, aiding in immune avoidance and altering pilus expression. Pilin antigenic variation occurs by RecA-dependent unidirectional transfer of DNA sequences from a silent pilin locus to the expressed pilin gene through high-frequency recombination events that occur at limited regions of homology. We show that the Gc recQ and recO genes are essential for pilin antigenic and phase variation and DNA repair but are not involved in natural DNA transformation. This suggests that a RecF-like pathway of recombination exists in Gc. In addition, mutations in the Gc recB, recC or recD genes revealed that a Gc RecBCD pathway also exists and is involved in DNA transformation and DNA repair but not in pilin antigenic variation.  相似文献   

12.
Summary The removal of pyrimidine dimers from deoxyribonucleic acid of ultraviolet irradiated cultures of Neisseria gonorrhoeae can not be readily ascertained by using radioactively labeled thymidine percursors. However, by adapting the alkaline agarose gel technique of Achey et al. (Photochem Photobiol 29, 305–310, 1979), it was possible to demonstrate that this human pathogen does possess an active excision repair system that functions on pyrimidine dimers.This work was performed as partial fulfillment for a Doctoral Thesis by L.A. Campbell.  相似文献   

13.
14.
Oxidative damage to DNA caused by free radicals and other oxidants generate base and sugar damage, strand breaks, clustered sites, tandem lesions and DNA-protein cross-links. Oxidative DNA damage is mainly repaired by base-excision repair in living cells with the involvement of DNA glycosylases in the first step and other enzymes in subsequent steps. DNA glycosylases remove modified bases from DNA, generating an apurinic/apyrimidinic (AP) site. Some of these enzymes that remove oxidatively modified DNA bases also possess AP-lyase activity to cleave DNA at AP sites. DNA glycosylases possess varying substrate specificities, and some of them exhibit cross-activity for removal of both pyrimidine- and purine-derived lesions. Most studies on substrate specificities and excision kinetics of DNA glycosylases were performed using oligonucleotides with a single modified base incorporated at a specific position. Other studies used high-molecular weight DNA containing multiple pyrimidine- and purine-derived lesions. In this case, substrate specificities and excision kinetics were found to be different from those observed with oligonucleotides. This paper reviews substrate specificities and excision kinetics of DNA glycosylases for removal of pyrimidine- and purine-derived lesions in high-molecular weight DNA.  相似文献   

15.
Neisseria gonorrhoeae were exposed to extracts of human neutrophil granules and effects on gonococcal growth and membranes were determined. Enumeration of gonococci by phase-contrast microscopy at 0 and 60 min revealed that they underwent very limited cell division after exposure to granule extract. At 60 min, treated gonococci tended to clump, and some lost their refractivity under phase-contrast optics, indicating membrane damage. Treated and untreated gonococci utilized oxygen at similar rates at time 0; treated gonococci utilized oxygen at a relatively constant rate for 60 min, even though colony-forming ability (i.e. viability) decreased by 90%, whereas untreated gonococci showed a steadily increasing rate of oxygen consumption over the same period, which essentially paralleled increase in colony-forming ability. Membrane ultrastructure of untreated and treated gonococci was compared in thin section by transmission electron microscopy. Extract treatment resulted in a time-related increase in disruption of the bacterial outer membrane, which became apparent almost immediately after treatment. This was accompanied by increasingly aberrant septum structure. Extract treatment also increased the resolution of peptidoglycan by electron microscopy, as early as 10 min after treatment. These data suggest that extract treatment of gonococci caused a rapid loss of the ability to form colonies on agar concomitant with alteration of gonococcal peptidoglycan and outer-membrane structure, but with little alteration of inner-membrane function.  相似文献   

16.
Homologous recombination in DNA repair and DNA damage tolerance   总被引:20,自引:0,他引:20  
Li X  Heyer WD 《Cell research》2008,18(1):99-113
Homologous recombination (HR) comprises a series of interrelated pathways that function in the repair of DNA double-stranded breaks (DSBs) and interstrand crosslinks (ICLs). In addition, recombination provides critical support for DNA replication in the recovery of stalled or broken replication forks, contributing to tolerance of DNA damage. A central core of proteins, most critically the RecA homolog Rad51, catalyzes the key reactions that typify HR: homology search and DNA strand invasion. The diverse functions of recombination are reflected in the need for context-specific factors that perform supplemental functions in conjunction with the core proteins. The inability to properly repair complex DNA damage and resolve DNA replication stress leads to genomic instability and contributes to cancer etiology. Mutations in the BRCA2 recombination gene cause predisposition to breast and ovarian cancer as well as Fanconi anemia, a cancer predisposition syndrome characterized by a defect in the repair of DNA interstrand crosslinks. The cellular functions of recombination are also germane to DNA-based treatment modalities of cancer, which target replicating cells by the direct or indirect induction of DNA lesions that are substrates for recombination pathways. This review focuses on mechanistic aspects of HR relating to DSB and ICL repair as well as replication fork support.  相似文献   

17.
Trypanosoma cruzi, a parasitic protozoan, is the etiological agent of Chagas disease, an endemic and neglected pathology in Latin America. It presents a life cycle that involves a hematophagous insect and man as well as domestic and wild mammals. The parasitic infection is not eliminated by the immune system of mammals; thus, the vertebrate host serves as a parasite reservoir. Additionally, chronic processes leading to dysfunction of the cardiac and digestive systems are observed. To establish a chronic infection some parasites should resist the oxidative damage to its DNA exerted by oxygen and nitrogen free radicals (ROS/RNS) generated in host cells. Till date there are no reports directly showing oxidative DNA damage and repair in T. cruzi. We establish that ROS/RNS generate nuclear and kinetoplastid DNA damage in T. cruzi that may be partially repaired by the parasite. Furthermore, we determined that both oxidative agents diminish T. cruzi cell viability. This effect is significantly augmented in parasites subsequently incubated with methoxyamine, a DNA base excision repair (BER) pathway inhibitor, strongly suggesting that the maintenance of T. cruzi viability is a consequence of DNA repair mechanisms.  相似文献   

18.
It has been suggested in a number of investigations that the high vulnerability of mitochondrial DNA to reactive oxygen species and other damaging agents is due to the absence in mitochondria of histones complexed with DNA. In the present study it was shown that DNA-binding proteins of mitochondrial nucleoids were able to shield mitochondrial DNA from X-ray radiation and hydrogen peroxide, as nuclear histones did. Mitochondria, mitochondrial nucleoid proteins, and histones were isolated from mouse liver cells. The degree of damage to or protection of mitochondrial DNA was assessed from the yield of its PCR amplification product. The in vitro experiments demonstrated that mouse mitochondrial DNA, when in complex with mitochondrial nucleoids or nuclear histones, was damaged much less by radiation and/or hydrogen peroxide than in the absence of these proteins and histones. No significant difference between mitochondrial nucleoid proteins and nuclear histones was revealed in their efficiency to protect mitochondrial DNA from the damaging effect of radiation and hydrogen peroxide. It is likely that the nucleoid proteins in the mitochondria shield mitochondrial DNA against the attack of reactive oxygen species, thus significantly decreasing the level of the oxidative damage to mitochondrial DNA.  相似文献   

19.
The induction of the SOS response by H2O2 was measured in Escherichia coli by means of a sfiA::lacZ operon fusion. The effects of mutations in genes involved in DNA repair or DNA metabolism on the SOS response were investigated. We found that in an uvrA mutant, H2O2 induced the SOS response at lower concentrations than in the uvr+ parent strain, indicating that some lesions induced by H2O2 may be repaired by the uvrABC-dependent excision repair system. A nth mutation, yielding deficiency in thymine glycol DNA glycosylase, had no detectable effect on SOS induction, indicating that thymine glycol, a DNA lesion expected to be induced by H2O2, does not participate detectably in the induction of the SOS response by this chemical under our conditions. H2O2 still induced the SOS response in a dnaC(Ts) uvrA double mutant under conditions in which no DNA replication proceeds, suggesting that this chemical induces DNA strand breaks. Induction of the SOS response by H2O2 was also assayed in various mutants affected in genes suspected to be important for protection against oxidative stress. Mutations in the catalase genes, katE and katG, had only minor effects. However, in an oxyR deletion mutant, in which the adaptative response to H2O2 does not occur, SOS induction occurred at much lower H2O2 concentrations than in the oxyR+ parent strain. These results indicate that some enzymes regulated by the oxyR gene are, under our conditions, more important than catalase for protection against the H2O2-induced DNA damages which trigger the SOS response.  相似文献   

20.
DNA damage by peroxynitrite characterized with DNA repair enzymes.   总被引:9,自引:0,他引:9       下载免费PDF全文
The DNA damage induced by peroxynitrite in isolated bacteriophage PM2 DNA was characterized by means of several repair enzymes with defined substrate specificities. Similar results were obtained with peroxynitrite itself and with 3-morpholinosydnonimine (SIN-1), a compound generating the precursors of peroxynitrite, nitric oxide and superoxide. A high number of base modifications sensitive to Fpg protein which, according to HPLC analysis, were mostly 8-hydroxyguanine residues, and half as many single-strand breaks were observed, while the numbers of oxidized pyrimidines (sensitive to endonuclease III) and of sites of base loss (sensitive to exonuclease III or T4 endonuclease V) were relatively low. This DNA damage profile caused by peroxynitrite is significantly different from that obtained with hydroxyl radicals or with singlet molecular oxygen. The effects of various radical scavengers and other additives (t-butanol, selenomethionine, selenocystine, desferrioxamine) were the same for single-strand breaks and Fpg-sensitive modifications and indicate that a single reactive intermediate but not peroxynitrite itself is responsible for the damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号