首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We measured renal functions and hormones associated with fluid regulation after a bolus injection of aldosterone (Ald) during head-down tilt (HDT) bed rest to test the hypothesis that exposure to simulated microgravity altered renal responsiveness to Ald. Six male rhesus monkeys underwent two experimental conditions (HDT and control, 72 h each) with each condition separated by 9 days of ambulatory activities to produce a crossover counterbalance design. One test condition was continuous exposure to 10 degrees HDT; the second was a control, defined as 16 h per day of 80 degrees head-up tilt and 8 h prone. After 72 h of exposure to either test condition, monkeys were moved to the prone position, and we measured the following parameters for 4 h after injection of 1-mg dose of Ald: urine volume rate (UVR); renal Na(+)/K(+) excretion ratio; renal clearances of creatinine, Na(+), osmolality, and free water; and circulating hormones [Ald, renin activity (PRA), vasopressin (AVP), and atrial natriuretic peptide (ANP)]. HDT increased Na(+) clearance, total renal Na(+) excretion, urine Na(+) concentration, and fractional Na(+) excretion, compared with the control condition, but did not alter plasma concentrations of Ald, PRA, and AVP. Administration of Ald did not alter UVR, creatinine clearance, Ald, PRA, AVP, or ANP but reduced Na(+) clearance, total renal Na(+) excretion, urinary Na(+)/K(+) ratio, and osmotic clearance. Although reductions in Na(+) clearance and excretion due to Ald were greater during HDT than during control, the differential (i.e., interaction) effect was minimal between experimental conditions. Our data suggest that exposure to microgravity increases renal excretion of Na(+) by a natriuretic mechanism other than a change in renal responsiveness to Ald.  相似文献   

2.
Transition from a normal gravitational environment to that of microgravity eventually results in decreased plasma and blood volumes, increasing with duration of exposure to microgravity. This loss of vascular fluid is presumably due to negative fluid and electrolyte balance and most likely contributes to the orthostatic intolerance associated with the return to gravity. The decrease in plasma volume is presumed to be a reflection of a concurrent decrease in extracellular fluid volume with maintenance of normal plasma-interstitial fluid balance. In addition, the specific alterations in renal function contributing to these changes in fluid and electrolyte homeostasis are potentially responding to neuro-humoral signals that are not consistent with systemic fluid volume status. We have previously demonstrated an early increase in both glomerular filtration rate and extracellular fluid volume and that this decreases towards control values by 7 days of simulated microgravity. However, longer duration studies relating these changes to plasma volume alterations and the response to return to orthostasis have not been fully addressed. Male Wistar rats were chronically cannulated, submitted to 30 days head-down tilt (HDT) and followed for 7 days after return to orthostasis from HDT. Measurements of renal function and extracellular and blood volumes were performed in the awake rat.  相似文献   

3.
A model utilizing 25 degree head-down tilt (HDT) and incorporated with chronic catheterization and renal micropuncture techniques in rats was employed to study alterations in renal function induced by HDT. Renal function and extracellular volume measurements were performed after 24 h, 4 days, and 7 days of HDT in conscious rats and compared with their own control measurements and to nontilted but similarly restrained rats. After 24 h HDT, glomerular filtration rate (GFR) increased 19 +/- 8% and renal plasma flow (RPF) increased 18 +/- 8% with increases in urine flow rate, Na+, and K+ excretion in conscious rats. These increases after 24 h were associated with an increase in extracellular volume of 16 +/- 3% (P less than 0.01). In the nontilted controls, there was a decrease in extracellular volume after 24 h of suspension. After 7 days of HDT, GFR was decreased by 7 +/- 1% (P less than 0.01), but RPF and extracellular fluid volume were not different from control values. However, RPF and GFR increased in the nontilted rats after 7 days. After 7 days of HDT renal micropuncture studies demonstrated that single-nephron filtration rate was also decreased from 43 +/- 2 to 31 +/- 3 nl/min (P less than 0.05) due solely to reductions in the glomerular ultrafiltration coefficient (0.11 +/- 0.01 to 0.07 +/- 0.01 nl.s-1 X mmHg-1, P less than 0.05). There was a dissociation between GFR and water and Na+ excretion at days 4 and 7 of HDT not observed in the nontilt restraint controls.  相似文献   

4.
The clearance and excretion of creatinine, calcium, phosphorus, sodium, and potassium by the kidney was evaluated in 62 owl monkeys using timed urine collections and quantitative urinalyses. The endogenous clearance of creatinine was determined for each monkey. Urinary electrolyte excretion and fractional electrolyte excretions (FE) were measured. Linear regression analysis was used to calculate the correlation between urinary excretion and FE for each electrolyte. The coefficient of determination for each analyte was significant (P ? .0001). Determination of FE was found to be an appropriate indicator of the renal handling of electrolytes and, when viewed in conjunction with urinalysis and other serum parameters, an aid in evaluating renal function in the owl monkey. © 1992 Wiley-Liss, Inc.  相似文献   

5.
Head-down tilt (HDT) is utilized to simulate microgravity and produces a cephalad fluid shift, which results in alterations in fluid and electrolyte balance. These changes in volume homeostasis are due, in part, to alterations in multiple volume control mechanisms in which renal function is a major participant. We have previously demonstrated that glomerular filtration rate increases early in HDT and eventually returns to values not different from non-tilt measurements. This early increase in glomerular filtration rate was also demonstrated during days 2 and 8 of the SLS-1 mission. However, urine flow and electrolyte excretion does not parallel the alterations in glomerular filtration rate and the site of this change in nephron fluid reabsorption pattern has not been previously examined. Through determination of the location of alterations in tubular fluid reabsorption within the nephron, a more detailed hypothesis can be forwarded as to which specific neuro-humoral agents participating in control of renal function in microgravity conditions. The importance of this type of examination is that measurements in circulating neuro-humoral agents and urinary excretion patterns alone are not accurate predictors of how renal functional response may alter to head-down tilt or other models of simulated weightlessness. To examine this issue, renal micropuncture techniques were utilized in Munich-Wistar rats submitted 24 hours and 14 day head-down tilt, measuring all the determinants of glomerular ultrafiltration and obtaining data regarding segmental tubular fluid reabsorption. Following these measurements, the rats were returned to an orthostatic position and after 60 min, the measurements were repeated.  相似文献   

6.
The role of the renal nerves in determining renal function after relief of 24-h unilateral ureteral obstruction (UUO) was studied using clearance techniques in anaesthetized rats. Acute renal denervation during the first 1--2 h after relief of UUO resulted in a significant increase in glomerular filtration rate (GFR), renal plasma flow (RPF), urine flow, and sodium and potassium excretion, changes which were not seen in the sham-denervated postobstructive kidney. Acute denervation of sham-operated normal kidneys caused a similar natriuresis and diuresis but with no change in GFR or RPF. Chronic renal denervation 4--5 days before UUO denervated postobstructive controls, while chronic denervation alone was associated with a significantly higher urine flow and sodium excretion rate from the denervated kidney. The effectiveness of renal denervation was confirmed by demonstrating marked depletion of tissue catecholamines in the denervated kidney. It was concluded that renal nerve activity plays a significant but not a major role in the functional changes present after relief of UUO. Chronic renal denervation did not protect against the functional effects of unilateral ureteral obstruction.  相似文献   

7.
Domestic fowl were infused for 60 min with isotonic saline followed by 90 min with hypertonic saline. Plasma electrolyte concentrations, osmolality and haematocrit were measured. Urine electrolyte excretion rates, osmolar output and urine flow rates were also monitored. From these results fractional excretions of electrolytes were calculated. The renal function markers inulin and ρ-amino hippuric acid were infused to enable the measurement of glomerular filtration rate and plasma clearance of ρ-amino hippuric acid, respectively. Plasma samples were also taken to assay for the hormones prolactin, aldosterone and arginine vasotocin. Plasma electrolytes and osmolality, fractional excretion of electrolytes and osmolar output all increased, while haematocrit decreased, throughout the experiment. However, no significant change was found in urine flow rate and little change was seen in glomerular filtration rate. The clearance of ρ-amino hippuric acid, which provides an indication of renal plasma flow, increased during hypertonic saline infusion. Plasma concentrations of aldosterone and prolactin decreased during the experiment and plasma concentrations of arginine vasotocin increased. Infusion of hypertonic saline had no consistent effect on glomerular filtration rate, which may be due to conflicting influences of expansion of the extracellular fluid volume and increased plasma osmolality. Accepted: 19 January 1998  相似文献   

8.
The influence of renal nerves on the effects of concurrent NO synthase inhibition (10 mg kg(-1) b.w. i.v. L-NAME) and ET(A)/ET(B) receptor inhibition (10 mg kg(-1) b.w. i.v. bosentan) on renal excretory function and blood pressure in conscious spontaneously hypertensive rats (SHR) was investigated. L-NAME increased blood pressure, urine flow rate, fractional excretion of sodium, chloride and phosphate in both normotensive Wistar rats and SHR with intact renal nerves (p<0.01). GFR or RBF did not change in any of the groups investigated. The effects of L-NAME on renal excretory function were markedly reduced by bosentan and the values returned to control level in the normotensive rats, while in SHR the values were reduced by bosentan, but they remained significantly elevated as compared to control level (p<0.05). The hypertensive response induced by L-NAME in SHR is partially due to activation of endogenous endothelins, but it does not depend on renal nerves. Chronic bilateral renal denervation abolished the effect of L-NAME on sodium and chloride excretion in normotensive rats, whereas it did not alter this effect in SHR. The participation of endogenous endothelins in changes of renal excretory function following NO synthase inhibition is diminished in SHR as compared to Wistar rats.  相似文献   

9.
The rat whole body suspension technique mimics responses seen during exposure to microgravity and was evaluated as a model for cardiovascular responses with two series of experiments. In one series, changes were monitored in chronically catheterized rats during 7 days of head-down tilt (HDT) or non-head-down tilt (N-HDT) and after several hours of recovery. Elevations of mean arterial (MAP), systolic, and diastolic pressures of approximately 20% (P < 0.05) in HDT rats began as early as day 1 and were maintained for the duration of suspension. Pulse pressures were relatively unaffected, but heart rates were elevated approximately 10%. During postsuspension (2-7 h), most cardiovascular parameters returned to presuspension levels. N-HDT rats exhibited elevations chiefly on days 3 and 7. In the second series, blood pressure was monitored in 1- and 3-day HDT and N-HDT rats to evaluate responses to rapid head-up tilt. MAP, systolic and diastolic pressures, and HR were elevated (P < 0.05) in HDT and N-HDT rats during head-up tilt after 1 day of suspension, while pulse pressures remained unchanged. HDT rats exhibited elevated pretilt MAP and failed to respond to rapid head-up tilt with further increase of MAP on day 3, indicating some degree of deconditioning. The whole body suspended rat may be useful as a model to better understand responses of rats exposed to microgravity.  相似文献   

10.
Pregnancy is associated with profound changes in renal hemodynamics and electrolyte handling. Relaxin, a hormone secreted by the corpus luteum, has been shown to induce pregnancy-like increases in renal blood flow and glomerular filtration rate (GFR) and alter osmoregulation in nonpregnant female and male rats. However, its effects on renal electrolyte handling are unknown. Accordingly, the influence of short (2 h)- and long-term (7 day) infusion of relaxin on renal function was determined in the male rat. Short term infusion of recombinant human relaxin (rhRLX) at 4 microg.h(-1).100 g body wt(-1) induced a significant increase in effective renal blood flow (ERBF) within 45 min, which peaked at 2 h of infusion (vehicle, n = 6, 2.1 +/- 0.4 vs. rhRLX, n = 7, 8.1 +/- 1.1 ml.min(-1).100 g body wt(-1), P < 0.01). GFR and urinary excretion of electrolytes were unaffected. After a 7-day infusion of rhRLX at 4 microg/h, ERBF (1.4 +/- 0.2 vs. 2.5 +/- 0.4 ml.min(-1).100 g body wt(-1), P < 0.05), urine flow rate (3.1 +/- 0.3 vs. 4.3 +/- 0.4 microl.min(-1).100 g body wt(-1), P < 0.05) and urinary sodium excretion (0.8 +/- 0.1 vs. 1.2 +/- 0.1 micromol.min(-1).100 g body wt(-1), P < 0.05) were significantly higher; plasma osmolality and sodium concentrations were lower in rhRLX-treated rats. These data show that long-term relaxin infusion induces a natriuresis and diuresis in the male rat. The mechanisms involved are unclear, but they do not involve changes in plasma aldosterone or atrial natriuretic peptide concentrations.  相似文献   

11.
The present study was undertaken to assess the role of prostaglandin system in the compensatory response to reduced nephron population, respective to renal function and electrolyte excretion. Intact and nephrectomized rats were divided in 4 groups: 1) rats pretreated with indomethacin, 2) rats pretreated with the vehicle of indomethacin, 3) rats pretreated with sulindac, and 4) rats pretreated with the vehicle of sulindac.In normal rats, indomethacin administration resulted in a mild decrease in creatinine clearance and a significant reduction of the urinary Na excretion. In the rats with reduced renal mass treated with indomethacin, the creatinine clearance did not differ from that in the control group. The 24 h urinary sodium excretion and the fractional excretion of sodium, however, were significantly lower in the indomethacin treated animals than in the control rats. No change in the creatinine clearance or in the sodium excretion was observed in all groups pretreated with sulindac.The urinary PGE2 and thromboxane excretion was significantly lower in the indomethacin treated intact rats and the rats with reduced renal mass. Sulindac induced a slight decrease in urinary excretion of PGE2 in intact rats. No significant change in urinary excretion of PGE2 or thromboxane was seen after sulindac in the rats with reduced renal mass.The antinatriuretic effect of indomethacin was dissociated from changes in urine flow in all groups of animals, suggesting that the increase in Na reabsorption tool place in a water impermeable segment of nephron.These results suggest that the compensatory increase in urinary Na excretion per nephron in rats with reduced nephron population at least partly depends on an intact prostaglandin synthesis.  相似文献   

12.
Renal excretion of phosphate, calcium, sodium, and potassium in intact and parathyroidectomized male Rana pipiens was studied by renal clearance techniques using 14C-inulin. In intact frogs, 57% of filtered phosphate, 60% of filtered calcium, 97% of filtered sodium, and 89% of filtered potassium was reabsorbed by the renal tubules. Following parathyroidectomy, the rate of reabsorption of phosphate became significantly higher than that of the intact frog, and the relative phosphate clearance (fractional excretion) decreased. These changes corresponded with a gradual rise in serum phosphate values. There was no major effect on excretion patterns of calcium, sodium, or potassium after parathyroidectomy. These results suggest that in frogs the parathyroid glands strongly influence phosphate excretion patterns but have little effect on the excretion of calcium, sodium, or potassium.  相似文献   

13.
In anaesthetized rats kept on normal diet an i.v. infusion of NAD (200 nmole X kg-1 X X min-1) induced a decrease in renal plasma flow (CPAH), glomerular filtration rate (GFR) and electrolyte excretion accompanied by an increase in plasma adenosine concentration. Separate infusions of a small dose of NAD (50 nmole X kg-1 X min-1) or dipyridamole (25 micrograms X kg-1 X min-1) did not affect renal function or plasma adenosine concentration. However, when the above small doses of both agents were given simultaneously, GFR, CPAH and electrolyte excretion fell significantly, indicating potentiation of NAD action by dipyridamole, associated with increased plasma adenosine level. An i.v. infusion of furosemide failed to abolish the depression of renal function in response to NAD. The data suggest that the causal factor of this depression was adenosine and not NAD itself.  相似文献   

14.
In hypertension, the relationship between atrial natriuretic peptide (ANP) and vasopressin (AVP) is not yet clear, although their renal actions are effectively autoregulation. To examine the possible interaction further, the responses to ANP infusion (75 ng x min (-1), i.v.) have been investigated in both hypertensive and normotensive AVP-replete (HT and NT) and AVP-deficient (HTDI and NTDI) rats. This study aimed to assess the renal function and the plasma hormone concentrations of AVP, angiotensin II (AII), ANP, aldosterone, and corticosterone in the conscious, chronically catheterized, fluid-balanced rats, and to examine the cardiovascular, renal, and endocrine responses to a constant infusion of a low-dose ANP. Data gained from the present study showed, for the first time, the hormone profile, plasma electrolyte composition, and detailed renal function of the servo-controlled, fluid-balanced rats. The similarities of plasma electrolyte composition between servo-controlled and untreated rats indicated that the servo-controlled fluid replacement technique maintained the differences between the strains and maintained body fluid balance during the experimental periods. Following ANP administration, there were no changes in glomerular filtration rate (GFR) in all groups, but an enduring diuresis and natriuresis were observed in HT and NT, which were milder in HTDI rats. However, the hypotensive effect of ANP was of a similar magnitude in all rat strains. HTDI rats exhibited an inhibition of the renin-angiotensin system (RAS), which may have participated in the reduced mean arterial blood pressure (MAP) and natriuresis observed in these rats. The renal actions of ANP appear to rely upon renal tubular events, as indicated by increased fractional electrolyte excretions in the AVP-replete rats. This study highlights the importance of AVP to the profile of the renal actions of ANP in normal rats.  相似文献   

15.
In patients with chronic renal failure due to glomerulonephritis, pyelonephritis or polycystic kidneys the urinary clearance of free chloramphenicol (CCHL) was depressed proportionally to GFR (CIn). The ordinate intercept of the regression line of CCHL on CIn, however, consistently was positive (+3 to +5 ml/min). The fractional excretion of chloramphenicol in renal failure increased from its normal value of 50 percent as an exponential function of the decrease of GFR, and as a linear function of the fractional excretion of water or of sodium. Dietary sodium restriction had no influence on CCHL in the patients, while water diuresis, in normal subjects, enhanced the urinary excretion of chloramphenicol. The data suggest that chloramphenicol is reabsorbed by back-diffusion and that increases of the rate of flow of urine and tubular fluid prevent back-diffusion.  相似文献   

16.
To examine the effects of intrauterine growth restriction and acute severe oxygen deprivation on renal blood flow (RBF), renovascular resistance (RVR), and renal excretory functions in newborns, studies were conducted on 1-day-old anesthetized piglets divided into groups of normal weight (NW, n = 14) and intrauterine growth-restricted (IUGR, n = 14) animals. Physiological parameters, RBF, RVR, and urinary flow, were similar in NW and IUGR piglets, but glomerular filtration rate (GFR) and filtration fraction were significantly less in IUGR animals (P < 0.05). An induced 1-h severe hypoxia (arterial PO(2) = 19 +/- 4 mmHg) resulted in, for both groups, a pronounced metabolic acidosis, strongly reduced RBF, and increased fractional sodium excretion (FSE; P < 0.05) with a less-pronounced increase of RVR and arterial catecolamines in IUGR piglets. Of significance was a smaller decrease in RBF for IUGR piglets (P < 0.05). Early recovery showed a transient period of diuresis with increased osmotic clearance and elevated FSE in both groups (P < 0.05). However, GFR and renal O(2) delivery remained reduced in NW piglets (P < 0.05). We conclude that, in newborn IUGR piglets, RBF is maintained, although GFR is compromised. Severe hypoxemia induces similar alterations of renal excretion in newborn piglets. However, the less-pronounced RBF reduction during hypoxemia indicates an improved adaptation of newborn IUGR piglets on periods of severely disturbed oxygenation. Furthermore, newborn piglets reestablish the ability for urine concentration and adequate sodium reabsorption early after reoxygenation so that a sustained acute renal failure was prevented.  相似文献   

17.
Total renal blood flow, glomerular filtration rate, and renal excretory function were determined in anesthetized rats treated with intravenous infusion of ethacrynic acid, 0.36 mg.min-1.kg-1, alone or in combination with cysteine. Simultaneously, the corticomedullary electrolyte gradient was evaluated in vivo from measurement of tissue electrical admittance (reciprocal impedance). Renal hemodynamics was not altered by drug infusion. Sodium excretion increased 1.7-fold with ethacrynic acid alone and 5-fold after the addition of cysteine. Tissue electrolytes of inner medulla decreased much more in rats given ethacrynic acid plus cysteine. We conclude that the addition of cysteine to intravenous infusion of ethacrynic acid greatly enhances its in vivo natriuretic potency in the rat.  相似文献   

18.
The role of renal nerves in the effects of concomitant NO synthase and non-selective ET(A/)ET(B) receptor inhibition on renal function was investigated in conscious normotensive Wistar rats. NO synthase inhibition alone (10 mg/kg b. w. i.v. L-NAME) in sham-operated rats with intact renal nerves induced an increase in systolic, diastolic and mean arterial pressure, urine flow rate, sodium, chloride and calcium excretion (p<0.05). The effect of L-NAME was markedly reduced by bosentan (10 mg/kg b.w. i.v.) and the values of urine flow rate, sodium, chloride and calcium excretions returned to control level (p<0.05). L-NAME administration one week after a bilateral renal denervation increased blood pressure to a similar extent as in sham-operated rats but decreased urine flow rate (p<0.05) and did not change electrolyte excretion. ET(A/)ET(B) receptor inhibition with bosentan during NO synthase inhibition in the renal denervated rats did not produce changes in urine flow rate or electrolyte excretion. NO synthase inhibition as well as concurrent NO synthase and ET(A/)ET(B) receptor inhibition did not change clearance of inulin or paraaminohippuric acid in sham-operated or renal denervated rats. These results indicate that renal sympathetic nerves play an important modulatory role in NO and endothelin induced effects on renal excretory function.  相似文献   

19.
Albumin or Dextran solutions of varying concentration were infused into the renal artery of hydropenic dogs. Their effect on urine flow, sodium excretion, creatinine and PAH clearance, single nephron GFR, fractional and absolute fluid reabsorption in the proximal convolution, reabsorptive t1/2, and hydrostatic pressures in the proximal tubules and adjacent capillaries was compared with a similar infusion of isotonic saline solution. Six, 9, 12, 18 and 25% albumin and 6% Dextran solution did not significantly change the measured parameters. Infusion of 9 and 12% Dextran solution elicited a decrease in water and sodium excretion as well as absolute and fractional proximal tubular fluid reabsorption to a 5% level of significance. Infusion of 18% Dextran was accompanied by a marked decrease in total and proximal reabsorption combined with a decline of GFR, PAH clearance, and hydrostatic pressures in tubules and peritubular capillaries. The results do not support the hypothesis of a direct action of oncotic pressure on tubular fluid reabsorption; the above described effects of Dextran seem to be accounted for by its other "pharmacological" effect.  相似文献   

20.
The isolated-perfused dog kidney was used as a model to measure the effects of short-term hypothermic preservation on renal function and metabolism. Kidneys were cold-stored in Collins' solution, hypotonic citrate, or phosphate-buffered sucrose for 4 and 24 hr, or were continuously perfused for 4 and 24 hr with a synthetic perfusate. Following preservation kidneys were perfused with an albumin-containing perfusate at 37 degrees C for 60 min for determination of renal function. The results indicate that many of the effects of short-term preservation on renal function in dog kidneys are similar to results reported for rat and rabbit kidneys. Cold storage for 4 hr resulted in a large decrease in GFR (57%), but only a small decrease in Na reabsorption (from 97 to 87%). Cold storage for 24 hr caused a further decline in renal function (GFR = 95% decrease, Na reabsorption = 49-64%). Results were similar for all cold storage solutions tested. Perfusion for 4 hr was less damaging to renal function than cold storage. The GFR decreased only 14% and urine formation and Na reabsorption were practically normal. After 24 hr of hypothermic perfusion, the GFR was reduced by 79%, urine flow was normal, and Na reabsorption was 78%. There were no obvious biochemical correlates (adenine nucleotides, tissue edema, or electrolyte concentration) with the loss of renal function during short-term preservation. The results suggest that the isolated-perfused dog kidney can be used to test the effects of preservation on renal function, and yields results similar to those obtained using small animal models.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号