首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three-leaf pea (Pisum sativum L. cv. ‘Alaska’) seedlings were oriented horizontally and32P was applied to leaf-2 for 6 h period, at the end of which the distribution of isotopes in the seedlings was determined. It was found that (i) isotope accumulation in the apices of the vertical and horizontal seedlings remained almost the same; (ii) on decapitation almost all the isotopes in the apex diverted to the roots in the vertical seedlings; (iii) among the horizontal seedlings32P was retained in the hanging treated leaf and the rest moved to the roots via shoots; (iv) the dry weight of the hanging treated leaf was slightly greater than the above-axis one; (v) the position of buds on the axis had no effect on the initial32P accumulation in them, however, a trend of greater isotope accumulation was noted in the above-axis basal buds; (vi) geo.stimulation had no effect on the total dry weight of the seedlings; and (vii) in geo-stimulated seedlings decrease in the dry weights of shoots and its concomittant increase in roots was primarily the result of the movement of substances.  相似文献   

2.
When the epicotyl and one cotyledon is cut off from pea seedlings, only the axillary of the amputated cotyledon is known to grow. When32P is applied to the roots of such plants, then a higher radioactivity appears in the axillary of the amputated cotyledon already 24 hrs. after amputation of one cotyledon, although this axillary is of the same size at this time as that of the remaining cotyledon. This fact indicates a more extensive material transport to the axillary bud of the amputated cotyledon already during the first day after amputation The effect of individual regulators on the32P transport was investigated in an experiment where pea seedlings cultivated in the dark were decapitated and a 0.5% paste, containing the regulatory compounds was placed either on the cutting surface in the apical part of the epicotyl stump or in its central part. After a week the plant roots were supplied with32P and its transport to the upper part of the epicotyl stump was followed. This transport increased about 10-fold in the case of a paste, containing indolyl acetic acid, when the paste was spread on the apical cutting surface of the stump. However, the transport was inhibited when the paste was applied in the central part of the stump. These results indicate that only the transport of32P towards the paste with indolyl acetic acid is accelerated, whereas it is decelerated above this paste. A paste, containing triodobenzoic acid inhibited32P transport only when applied to the apical cutting surface of the epicotyl stump and not when spread over the middle part. In this case32P transport was more rapid above the paste than towards the paste. The situation was similar in the case of gibberellin and kinetin.  相似文献   

3.
4.
Application of a sublethal dose of glyphosate (N-[phosphonomethyl]glycine) to the seedlings of soybean (Glycine max L. Merr. cv. Evans) and pea (Pisum sativum L. cv. Alaska) promoted growth of the cotyledonary and other lateral buds. The pattern of the glyphosate-induced lateral bud growth was different from that induced by decapitation. Under the experimental condition, glyphosate did not kill the apical buds. Feeding stem sections of the seedlings with radiolabeled indole-3-acetic acid ([214C]IAA) and subsequent analysis of free [2-14C]IAA and metabolite fractions revealed that the glyphosate-treated plants had higher rates of IAA metabolism than the control plants. The treated pea plants metabolized 75% of [2-14C]IAA taken up in the 4-h incubation period compared to 46.5% for the control, an increase of 61%. The increase was small but consistent in soybean seedlings. As a result, the glyphosate-treated plants had less free IAA and ethylene than the control plants. The increase of IAA metabolism induced by glyphosate is likely to change the auxin-cytokinin balance and contribute to the release of lateral buds from apical dominance in these plants.  相似文献   

5.
Application of a sublethal dose of glyphosate (N-[phosphonomethyl]glycine) to the seedlings of soybean (Glycine max L. Merr. cv. Evans) and pea (Pisum sativum L. cv. Alaska) promoted growth of the cotyledonary and other lateral buds. The pattern of the glyphosate-induced lateral bud growth was different from that induced by decapitation. Under the experimental condition, glyphosate did not kill the apical buds. Feeding stem sections of the seedlings with radiolabeled indole-3-acetic acid ([214C]IAA) and subsequent analysis of free [2-14C]IAA and metabolite fractions revealed that the glyphosate-treated plants had higher rates of IAA metabolism than the control plants. The treated pea plants metabolized 75% of [2-14C]IAA taken up in the 4-h incubation period compared to 46.5% for the control, an increase of 61%. The increase was small but consistent in soybean seedlings. As a result, the glyphosate-treated plants had less free IAA and ethylene than the control plants. The increase of IAA metabolism induced by glyphosate is likely to change the auxin-cytokinin balance and contribute to the release of lateral buds from apical dominance in these plants.  相似文献   

6.
In decapitated pea plants an increased peroxidase activity ocours after the cotyledon excision in cotylars growing in axillas of cotyledons prior to the growth of excised cotylars. It was found that peroxidase plays an important role in this correlation. Auxin applied on epicotyl stumps inhibited the growth of cotylars and the removal of this inhibition by cytokinin or ethrel was associated with an increased peroxidase activity followed by the growth of cotylars situated in axillas of treated cotyledons.  相似文献   

7.
DCA synergistically promoted GA-induced hook elongation in decotylizedAlaska pea seedlings in the presence of sucrose, but not inintact seedlings. Cotyledon excision caused a decrease in theamount of DCA-like substance(s) in the hooks of pea seedlings. (Received July 30, 1976; )  相似文献   

8.
The main epicotyledonary axis inPisum sativum exhibits a very fluctuating either left- or right-handed deflexion of its first-order laterals, but the biserial buds on the laterals of various further order reveal in this respect certain regularities according to their position on the seedling, their deflexion being very often adaxial in the vicinity of cotyledons, however, in more distant and therefore later produced laterals, as a rule, abaxial. The integrant characteristics of these relationships may become clear from their experimental shift with the aid of exogenous auxin increasing inhibitions as well as of triiodobenzoic acid blocking the transport of endogenous auxin participant also in these embryonic-growth correlations.  相似文献   

9.
On ethylene and stem elongation in green pea seedlings   总被引:1,自引:0,他引:1       下载免费PDF全文
Koch BL  Moore TC 《Plant physiology》1990,93(4):1663-1664
Maximum elongation of excised internodal stem sections of light-grown pea (Pisum sativum L.) seedlings occurred at 10−5 molar indoleacetic acid (IAA), with submaximal responses occurring at 10−4 and 10−3 molar. Accompanying elongation at concentrations of IAA of 10−6 to 10−3 molar was production of ethylene, with the amount increasing up to 10−4 molar IAA and then becoming nearly constant. Elongation of light-grown sections was not inhibited by exogenous ethylene up to 10,000 ppm in the presence of 10−5 molar IAA. Marked (up to 50%) inhibition of elongation of internodal segments in situ was observed after treating whole light-grown seedlings with exogenous ethylene for 20 hours. It is concluded that ethylene is not responsible for the submaximal elongation responses of green pea stem sections at high auxin concentrations, but that IAA per se is accountable.  相似文献   

10.
Galactoglucomannan-derived oligosaccharides (GGMOs) (degree of polymerization 4–8) isolated from the wood of poplar (Populus monilifera Ait.) were shown to be inhibitors of the 2,4-dichlorophenoxyacetic acid-stimulated elongation growth of pea (Pisum sativum L. cv. Tyrkys) and spruce [Picea abies (L.) Karst] stem segments. A dependence on the concentration of GGMOs (between 10-5-10-10M) as well as plant species was ascertained. Pea stem segments were much more sensitive (10-10M) than spruce (10-8M). The GGMOs did not exhibit toxicity even at high concentrations and during long-term bioassays. The timing of the action of GGMOs and auxin in the growth process was also studied.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - d.p degree of polymerization - GGMOs galactoglucomannan-derived oligosaccharides This research was supported by the Slovak Grant Agency for Science.  相似文献   

11.
Axillary buds from the second primary scale excised from 21-day-old pea(Pisum sativum L. cv. Vladan) plants were used as a modelsystem for studying the release of buds from apical dominance. The isolatedbudswere transferred onto basal medium with or without a supplement of growthregulators and cultivated up to 24 h in short-term and up to 4weeks in long-term experiments. In both sets of experiments endogenous IAA,cytokinins and the uptake of labelled zeatin were analysed. The development ofbuds was monitored by image analysis, estimation of their weight, and byanatomical studies. Generative meristems were found in isolated axillary budsalready in 21-day-old plants at the beginning of the experimental period. Theonset of bud growth was recorded as soon as 2 h after the budexcision by image analysis. The bud growth was accompanied by a rapid transientincrease of the endogenous IAA level within the first 2 h,followedby an increase of iPA within 24 h. The uptake of the exogenouscytokinin ([3H]Z) reached its peak between the 6 and 8hafter the release from apical dominance. The cytokinin analyses of bothshort-term and long-term bud cultures revealed the increase of free cytokininsand their glucosides, indicating de novo synthesis ofcytokinins in the buds themselves.  相似文献   

12.
13.
A capability of triethanolamine (TEA) and its organosilicon derivatives methyl-, chloromethyl-, and ethoxy silatrane (MS, CMS, and ES, respectively) in low and ultra-low concentrations (from 10?3 to 10?13 M) to increase pea (Pisum sativum L.) thermotolerance and the relation of this process with heat-shock protein (HSP) accumulation in the roots were studied. Low and ultra-low concentrations of CMS and MS improved seedling survival under conditions of the heat shock (45°C). This process was not accompanied by stress protein accumulation. ES and CMS affected seedling survival and HSP accumulation differently in dependence on the temperature and preparation concentration.  相似文献   

14.
Axillary buds of intact pea seedlings (Pisum sativum L. cv Alaska) do not grow and are said to be dormant. Decapitation of the terminal bud promotes the growth of these axillary buds, which then develop in the same manner as terminal buds. We previously showed that unique sets of proteins are expressed in dormant and growing buds. Here we describe the cloning, sequencing, and expression of a cDNA clone (pGB8) that is homologous to ribosomal protein L27 from rat. RNA corresponding to this clone increases 13-fold 3 h after decapitation, reaches a maximum enhancement of about 35-fold after 12 h, and persists at slightly reduced levels at later times. Terminal buds, root apices, and elongating internodes also contain pGB8 mRNA but fully expanded leaflets and fully elongated internodes do not. In situ hybridization analysis demonstrates that pGB8 mRNA increases in all parts of the bud within 1 h of decapitation. Under appropriate conditions, growing buds can be made to stop growing and become dormant; these buds subsequently can grow again. Therefore, buds have the capacity to undergo multiple cycles of growth and dormancy. RNA gel blots show that pGB8 expression is reduced to dormancy levels as soon as buds stop growing. However, in situ hybridization experiments show that pGB8 expression continues at growing-bud levels in the apical meristem for 2 d after it is reduced in the rest of the bud. When cultured stems containing buds are treated with indoleacetic acid at concentrations ≥10 μm, bud growth and expression of pGB8 in the buds are inhibited.  相似文献   

15.
When [14C]indol-3yl-acetic acid was applied to the apical bud of 5-day old dwarf pea seedlings which possessed unbranched primary roots, a small amount of 14C was transported into the root system at a velocity of 11–14 mm h-1. Most of the 14C which entered the primary root accumulated in the young lateral root primordia, including the smallest detectable (20–30 mm from the primary root tip). In older (8-d old) seedlings in which the primary root bore well-developed lateral roots, 14C also accumulated in the tertiary root primordia. In contrast, little 14C was detected in the apical region of the primary root or, in older plants, in the apices of the lateral roots.Abbreviations IAA indol-3yl-acetic acid  相似文献   

16.
17.
D. A. Morris 《Planta》1977,136(1):91-96
Dwarf pea plants bearing two cotyledonary shoots were obtained by removing the epicotyl shortly after germination, and the patterns of distribution of 14C in these plants was investigated following the application of [14C]IAA to the apex of one shoot. Basipetal transport to the root system occurred, but in none of the experiments was 14C ever detected in the unlabelled shoot even after transport periods of up to 48 h. This was true both of plants with two equal growing shoots and of plants in which one shoot had become correlatively inhibited by the other, and in the latter case applied whether the dominant or subordinate shoot was labelled. In contrast, when [14C]IAA was applied to a mature foliage leaf of one shoot transfer of 14C to the other shoot took place, although the amount transported was always low. Transport of 14C from the apex of a subordinate shoot on plants bearing one growing and one inhibited shoot was severely restricted compared with the transport from the dominant shoot apex, and in some individual plants no transport at all was detected. Removal of the dominant shoot apex rapidly restored the capacity of the subordinate shoot to transport apically-applied [14C]IAA, and at the same time led to rapid cambial development and secondary vascular differentiation in the previously inhibited shoot. Applications of 1% unlabelled IAA in lanolin to the decapitated dominant shoot maintained the inhibition of cambial development in the subordinate shoot and its reduced capacity for auxin transport. These results are discussed in relation to the polarity of auxin transport in intact plants and the mechanism of correlative inhibition.Abbreviations IAA Indol-3-yl-acetic acid - TIBA 2,3,5-triiodobenzoic acid - 2,4D 2,4-dichlorophenoxyacetic acid - IAAsp Indol-3-yl-acetyl aspartic acid  相似文献   

18.
D. A. Morris  A. Guy Thomas 《Planta》1974,118(3):225-234
Summary When eight 14C-labelled auxin and non-auxin compounds were applied to the apical buds of intact dwarf pea seedlings (Pisum sativum L.), only [1-14C]indoleacetic acid ([14C]IAA) and -[1-14C] naphthaleneacetic acid ([14C]NAA) underwent appreciable basipetal transport during the first 24 h; over a longer period (72 h) considerable basipetal transport of the auxin [1-14C]2,4-dichlorophenoxyacetic acid ([14C]2,4-D) also occurred, but at a very much lower velocity (ca. 1.4–2.2 mm·h-1). The movement of 2,4-D possessed many of the characteristics of a typical auxin transport. During uptake and transport IAA and NAA were extensively metabolised to the corresponding aspartates, and to ethanol-insoluble/NaOH-soluble compounds; little metabolism of 2,4-D was observed. None of the non-auxin compounds applied (sorbose, sucrose, leucine, adenine and kinetin) underwent appreciable basipetal transport from the apical bud. All but sorbose were extensively metabolised by the apical tissues. Little metabolism of sorbose itself was detected.The results suggest that the long-distance basipetal auxin transport system from the apical bud of intact plants is specific for auxins; the specificity may result from the affinity of auxins for specific transport sites.  相似文献   

19.
Ethylene represents an important regulatory signal for root development. Genetic studies in Arabidopsis thaliana have demonstrated that ethylene inhibition of root growth involves another hormone signal, auxin. This study investigated why auxin was required by ethylene to regulate root growth. We initially observed that ethylene positively controls auxin biosynthesis in the root apex. We subsequently demonstrated that ethylene-regulated root growth is dependent on (1) the transport of auxin from the root apex via the lateral root cap and (2) auxin responses occurring in multiple elongation zone tissues. Detailed growth studies revealed that the ability of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid to inhibit root cell elongation was significantly enhanced in the presence of auxin. We conclude that by upregulating auxin biosynthesis, ethylene facilitates its ability to inhibit root cell expansion.  相似文献   

20.
This report investigates physical changes associated with the short-term inhibition of root elongation in intact maize seedlings (Zea mays L. vs. Halamish) by exogenous auxin. Movement of root tips was assayed by video microscopy in control roots, roots grown for 45 min in 10–6 M indole3-acetic acid (IAA), or roots chilled for 3 min at 11°C. IAA and chilling treatments similarly reduced root elongation rates (from 29 ± 6 m min–1 to 6 ± 2 m min–1). Initial rates of root tip contraction induced by 300 mOsmol mannitol were used to calculate tissue contractibility values. These allowed a comparison of effects of IAA and chilling treatments on apparent rates of water transport out of the root tip tissues. Chilling treatment reduced root tip contractibility by 66%, whereas IAA had much less effect (26% reduction). Roots were also exposed to an osmotic jump treatment; the initial osmotically induced increase in elongation rate was used to determine root tip extensibility values. Both IAA and chilling treatments reduced root tip extensibilities by 57%. Inhibition of wall-yielding properties, rather than hydraulic limitations, appeared to be primarily associated with inhibition of intact root tip elongation by exogenous IAA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号