首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Segregation ratios in the F2s of crosses between courgette cultivars and the pumpkin cv. Cinderella indicated that the resistance of the latter to cucumber mosaic virus (CMV), expressed as a failure to develop systemic symptoms, was controlled by two unlinked recessive genes. However, data from the backcross generations were not consistent with this. Biometrical analysis showed significant gene interactions, possibly between the genes for CMV resistance and the background genotype determining plant vigour and a gene dosage effect for resistance. The resistance has been successfully backcrossed into courgette breeding material.  相似文献   

2.
Cucumber mosaic virus (CMV) lists among the most important etiological agents of tomato diseases. Some isolates of CMV function as helper virus for replication, encapsidation and transmission of satellite RNAs (satRNA), which may exacerbate symptoms induced by CMV in certain hosts. Outbreaks of CMV strains supporting hypervirulent variants of satRNAs are recurrent in tomato with devastating effects on crop production and efficient control measures are still unavailable. In this study, we examined the dynamics of infection of the CMV strains tomato top stunting (TTS) and 77 supporting replication of satRNA variants that codetermine top stunting (TTS‐satRNA) and necrotic (77‐satRNA) phenotypes in two tomato cultivars denoted Solanum lycopersicum Manduria (Sl‐Ma) and S. lycopersicum UC82 (Sl‐UC). Sl‐Ma but not Sl‐UC recovered from disease symptoms induced by CMV‐TTS while both the cultivars succumbed to the infection of CMV‐77 and its necrogenic satRNA. Ability to recover of the Sl‐Ma plants was transmitted by grafting to the susceptible genotype Sl‐UC. More interestingly, recovery was observed also against the challenge inoculation of CMV plus 77‐satRNA in plants grafted on Sl‐Ma and in self‐grafted plants of both the Sl‐Ma and Sl‐UC cultivars. Analysis of small RNAs and genes of the defence plant response based on RNA interference (RNAi) suggested that RNAi is involved in the recovery of Sl‐Ma against CMV with hypervirulent satRNAs and in scions grafted on this rootstock. The response of Sl‐Ma to the inoculation of CMV‐77 plus 77‐satRNA was compared with that of the transgenic tomato line S. lycopersicum transgenic line UCTC5.9.2 that expresses constitutively the benign variant of the satRNA denoted Tfn‐satRNA. Comparative analysis suggested that the response may operate via similar mechanisms, which involve RNAi, the graft and the presence of the satRNA.  相似文献   

3.
A graft-transmissible disease displaying red veins, red blotches and total reddening of leaves in red-berried wine grape (Vitis vinifera L.) cultivars was observed in commercial vineyards. Next-generation sequencing technology was used to identify etiological agent(s) associated with this emerging disease, designated as grapevine redleaf disease (GRD). High quality RNA extracted from leaves of grape cultivars Merlot and Cabernet Franc with and without GRD symptoms was used to prepare cDNA libraries. Assembly of highly informative sequence reads generated from Illumina sequencing of cDNA libraries, followed by bioinformatic analyses of sequence contigs resulted in specific identification of taxonomically disparate viruses and viroids in samples with and without GRD symptoms. A single-stranded DNA virus, tentatively named Grapevine redleaf-associated virus (GRLaV), and Grapevine fanleaf virus were detected only in grapevines showing GRD symptoms. In contrast, Grapevine rupestris stem pitting-associated virus, Hop stunt viroid, Grapevine yellow speckle viroid 1, Citrus exocortis viroid and Citrus exocortis Yucatan viroid were present in both symptomatic and non-symptomatic grapevines. GRLaV was transmitted by the Virginia creeper leafhopper (Erythroneura ziczac Walsh) from grapevine-to-grapevine under greenhouse conditions. Molecular and phylogenetic analyses indicated that GRLaV, almost identical to recently reported Grapevine Cabernet Franc-associated virus from New York and Grapevine red blotch-associated virus from California, represents an evolutionarily distinct lineage in the family Geminiviridae with genome characteristics distinct from other leafhopper-transmitted geminiviruses. GRD significantly reduced fruit yield and affected berry quality parameters demonstrating negative impacts of the disease. Higher quantities of carbohydrates were present in symptomatic leaves suggesting their possible role in the expression of redleaf symptoms.  相似文献   

4.
5.
Six blackberry or hybrid berry cultivars and 19 raspberry cultivars were assessed for their infectibility with, and sensitivity to, graft inoculation with 10 distinct viruses found infecting Rubus in the UK. Cultivars were grafted with each of, two isolates of the pollen borne raspberry bushy dwarf virus (RBDV), five aphid borne viruses: black raspberry necrosis, raspberry leaf mottle (RLMV), raspberry leaf spot (RLSV), rubus yellow net and raspberry vein chlorosis (RVCV); and isolates of the nematode transmitted nepoviruses, arabis mosaic, raspberry ringspot, strawberry latent ringspot and tomato black ring. All tested cultivars were infectible with a resistance breaking isolate of RBDV but only about half of that number with the Scottish type isolate of the virus. The raspberry cvs Autumn Bliss, and occasionally Glen Garry and Glen Prosen, developed leaf yellowing symptoms following infection with RBDV, but none of the other infected cultivars showed obvious leaf symptoms when kept in a heated glasshouse during the growing season. All tested cultivars were infectible with each of the four viruses transmitted in nature by the aphid, Amphorophora idaei. Most were infected symptomlessly, but seven cultivars developed severe leaf spotting symptoms due to infection with RLMV or RLSV. All but one of the raspberry cultivars were infectible with RVCV, which is transmitted in nature by the aphid Aphis idaei, and almost all infected plants developed leaf symptoms; only one of the hybrid berry or blackberry cultivars tested was infected with RVCV. In tests with the four nepoviruses, all tested cultivars, except Tummelberry, were infectible with at least one or more of these viruses. However, cultivars responded differently to challenge inoculation with different isolates of individual nepoviruses. Several cultivars developed chlorotic leaf mottling following infection with some nepovirus isolates. The implications of these results for virus control are discussed in the light of the changing pattern of virus and virus vector incidence in the UK.  相似文献   

6.
Turnip mosaic virus (TuMV) and cauliflower mosaic virus (CaMV) have been found infecting field crops of winter oilseed rape (Brassica napus ssp. oleifera) in South Warwickshire. Other viruses found include broccoli necrotic yellows virus (BNYV) and a member of the beet western yellows virus group. Systemic leaf symptoms caused by TuMV varied within and between cultivars; the three predominant reaction types were classified as necrotic, mosaic and immune. Some recently introduced cultivars of oilseed rape were more severely affected by TuMV infection than older cultivars. Reactions to CaMV were less varied and immunity was not found. The seed yield from TuMV and CaMV-infected plants was less than that of healthy control plants. This effect was due to infected plants producing either fewer seeds, smaller seeds or both. Germination of seeds from infected plants was unaffected if sown soon after harvest. After storage for one year the germination of seed from a virus infected plant was significantly less than that of seed from a virus-free plant. All commercial cultivars tested were experimentally susceptible to turnip yellow mosaic virus (TYMV) and some American strains of cucumber mosaic virus (CMV).  相似文献   

7.
Plantago mottle virus (RMV), a member of the tymovirus group, was identified as the causal agent of a disease of pea (Pisum sativum) in New York State. The pea virus isolates were identical in host range and serology to the type strain from Plantago major. In susceptible pea genotypes symptoms were strongly influenced by ambient temperature; high temperature (35°C) reduced infectivity and suppressed symptoms, whereas low temperature (15 and 25°C) prolonged the incubation period but favoured the development of conspicuous leaf veinal chlorosis, mottle and necrosis. Resistance to P1MV was found in seventeen of twenty-five domestic pea cultivars and in two of twelve foreign introductions. Many of the P1MV-resistant lines were resistant also to bean yellow mosaic virus. The use of resistant cultivars and the apparent limited conditions for efficient transmission of this virus have minimized its importance to pea crops in New York State.  相似文献   

8.
Localisation and movement of Plum pox virus (PPV), sharka disease, in stem tissues of susceptible and resistant apricot (Prunus armeniaca L.) cultivars was studied. Two different assays were performed. In the first assay, apricot cultivars were grafted on to a non‐inoculated GF305 peach rootstock and, after two months, the sprouted apricot was inoculated by chip‐grafting. In the second assay, apricot cultivars were grafted on to a previously chip‐inoculated GF305 showing strong PPV symptoms. Localisation of virus was studied in apricot stem by immuno‐tissue printing and sharka symptoms in GF305 and apricot leaves were also observed. Virus was mainly localised in the xylem, and sometimes in the cortex and pith. Results revealed that, while all the cultivars allowed limited virus movement from the inoculation point, only the susceptible cultivars (Screara, Bebeco and Colomer) allowed long distance movement and even showed symptoms in leaves.  相似文献   

9.
A method to establish two experimental corky ringspot disease (CRS) plots that had no prior CRS history is described. CRS is a serious disease of potato in the Pacific Northwest caused by tobacco rattle virus (TRV) and transmitted primarily by Paratrichodorus allius. ‘Samsun NN’ tobacco seedlings were inoculated with viruliferous P. allius in the greenhouse before they were transplanted into the field soil at the rate of 3,000 plus seedlings/ha. Care was taken to keep soil around plants in the greenhouse and transplants in the field moist to avoid vector mortality. The vector population in the soil of one of the fields was monitored by extraction, examination under microscope and bioassay on tobacco seedlings to ascertain that they were virus carriers. Presence of virus in tobacco bioassay plants was determined by visual symptoms on tobacco leaves and by testing leaves and roots using ELISA. Although TRV transmission was rapid, there was loss of infectivity in the first winter which necessitated a re-inoculation. After two years of planting infected tobacco seedlings, 100% of soil samples collected from this field contained viruliferous P. allius. In the second field, all five commercial potato cultivars, known to be susceptible, expressed symptoms of CRS disease indicating that the procedure was successful.  相似文献   

10.
《Journal of Asia》2014,17(3):493-498
Citrus tristeza virus (CTV) is a severe threat to the citrus industry. Disease symptoms and severity may vary depending on the CTV isolates. These are responsible for the decline of trees grafted on sour orange rootstock, or stem pitting on some citrus commercial cultivars regardless of rootstock. In the Calabria region (Italy), CTV was first reported on cultivars imported from other countries. However, recent observations suggested that natural spread of CTV was occurring and a study was needed to determine the epidemiological status and aphid transmission of CTV in Calabria. The role played by local A. gossypii in the spread of CTV was analyzed in the laboratory using various viral acquisition, inoculation periods with three different CTV isolates. Single aphid vectors acquired CTV after a minimum of 30 min acquisition access period (AAP) and were able to transmit the virus after a 60 min inoculation access period (IAP) to healthy plants. A minimum of four aphid vectors were needed to reach 50% transmission probability. The results suggested that the three tested strains are transmitted by A. gossypii in a semi-persistent mode. The results demonstrated that local A. gossypii population can acquire and transmit efficiently the tested virus isolates with serious implications on the virus spread.  相似文献   

11.
A Tobamovirus Causing Heavy Losses in Protected Pepper Crops in Spain   总被引:4,自引:0,他引:4  
During a four-year (1982–1985) survey of plant viruses infecting pepper cultivars grown under plastic in the Southeastern region of Spain, a tobamovirus was found to be the major disease agent of this crop. The virus produces slight or no symptoms on the leaves, but causes chlorotic mottling, malformation and reduction in size with occasional necrosis on the fruits and was able to infect all commercial pepper cultivars tested, including those resistant to other tobamoviruses, causing a catastrophic disease. The biological and serological characterization of the virus showed that it is very similar to pepper mild mottle virus (PMMV) (Wetter et al. 1984) and therefore we have termed it as Spanish strain of PMMV (PMMV-S). The need of grouping all the so-called “pepper strains” of tobacco mosaic virus (TMV) as a new distinct member of the tobamovirus group with the name of PMMV is emphasized.  相似文献   

12.
In Western Australia, infection with cucumber mosaic virus (CMV) was widespread in all three subspecies of subterranean clover (Trifolium subterraneum) growing in plots belonging to the Australian National Subterranean Clover Improvement Programme. Seed-borne CMV was detected in seed harvested in 1984–1986 of 18/25 cultivars from two collections of registered cultivars; seed transmission rates ranged up to 8.8%. Seed samples from CMV-inoculated plants of 11 cultivars transmitted the virus to 0.5–8.7% of seedlings. Seed transmission rates greater than 5% were obtained only with cvs Enfield, Green Range and Nangeela. CMV was not detected in seed harvested in 1975–1981 from one of the registered cultivar collections, in 17 commercial seed stocks from 1986 or in a survey of subterranean clover pastures.
Symptoms in subterranean clover naturally infected with CMV included mottle, leaflet downcurling and dwarfing but severity varied with cultivar and selection. CMV isolates from different sources varied in virulence when inoculated to subterranean clover; two (both from subterranean clover) were severe, two moderate and three (including one from subterranean clover) mild. In pot tests, CMV decreased herbage production and root growth (dry wts) of cv. Green Range by 49% and 59% respectively. In spaced-plants growing in plots, CMV decreased herbage production and root growth of cvs Green Range and Northam by 59–630 and seed production of cv. Green Range by 45%. In rows sown with infected seed, aphid spread increased infection levels to 75% in cv. Green Range and 44% in cv. Esperance and losses in herbage production of 42% and 29% respectively were recorded.
CMV isolated from subterranean clover included isolates from both serogroups.  相似文献   

13.
A disease of spiraea(Spiraea xvanhouttei) manifested in leaves by very mild, mostly hardly perceptible mosaic, was found to be caused by cucumber mosaic virus (CMV) infection. The proof was given on the basis of responce of differential plants after virus transmission, by immunosorbent electron microscopy and ELISA.  相似文献   

14.
Virus diseases of celery in England   总被引:1,自引:0,他引:1  
Abnormal celery plants (Apium graveolens) with symptoms typical of virus infection were collected from 28 farms in Cambridgeshire, Lancashire, Lincolnshire, and Norfolk; six different diseases were found. The causal viruses from three of these were isolated and partially characterised. Cucumber mosaic virus was quite common, but usually symptomless; it had no effect on the growth of four celery cultivars in field trials. Celery virus 036 was serologically related to western celery mosaic virus, had a host range apparently confined to Umbelliferae, and was very common in the Fens, causing ringspot symptoms in some cultivars and a loss in yield of up to 24%. This disease was much less severe than that caused by an American isolate of western celery mosaic virus in glasshouse comparisons. Celery virus 065 (an unidentified isometric virus, 28–30 nm in diameter) was less common, had a very wide host range, and caused stunting, necrosis, and chlorotic flecking in all cultivars with a loss in yield of up to 45%. Of the remaining three diseases, celery yellow spot was common; the causal agent was transmitted by mechanical inoculation, but very inefficiently, and although yield losses were not determined accurately, they were thought to be insignificant. While plants with symptoms typical of celery yellow net and celery strap leaf diseases were often found, no viruses could be isolated from them, despite repeated attempts.  相似文献   

15.
Reactions to two subgroup I isolates (Fny-CMV and Pf-CMV) and two subgroup II isolates (A9-CMV and LS-CMV) of cucumber mosaic virus (CMV) were studied in three non tuber-bearing wild potato species (Solanum spp.) of the series Etuberosa, and in two tuber-bearing interspecific potato hybrids and four potato cultivars using graft-inoculation. Three classes of phenotypic reactions (susceptible, hypersensitive, extreme resistance) were observed in the tuber-bearing genotypes. Susceptible genotypes developed mosaic or severe mosaic with leaf malformation and had high CMV titres. Hypersensitive genotypes developed either top necrosis or vein necrosis and/or necrotic spots on apical leaves, and had low CMV titres. Extremely resistant genotypes had no symptoms and no CMV was detected. The hybrid 87HW13.7 (S. tuberosum×S. multidissectum) developed top necrosis specific to infection with Fny-CMV. The hybrid ‘A6’ (S. demissum×S. tuberosum cv. Aquila) was hypersensitive to all CMV isolates tested. Extreme resistance was not functional against all CMV isolates. Neither hypersensitivity nor extreme resistance were related to the CMV subgroup.  相似文献   

16.
Cucumber green mottle mosaic virus (CGMMV) is a major limiting factor in the production of cucumber plants worldwide. In the present study, we use plant growth-promoting rhizobacteria (PGPR) to control this virus effectively. Stenotrophomonas maltophilia HW2 was isolated from healthy cucumber root, exhibited a good biocontrol efficacy against CGMMV. Here, it is documented that 20 d after virus inoculation, the biocontrol efficacy of HW2 reached 52.61%. HW2 can effectively colonize in cucumber rhizosphere, and also promoted cucumber plants growth. We also examined the effect of HW2 on viral replication and its mechanism. Compared with the control, HW2 pre-treated plants could delay virus replication for more than 3 d and inhibit viral protein genes (CP, MP, Rep) expression in the cucumber leaf. The expression of antioxidant enzyme genes (SOD and CAT) and defense-related genes (PR1 and PR5) were quickly induced by HW2. These results suggest that HW2 induced plant defense responses to CGMMV by increasing the expression of defense response genes. We report for the first time that Stenotrophomonas maltophilia improved cucumber resistance against CGMMV, which highlights the applying of PGPR on controlling of virus diseases.  相似文献   

17.
The response of seven lettuce cultivars to two geographically different Lettuce mosaic virus (LMV) isolates (LMV‐A, LMV‐T) was statistically evaluated based on infection rate, virus accumulation and symptom severity in different time trials. LMV‐A is characterized by the ability to systemically infect cv. Salinas 88 (mo12‐carrying resistant cultivar), and inducing mild mosaic symptoms. Among lettuce cultivars, Varamin (a native cultivar) similar to cv. Salinas showed the most susceptibility to both LMV isolates, whereas another native cultivar, Varesh, was tolerant to the virus with minimal viral accumulation and symptom scores, significantly different from other cultivars at P < 0.05. LMV‐A systemically infects all susceptible lettuce cultivars more rapidly and at a higher rate than LMV‐T. This isolate accumulated in lettuce cultivars at a significantly higher level, determined by semiquantitative ELISA and induced more severe symptoms than LMV‐T isolate at 21 dpi. This is the first evidence for a LMV isolate with ability to systemically infect mo12‐carrying resistant cultivar of lettuce from Iran. In this study, accumulation level of LMV showed statistically meaningful positive correlation with symptom severity on lettuce plants. Based on the results, three evaluated parameters differed considerably by lettuce cultivar and virus isolate.  相似文献   

18.
A new virus disease of bougainvillea occurred in Taiwan and proved to be caused by a Badnavirus, which is similar to the pathogen tentatively named ‘Bougainvillea spectabilis chlorotic vein‐banding virus (BsCVBV)’ in Brazil according to pathological and molecular results. In electron microscopic observations, typical bacilliform virions measuring 130–158 × 27–42 nm were observed in infected bougainvillea tissues. The transmission tests demonstrated that the virus could be easily transmitted among different bougainvillea cultivars by bud grafting but not by mechanical inoculation. BsCVBV showed different pathogenicity to various bougainvillea cultivars in our inoculation tests. The Taipei‐Red and Thimma cultivars showed the apparent foliar symptoms of chlorosis, chlorotic spots, wrinkling and leaf‐distortion; the original species of Bougainvillea glabra produced chlorotic spots and vein clearing on leaves without wrinkling or leaf distortion; both ‘Mrs. Eva Mauve Variegata’ and Hati Gadis showed mild mottling and faint spots of leaves; Helen Johnson was tolerant to BsCVBV. Our devised PCR‐based assays demonstrated that BsCVBV could replicate and persistently survived in all tested bougainvillea cultivars used in this study although it induced different symptoms in them. The BsCVBV‐1 primer pair devised from our cloned BsCVBV‐specific DNA fragments proved to be efficient in the PCR assays for the rapid and specific detection of BsCVBV in Taiwan, and this PCR‐based method is helpful in the quarantine, inspection and ecological studies for BsCVBV in Taiwan.  相似文献   

19.
Changes in glucose-6-phosphate dehydrogenase, ribonucleases activities and chlorophyll content were studied in leaves of plants systemically infected by potato virus Y, necrotic strain (PVYN). Potato cultivars Jara and Adretta differing in resistance to potato virus Y were used. No statistically significant differences were observed between healthy and infected plants of both cultivars in chlorophyll content. Activity of glucose-6-phosphate dehydrogenase slowly increased in connection with virus multiplication and reached 203.4% of the values of non-infected control in susceptible cv. Jara and 160.4% in the resistant cv. Adretta. Differences between cultivars were significant from 60 d after inoculation (P≤0.05). The activity of ribonucleases quickly increased in the initial period of the experiment and then slowly decreased. Their activities reached 195.6% in susceptible cultivar and 183.5% in the resistant one. Significant differences (P≤0.01) between susceptible and resistant cultivars was found from 18 to 35 d after inoculation. The activities of enzymes corresponded to PVYN multiplication which was since 40 d considerably higher (P<0.01) in susceptible cultivar in comparison with the resistant one. Thus the activities of studied enzymes could be considered as markers of resistance of potato cultivars to PVYN multiplication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号