首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seventy-nine 5-methyltryptophan-resistant cell lines have been selected from haploid Datura innoxia Mill. cell cultures by plating suspensions in agar medium containing a growth inhibitory concentration of 5-methyltryptophan. Mutagen treatment increased the frequency of resistance. The eleven variants tested posses an altered anthranilate synthase less sensitive to feedback inhibition by tryptophan. All five of the variants which were analyzed for free amino acids contained elevated levels of free tryptophan (8 to 30 times the wild type level). None of the selected cell lines were auxin-autotrophic. Resistance to 5-methyltryptophan, altered anthranilate synthase, and high free tryptophan (4 to 44 times) were also expressed in leaves of plants regenerated from the variant lines and in cultures reinitiated from the resistant plants. These results show that the amino acid overproduction phenotype can be selected at the cellular level of organization and be expressed identically in whole plants regenerated from the selected cells.  相似文献   

2.
The changes in the contents of protein and free amino acids in pea plants inoculated with Rhizobium leguminosarum were studied taking into account the susceptibility of roots to root nodule bacteria. The content of cytoplasmic protein during infection increased in the actively growing root zone (0–5 mm) and decreased in the root zones susceptible to rhizobia (5–20 mm from the root tip). The quantitative composition of free amino acids changed essentially upon inoculation of pea seedlings with R. leguminosarum.  相似文献   

3.
The activity of L-tryptophan synthase (TS, E.C.4.2.1.20) was comparedin vivo in seedlings of plants high in L-tryptophan (L-trp) (pea and kohlrabi) and low in this amino acid (maize). In maize the TS was studied both in the normal and in the opaque-2 genotype that forms an endosperm richer in essential amino acids. The activity of TS was determined on the basis of the increase in radioactivity of the chromatographically purified L-trp-14C, synthetized after vacuum infiltration of L-serine-14C-(U) and ineubation for 24 h. As regards the TS activity in seedlings, maize is comparable to pea and kohlrabi; in contrast to this TS is less active in pea seedlings, which can be attributed to the presence of TS inhibitor (CHEN and BOLL 1969). In ripening maize kernels and leaves adjacent to the ear the TS activity is about 20 times lower than in seedlings. The differences in the activity of TS in the genotypes of maize could not be detected, even at the period of seed ripening. Therefore the differences in L-trp content in the investigated plants cannot be explained by a differing activity of TS. TS is probably not the determining regulator of L-trp level in plants, its activity is relatively high even in plants low in L-trp.  相似文献   

4.
Amino acid composition of the free amino acid pool and the TCA-insolubleprotein fraction were investigated in root tips of pea and Tamarixtetragyna plants grown at various levels of NaCl salinity. Salinitystress induced an increase of proline content, mainly in thefree amino acid pool in both plants, and of proline or hydroxyprolinecontent in the protein. Externally-supplied proline was absorbedand incorporated into protein, by pea roots, more effectivelythan by Tamarix roots. Salinity stress, apparently, stimulatedthe metabolism of externally-supplied labelled proline. Pearoots have a very large pool of free glutamic acid; however,70 per cent of the 14C from externally-supplied 14C-U-glutamicacid was released as CO2. Very small amounts of it were incorporatedinto protein. No measurable amount of radioactivity could bedetected in any one of the individual amino acids, either ofprotein hydrolysate or the free amino acid pool. Proline very effectively counteracted the inhibitory effectof NaCl on pea seed germination and root growth. A similar effectbut to a lesser degree was achieved with phenylalanine and asparticacid. The feasibility of proline being a cytoplasmic osmoticumis discussed.  相似文献   

5.
Zn2+ ions slightly enhance at low concentrations (0.01 μg ml-1) the activity of tryptophan synthase obtained from the shoots of 14-day-old pea seedlings (Pisum sativum L.). On the contrary, high concentrations of Zn2+ (10 μg ml-l) exert an inhibitory effect. The direct Zn2+ activation of tryptophan synthase, establishedin vitro with a partially purified enzyme preparation, is relatively low and obviously is not decisive from the point of view of tryptophan biosynthesis of the enzyme and thus they are participating in thein vivo experiments.  相似文献   

6.
Arabidopsis thaliana has two genes, ASA1 and ASA2, encoding the alpha subunit of anthranilate synthase, the enzyme catalyzing the first reaction in the tryptophan biosynthetic pathway. As a branchpoint enzyme in aromatic amino acid biosynthesis, anthranilate synthase has an important regulatory role. The sequences of the plant genes are homologous to their microbial counterparts. Both predicted proteins have putative chloroplast transit peptides at their amino termini and conserved amino acids involved in feedback inhibition by tryptophan. ASA1 and ASA2 cDNAs complement anthranilate synthase alpha subunit mutations in the yeast Saccharomyces cerevisiae and in Escherichia coli, confirming that both genes encode functional anthranilate synthase proteins. The distributions of ASA1 and ASA2 mRNAs in various parts of Arabidopsis plants are overlapping but nonidentical, and ASA1 mRNA is approximately 10 times more abundant in whole plants. Whereas ASA2 is expressed at a constitutive basal level, ASA1 is induced by wounding and bacterial pathogen infiltration, suggesting a novel role for ASA1 in the production of tryptophan pathway metabolites as part of an Arabidopsis defense response. Regulation of key steps in aromatic amino acid biosynthesis in Arabidopsis appears to involve differential expression of duplicated genes.  相似文献   

7.
The application of urease inhibitors in conjunction with urea fertilizers as a means of reducing N loss due to ammonia volatilization requires an in-depth study of the physiological effects of these inhibitors on plants. The aim of this study was to determine how the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) affects N metabolism in pea and spinach. Plants were cultivated in pure hydroponic culture with urea as the sole N source. After 2 weeks of growth for pea, and 3 weeks for spinach, half of the plants received NBPT in their nutrient solution. Urease activity, urea and ammonium content, free amino acid composition and soluble protein were determined in leaves and roots at days 0, 1, 2, 4, 7 and 9, and the NBPT content in these tissues was determined 48 h after inhibitor application. The results suggest that the effects of NBPT on spinach and pea urease activity differ, with pea being most affected by this treatment, and that the NBPT absorbed by the plant caused a clear inhibition of the urease activity in pea leaf and roots. The high urea concentration observed in leaves was associated with the development of necrotic leaf margins, and was further evidence of NBPT inhibition in these plants. A decrease in the ammonium content in roots, where N assimilation mainly takes place, was also observed. Consequently, total amino acid contents were drastically reduced upon NBPT treatment, indicating a strong alteration of the N metabolism. Furthermore, the amino acid profile showed that amidic amino acids were major components of the reduced pool of amino acids. In contrast, NBPT was absorbed to a much lesser degree by spinach plants than pea plants (35% less) and did not produce a clear inhibition of urease activity in this species.  相似文献   

8.
The present study assessed the response of pea plants exposed to herbicide induced oxidative stress in the plants present in agriculture field. We analysed the effect of exogenous nitric oxide (NO) regulated chlorophyll and protein content, nitrate reductase enzyme activity and antioxidant enzyme activity in herbicidetreated green pea (Pisum sativum L.). Glyphosate (0.25 mM) treatment alone or in combination with 250 μM sodium nitroprusside (SNP, 250 μM with glyphosate) was given to pea and we observed the changes in biophysical and biochemical parameters. During oxidative stress ion leakage is the first step of cellular damage. Supplementation of SNP with glyphosate significantly reduced ion leakage and moderately reduced H2O2 and malondialdehyde (MDA) content. SNP also increased chlorophyll content and antioxidant enzymes viz. superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (POD) activity as compared to herbicide treatment alone. The present result suggests that NO protects pea plants from damage caused by glyphosate.  相似文献   

9.
The time courses of the synthesis of diamine oxidase in pea plants grown for 14 days either in the light or in the dark are similar with the highest increase in activity occurring in the cotyledons and in the shoots during the first 6 to 8 days. Plants grown in the dark showed a 2- to 3-fold higher enzyme activity than plants grown in the light. Pea diamine oxidase could bein vivo efficiently inhibited by substrate analogues 1,4-diamino-2-butanone and 1,5-diamino-3-pentanone. The first compound inhibited proportionally to its concentration the growth of etiolated pea plants, but its instability makes an unequivocal interpretation of the results difficult. On the other hand, 1,5-diamino-3-pentanone a stable and more efficient diamine oxidase inhibitor depressed the growth of pea seedlings only at concentrations as high as 5 mM and 10 mM, at which the growth of cress seedlings not containing diamine oxidase was also strongly depressed. The results obtained indicate that tryptamine oxidation catalyzed by diamine oxidase is not involved in the main metabolic pathway leading from tryptophan to indoleacetate in pea plants.  相似文献   

10.
Dihydrodipicolinate synthase (EC 4.2.1.52), the first enzyme unique to lysine biosynthesis in bacteria and higher plants, has been purified to homogeneity from etiolated pea (Pisum sativum) seedlings using a combination of conventional and affinity chromatographic steps. This is the first report on a homogeneous preparation of native dihydrodipicolinate synthase from a plant source. The pea dihydrodipicolinate synthase has an apparent molecular weight of 127,000 and is composed of three identical subunits of 43,000 as determined by gel filtration and cross-linking experiments. The trimeric quaternary structure resembles the trimeric structure of other aldolases, such as 2-keto-3-deoxy-6-phosphogluconic acid aldolase, which catalyze similar aldol condensations. The amino acid compositions of dihydrodipicolinate synthase from pea and Escherichia coli are similar, the most significant difference concerns the methionine content: dihydrodipicolinate synthase from pea contains 22 moles of methionine residue per mole of native protein, contrary to the E. coli enzyme, which does not contain this amino acid at all. Dihydrodipicolinate synthase from pea is highly specific for the substrates pyruvate and l-aspartate-β-semialdehyde; it follows Michaelis-Menten kinetics for both substrates. The pyruvate and l-aspartate-β-semialdehyde have Michaelis constant values of 1.70 and 0.40 millimolar, respectively. l-Lysine, S-(2-aminoethyl)-l-cysteine, and l-α-(2-aminoethoxyvinyl)glycine are strong allosteric inhibitors of the enzyme with 50% inhibitory values of 20, 160, and 155 millimolar, respectively. The inhibition by l-lysine and l-α-(2-aminoethoxyvinyl)glycine is noncompetitive towards l-aspartate-β-semialdehyde, whereas S-(2-aminoethyl)-l-cysteine inhibits dihydrodipicolinate synthase competitively with respect to l-aspartate-β-semialdehyde. Furthermore, the addition of (2R,3S,6S)-2,6-diamino-3-hydroxy-heptandioic acid (1.2 millimolar) and (2S,6R/S)-2,6-diamino-6-phosphono-hexanic acid (1.2 millimolar) activates dihydrodipicolinate synthase from pea by a factor of 1.4 and 1.2, respectively. This is the first reported activation process found for dihydrodipicolinate synthase.  相似文献   

11.
The plant shikimate pathway directs bulk carbon flow toward biosynthesis of aromatic amino acids (AAAs, i.e. tyrosine, phenylalanine, and tryptophan) and numerous aromatic phytochemicals. The microbial shikimate pathway is feedback inhibited by AAAs at the first enzyme, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DHS). However, AAAs generally do not inhibit DHS activities from plant extracts and how plants regulate the shikimate pathway remains elusive. Here, we characterized recombinant Arabidopsis thaliana DHSs (AthDHSs) and found that tyrosine and tryptophan inhibit AthDHS2, but not AthDHS1 or AthDHS3. Mixing AthDHS2 with AthDHS1 or 3 attenuated its inhibition. The AAA and phenylpropanoid pathway intermediates chorismate and caffeate, respectively, strongly inhibited all AthDHSs, while the arogenate intermediate counteracted the AthDHS1 or 3 inhibition by chorismate. AAAs inhibited DHS activity in young seedlings, where AthDHS2 is highly expressed, but not in mature leaves, where AthDHS1 is predominantly expressed. Arabidopsis dhs1 and dhs3 knockout mutants were hypersensitive to tyrosine and tryptophan, respectively, while dhs2 was resistant to tyrosine-mediated growth inhibition. dhs1 and dhs3 also had reduced anthocyanin accumulation under high light stress. These findings reveal the highly complex regulation of the entry reaction of the plant shikimate pathway and lay the foundation for efforts to control the production of AAAs and diverse aromatic natural products in plants.

Characterization of Arabidopsis 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase enzymes and mutants revealed highly complex metabolite-mediated feedback regulation of the plant shikimate pathway.  相似文献   

12.
In lupin (Lupinus albus L.) and pea (Pisum sativum L., cv. Raman) it was shown that the uptake of89Sr from Knop's nutrient solution is significantly increased from a solution with decreased calcium content (one tenth of the normal content) and is slightly decreased from a solution with higher calcium content (150% of the normal content). The calciphile pea absorbs approximately 50% more calcium than the calciphobe lupin, and accordingly 50% radiostrontium less. The pea plant more strongly blocks the translocation of radiostrontium from roots to overground parts, as is proved by the higher discrimination factor of pea (i.e. by the ratio of specific activities of mCi89 Sr/g Ca of roots to overground parts). The presence of chlorine in the nutrient solution decreases the content of radiostrontium per gram of dry matter, both in pea and lupin. Radiostrontium is absorbed quickly by both species of plants and is autoradiographically detectable as early as 2 hours after the introduction of radiostrontium to the nutrient solution. *** DIRECT SUPPORT *** A01GP049 00004  相似文献   

13.
Traditionally, schemes depicting auxin biosynthesis in plants have been notoriously complex. They have involved up to four possible pathways by which the amino acid tryptophan might be converted to the main active auxin, indole-3-acetic acid (IAA), while another pathway was suggested to bypass tryptophan altogether. It was also postulated that different plants use different pathways, further adding to the complexity. In 2011, however, it was suggested that one of the four tryptophan-dependent pathways, via indole-3-pyruvic acid (IPyA), is the main pathway in Arabidopsis thaliana,1 although concurrent operation of one or more other pathways has not been excluded. We recently showed that, for seeds of Pisum sativum (pea), it is possible to go one step further.2 Our new evidence indicates that the IPyA pathway is the only tryptophan-dependent IAA synthesis pathway operating in pea seeds. We also demonstrated that the main auxin in developing pea seeds, 4-chloroindole-3-acetic acid (4-Cl-IAA), which accumulates to levels far exceeding those of IAA, is synthesized via a chlorinated version of the IPyA pathway.  相似文献   

14.
Ray TB 《Plant physiology》1984,75(3):827-831
The sulfonylurea herbicide chlorsulfuron blocks the biosynthesis of the amino acids valine and isoleucine in plants. Addition of these two amino acids to excised pea root (Pisum sativum L. var Alaska) cultures incubated in the presence of chlorsulfuron completely alleviates herbicide-induced growth inhibition. The site of action of chlorsulfuron is the enzyme acetolactate synthase which catalyzes the first step in the biosynthesis of valine and isoleucine. This enzyme is extremely sensitive to inhibition by chlorsulfuron having I50 values ranging from 18 to 36 nanomolar. In addition, acetolactate synthase from a wide variety of tolerant and sensitive plants species is highly sensitive to inhibition by chlorsulfuron.  相似文献   

15.
Changes in the levels of twenty-two free amino acids and in the amino acid composition of the total protein were measured throughout the development of cotyledons of a dwarf garden pea, Pisum sativum cv Greenfeast, grown in a constant environment. A sensitive double-isotope dansylation technique was used. Fresh weight, dry weight, and protein content were also followed. Twenty of the amino acids showed synchronous changes in levels, giving a developmental pattern containing four peaks; major peaks occurred very early and very late in development. The amino acid composition of the total protein, which was always very different from that of the free amino acid pool, showed early changes to one consistent with the final storage protein composition of the seed. These changes included a 50% drop in methionine content and a 70% rise in cysteine. While the maximum free methionine level occurred early in development, that of cysteine was late.  相似文献   

16.
β-Cyanoalanine synthase, which catalyzes the reaction between cysteine and HCN to form β-cyanoalanine and H2S, was assayed in leaf tissues from cyanogenic (Sorghum bicolor × Sorghum sudanense [sorghum]) and noncyanogenic (Pisum sativum [pea], Zea mays [maize], and Allium porrum [leek]) plants. The activity in whole leaf extracts ranged from 33 nanomoles per gram fresh weight per minute in leeks, to 1940 nanomoles per gram fresh weight per minute in sorghum. The specific activities of β-cyanoalanine synthase in epidermal protoplasts from maize and sorghum and in epidermal tissues from peas were in each case greater than the corresponding values for mesophyll protoplasts or tissues, or for strands of bundle sheath cells.

The tissue distributions for this enzyme were determined for pea, leek, and sorghum: the mesophyll protoplasts and tissues in these three plants contained 65% to 78% of the enzyme, while epidermal protoplasts and tissues contained 10% to 35% of the total leaf activity. In sorghum, the bundle sheath strands contained 13% of the leaf activity. The presence of β-cyanoalanine synthase in all tissues and species studied suggests a fundamental role for this enzyme in plant metabolism.

  相似文献   

17.
Paz N  Xu DP  Black CC 《Plant physiology》1985,79(4):1133-1136
The fructose 2,6-bisphosphate (Fru 2,6-P2) content of pea, Pisum sativum, roots and leaves were measured following flooding with water and found to change in times of minutes and to exhibit oscillatory-type changes. Each organ changes its Fru 2,6-P2 content in a unique pattern in response to environmental disturbances such as flooding or light. For example, when roots of intact illuminated pea plants are flooded, roots decrease their Fru 2,6-P2 content while simultaneously leaves increase their Fru 2,6-P2 content; but both organs exhibit oscillatory-type patterns within flooding time of about 30 minutes. Half-change times can be as rapid as 2 to 3 minutes. The endogenous extractable activity of the root pyrophosphate-dependent phosphofructokinase also exhibits an oscillatory pattern upon root immersion slightly after Fru 2,6-P2 changes occur. We postulate from these results that Fru 2,6-P2 is a primary signal molecule which enables plants to regulate their metabolism to cope with changing environments.  相似文献   

18.
Spinach (Spinacea oleracea L. “Correnta F1”) and pea (Pisum sativum L. “Macrocarpon”) plants were grown in a hydroponic culture with nitrate (5 mM), or ammonium (5 mM) as the nitrogen source. Dry matter accumulation declined dramatically in spinach plants fed with ammonium, whereas there was no change in pea plants when compared with nitrate-fed plants. Data obtained from δ15N, the organic nitrogen content, N-assimilation enzyme activity, glutamine synthetase (L-glutamate:ammonia-ligase; EC 6.3.1.2), glutamate dehydrogenase (L-glutamate:NAD+-oxidoreductase; EC 1.4.1.2) and enzymes from the tricarboxylic acid cycle suggest that ammonium incorporation into organic nitrogen is localized in the roots in pea plants and in the shoots in spinach plants. Distribution of incorporated ammonium (in shoots and roots) may determine ammonium tolerance. Our results show that unlike in spinach plants, in pea plants, an ammonium-tolerant species, GDH enzyme plays an important role in ammonium detoxification by its incorporation into amino acids. Furthermore, phosphoenolpyruvate carboxylase (phosphate:oxaloacetate-carboxy-lyase; EC 4.1.1.31) and pyruvate kinase (ATP:pyruvate-2-O-phosphotransferase; EC 2.7.1.40) activities reflect a major flow of carbon for ammonium assimilation through oxalacetate in pea plants and through pyruvate in spinach plants. The differences in the sensitivity to ammonium between the species are discussed in terms of differences in the site of ammonium assimilation as well as in the nitrogen assimilation ways.  相似文献   

19.
The symbiotic bacteria Buchnera provide their aphid hosts with tryptophan and other essential amino acids. Tryptophan production by Buchnera varied among 12 parthenogenetic clones of the pea aphid Acyrthosiphon pisum (Harris), as determined from both the incorporation of radioactivity from 14C‐anthranilate into tryptophan and the protein‐tryptophan growth rate of larval aphids on tryptophan‐free diet. The values of tryptophan production obtained for the two methods were correlated significantly with each other but not with the level of amplification of the Buchnera genes trpEG, which code for anthranilate synthase, a key enzyme in tryptophan biosynthetic pathway. This study provides the first direct demonstration of interclonal variation in production of any nutrient in an aphid–Buchnera symbiosis and indicates that a key aspect of Buchnera phenotype (tryptophan production) does not vary in a simple fashion with Buchnera genotype.  相似文献   

20.
Freshly isolated cotyledons from 10-day developing pea (Pisum sativum) seeds were fed radiolabeled precursors for 5 hours, and the specific radioactivity of the free and total protein amino acids was determined using a dansylation procedure. When the seven most abundant amino acids in phloem exudate of pea fruits (asparagine, serine, glutamine, homoserine, alanine, aspartate, glycine) were fed singly, their carbon was distributed widely among the aliphatic amino acids, proline and tryptophan; sporadic labeling of tyrosine and histidine also occurred. Feeding of glucose led to relatively greater labeling of aromatic amino acids including phenylalanine. The data support the involvement of known plant pathways in these interconversions. Labeling patterns were consistent with participation of the cyanoalanine pathway in the conversion of serine to homoserine, and with the synthesis of histidine from adenosine. All of the labeled amino acids were incorporated into protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号