首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The serine protease thrombin activates G protein signaling systems that lead to Ras activation and, in certain cells, proliferation. Whereas the steps leading to Ras activation by G protein-coupled receptors are not well defined, the mechanisms of Ras activation by receptor tyrosine kinases have recently been elucidated biochemically and genetically. The present study was undertaken to determine whether common signaling components are used by these two distinct classes of receptors. Here we report that the adaptor protein Shc, is phosphorylated on tyrosine residues following stimulation of the thrombin receptor in growth-responsive CCL39 fibroblasts. Shc phosphorylation by thrombin or the thrombin receptor agonist peptide is maximal by 15 min and persists for > or = 2 h. Following thrombin stimulation, phosphorylated Shc is recruited to Grb2 complexes. One or more pertussis toxin-insensitive proteins appear to mediate this effect, since (i) pertussis toxin pre-treatment of cells does not blunt the action of thrombin and (ii) Shc phosphorylation on tyrosine can be stimulated by the muscarinic m1 receptor. Shc phosphorylation does not appear to involve protein kinase C, since the addition of 4-beta-phorbol-12,13-dibutyrate has no effect. Rather, thrombin-induced Shc phosphorylation is enhanced in cells depleted of phorbol ester-sensitive protein kinase C isoforms. Expression of mutant Shc proteins defective in Grb2 binding displays a dominant-negative effect on thrombin-stimulated p44 MAP kinase activation, gene induction and cell growth. From these data, we conclude that Shc represents a crucial point of convergence between signaling pathways activated by receptor tyrosine kinases and G protein-coupled receptors.  相似文献   

2.
We have examined the phosphorylation and protein kinase activity of p44 mitogen-activated protein kinase (p44mapk) in growth factor-stimulated hamster fibroblasts using a specific antiserum. The activity of p44mapk was stimulated both by receptor tyrosine kinases and G protein-coupled receptors. Detailed kinetics revealed that alpha-thrombin induces a biphasic activation of p44mapk in CCL39 cells: a rapid phase appearing at 5-10 min was followed by a late and sustained phase still elevated after 4 h. Inactivation of alpha-thrombin with hirudin after 30 sec, which prevented DNA synthesis, did not alter the early p44mapk response but completely abolished the late phase. Pretreatment of the cells with pertussis toxin, which inhibits by more than 95% alpha-thrombin-induced mitogenicity, resulted in the complete loss of late phase activity, while the early peak was partially attenuated. Treatment of CCL39 cells with basic fibroblast growth factor also induced a strong activation of p44mapk. Serotonin, which is not a mitogen by its own, had no effect on late phase p44mapk activity, but synergized with basic fibroblast growth factor to induce late kinase response and DNA synthesis. Both early and late phase activation of p44mapk were accompanied by tyrosine phosphorylation of the enzyme. Together, the results indicate that there is a very close correlation between the ability of a growth factor to induce late and sustained p44mapk activation and its mitogenic potential. Therefore, we propose that sustained p44mapk activation is an obligatory event for growth factor-induced cell cycle progression.  相似文献   

3.
Here we provide evidence to show that the platelet-derived growth factor beta receptor is tethered to endogenous G-protein-coupled receptor(s) in human embryonic kidney 293 cells. The tethered receptor complex provides a platform on which receptor tyrosine kinase and G-protein-coupled receptor signals can be integrated to produce more efficient stimulation of the p42/p44 mitogen-activated protein kinase pathway. This was based on several lines of evidence. First, we have shown that pertussis toxin (which uncouples G-protein-coupled receptors from inhibitory G-proteins) reduced the platelet-derived growth factor stimulation of p42/p44 mitogen-activated protein kinase. Second, transfection of cells with inhibitory G-protein alpha subunit increased the activation of p42/p44 mitogen-activated protein kinase by platelet-derived growth factor. Third, platelet-derived growth factor stimulated the tyrosine phosphorylation of the inhibitory G-protein alpha subunit, which was blocked by the platelet-derived growth factor kinase inhibitor, tyrphostin AG 1296. We have also shown that the platelet-derived growth factor beta receptor forms a tethered complex with Myc-tagged endothelial differentiation gene 1 (a G-protein-coupled receptor whose agonist is sphingosine 1-phosphate) in cells co-transfected with these receptors. This facilitates platelet-derived growth factor-stimulated tyrosine phosphorylation of the inhibitory G-protein alpha subunit and increases p42/p44 mitogen-activated protein kinase activation. In addition, we found that G-protein-coupled receptor kinase 2 and beta-arrestin I can associate with the platelet-derived growth factor beta receptor. These proteins play an important role in regulating endocytosis of G-protein-coupled receptor signal complexes, which is required for activation of p42/p44 mitogen-activated protein kinase. Thus, platelet-derived growth factor beta receptor signaling may be initiated by G-protein-coupled receptor kinase 2/beta-arrestin I that has been recruited to the platelet-derived growth factor beta receptor by its tethering to a G-protein-coupled receptor(s). These results provide a model that may account for the co-mitogenic effect of certain G-protein-coupled receptor agonists with platelet-derived growth factor on DNA synthesis.  相似文献   

4.
Mechanical strain is necessary for normal lung growth and development. Individuals with respiratory failure are supported with mechanical ventilation, leading to altered lung growth and injury. Understanding signaling pathways initiated by mechanical strain in lung epithelial cells will help guide development of strategies aimed at optimizing strain-induced lung growth while mitigating ventilator-induced lung injury. To study strain-induced proliferative signaling, focusing on the role of reactive oxidant species (ROS) and p42/44 mitogen-activated protein (MAP) kinase, human pulmonary epithelial H441 and MLE15 cells were exposed to equibiaxial cyclic mechanical strain. ROS were increased within 15 min of strain. N-acetylcysteine inactivated strain-induced ROS and inhibited p42/44 MAP kinase phosphorylation and strain-induced proliferation. PD98059 and UO126, p42/44 MAP kinase inhibitors, blocked strain-induced proliferation. To verify the specificity of p42/44 MAP kinase inhibition, cells were transfected with dominant-negative mitogen-activated protein kinase kinase-1 plasmid DNA. Transfected cells did not proliferate in response to mechanical strain. To determine whether strain-induced tyrosine kinase activity is necessary for strain-induced ROS-p42/44 MAP kinase signaling, genistein, a tyrosine kinase inhibitor, was used. Genistein did not block strain-induced ROS production or p42/44 MAP kinase phosphorylation. Gadolinium, a mechanosensitive calcium channel blocker, blocked strain-induced ROS production and p42/44 MAP kinase phosphorylation but not strain-induced tyrosine phosphorylation. These data support ROS production and p42/44 MAP kinase phosphorylation being involved in a common strain-induced signaling pathway, necessary for strain-induced proliferation in pulmonary epithelial cells, with a parallel strain-induced tyrosine kinase pathway.  相似文献   

5.
The experiments presented here were designed to examine the contribution of p125 focal adhesion kinase (p125FAK) tyrosine phosphorylation to the activation of the mitogen-activated protein kinase cascade induced by bombesin, lysophosphatidic acid (LPA), and platelet-derived growth factor (PDGF) in Swiss 3T3 cells. We found that tyrosine phosphorylation of p125FAK in response to these growth factors is completely abolished in cells treated with cytochalasin D or in cells that were suspended in serum-free medium for 30 min. In marked contrast, the activation of p42mapk by these factors was independent of the integrity of the actin cytoskeleton and of the interaction of the cells with the extracellular matrix. The protein kinase C inhibitor GF 109203X and down-regulation of protein kinase C by prolonged pretreatment of cells with phorbol esters blocked bombesin-stimulated activation of p42mapk, p90rsk, and MAPK kinase-1 but did not prevent bombesin-induced tyrosine phosphorylation of p125FAK. Furthermore, LPA-induced p42mapk activation involved a pertussis toxin-sensitive guanylate nucleotide-binding protein, whereas tyrosine phosphorylation of p125FAK in response to LPA was not prevented by pretreatment with pertussis toxin. Finally, PDGF induced maximum p42mapk activation at concentrations (30 ng/ml) that failed to induce tyrosine phosphorylation of p125FAK. Thus, our results demonstrate that p42mapk activation in response to bombesin, LPA, and PDGF can be dissociated from p125FAK tyrosine phosphorylation in Swiss 3T3 cells.  相似文献   

6.
The c-kit/W gene encodes a transmembrane protein tyrosine kinase, which is the receptor for Steel factor (SLF). SLF shares many general characteristics of hemopoietic growth factors, stimulating the survival, proliferation, and differentiation of stem and progenitor cells. We have investigated the tyrosine phosphorylation events that ensue after SLF binding to the c-kit protein using primary cultures of murine mast cells as a model system and have compared the effects of SLF and IL-3. Proteins that became phosphorylated on tyrosine after treatment of cells with SLF included c-kit itself, and major protein substrates designated p130, p122, p118, p115, p112, p100, p77, p55, p44, and p42. The majority of these proteins were cytosolic and maximally phosphorylated within 2 min of growth factor treatment. Combinations of immunoprecipitation and immunoblotting with antibodies specific for proteins known to be associated with signaling pathways demonstrated that none of the major tyrosine-phosphorylated species correlated with phospholipase C-gamma 1, GTPase activating protein, or phosphatidylinositol 3' kinase. However, stimulation with SLF led to a modest increase in tyrosine phosphorylation of the 85-kDa subunit of the phosphatidylinositol 3' kinase and increased association with a 150-kDa phosphotyrosyl protein, likely to be c-kit. Two species that did correlate with known elements were the 44- and 42-kDa polypeptides, shown to be members of the mitogen-activated protein kinase family. A subset of these proteins (p130, p115/112, p100, p55, p44, p42) were also tyrosine-phosphorylated when cells were stimulated by IL-3. MonoQ ion-exchange chromatography and two dimensional gel analyses were used to demonstrate that at least the p55, p44, and p42 substrates were identical, as well as some more minor species of molecular weights 50, 38, and 36 kDa, thus indicating common pathways of signaling in hemopoietic cells. Whereas in the case of SLF the dose-response characteristics of the proliferative response and the induction of tyrosine phosphorylation were similar, in the case of IL-3, much lower concentrations were required for maximal proliferation than maximal tyrosine phosphorylation. These studies form the basis for further molecular characterization of common components of signal transduction pathways in hemopoietic cells.  相似文献   

7.
We have examined the time course of protein tyrosine phosphorylation in the meiotic cell cycles of Xenopus laevis oocytes and the mitotic cell cycles of Xenopus eggs. We have identified two proteins that undergo marked changes in tyrosine phosphorylation during these processes: a 42-kDa protein related to mitogen-activated protein kinase or microtubule-associated protein-2 kinase (MAP kinase) and a 34-kDa protein identical or related to p34cdc2. p42 undergoes an abrupt increase in its tyrosine phosphorylation at the onset of meiosis 1 and remains tyrosine phosphorylated until 30 min after fertilization, at which point it is dephosphorylated. p42 also becomes tyrosine phosphorylated after microinjection of oocytes with partially purified M-phase-promoting factor, even in the presence of cycloheximide. These findings suggest that MAP kinase, previously implicated in the early responses of somatic cells to mitogens, is also activated at the onset of meiotic M phase and that MAP kinase can become tyrosine phosphorylated downstream from M-phase-promoting factor activation. We have also found that p34 goes through a cycle of tyrosine phosphorylation and dephosphorylation prior to meiosis 1 and mitosis 1 but is not detectable as a phosphotyrosyl protein during the 2nd through 12th mitotic cell cycles. It may be that the delay between assembly and activation of the cyclin-p34cdc2 complex that p34cdc2 tyrosine phosphorylation provides is not needed in cell cycles that lack G2 phases. Finally, an unidentified protein or group of proteins migrating at 100 to 116 kDa increase in tyrosine phosphorylation throughout maturation, are dephosphorylated or degraded within 10 min of fertilization, and appear to cycle between low-molecular-weight forms and high-molecular-weight forms during early embryogenesis.  相似文献   

8.
Treatment of BC3H1 myocytes or 3T3-L1 fibroblasts with fluoroaluminate (AlF4-), a direct activator of G proteins, increased the tyrosine phosphorylation of a 42-kDa cytosolic protein. AlF4- induced a parallel increase in protein kinase activity toward myelin basic protein (MBP) in partially purified cell extracts. To test whether AlF4- was activating the 42-kDa MAP (mitogen-activated protein) kinase, extracts from AlF4--treated cells were taken through the chromatographic steps routinely used to purify MAP kinase from growth factor-stimulated cells. Following phenyl-Superose chromatography, a peak of MBP kinase activity eluted at a position characteristic of MAP kinase. Immunoblotting of the active fractions with anti-phosphotyrosine antibodies revealed a single reactive protein band of Mr 42,000. Stimulation of MAP kinase by AlF4- was rapid, peaking within 15 min and persisting for at least 1 h. In contrast, the activation of MAP kinase by insulin was transient, characteristic of its activation by growth factors in other cell types. Although concentrations of sodium fluoride greater than 1 mM also activated MAP kinase, this effect was shown to be dependent upon the simultaneous presence of aluminum ions in the medium. Activation of MAP kinase by AlF4- was not affected by either cellular depletion of protein kinase C or pretreatment of cells with pertussis toxin. Potential sites of action of AlF4- are discussed. These findings suggest that activation of a G protein(s) in intact cells can initiate events that result in tyrosine phosphorylation and activation of MAP kinase.  相似文献   

9.
Thrombin is known to evoke numerous inflammatory and proliferative responses in a wide variety of its target cells. Recent studies have demonstrated morphoregulatory and mitogenic effects of thrombin on astroglial cells (astrocytes). The present study deals with thrombin-induced activation of mitogen-activated protein (MAP) kinase in primary cultures of rat astrocytes. Treatment of serum-starved astrocytes with thrombin resulted in a rapid activation of tyrosine (Tyr) phosphorylation of a set of proteins including a prominent one with a molecular mass of 42 kDa (p42). The identity of p42 with MAP kinase was confirmed by MAP kinase-immunoreactivity of isolated [i.e., immunoprecipitated with anti-phosphotyrosine (PY) antibodies] p42 and by increased myelin basic protein (MBP) kinase activity present in MAP kinase immunoprecipitates of thrombin-treated cultures. Pertussis toxin (PTX) pretreatment failed to inhibit thrombin stimulation of p42 phosphorylation, indicating the lack of involvement of PTX sensitive G proteins in the mechanism of activation of MAP kinase by thrombin. Chronic exposure of cultures to phorbol 12-myristate 13-acetate to down-regulate PKC resulted in an attenuation of thrombin-induced p42 Tyr phosphorylation, although H-7, a known PKC inhibitor, failed to block thrombin effect. However, staurosporine, a nonspecific protein kinase inhibitor, prevented the activation of p42 phosphorylation. It is concluded that thrombin induces MAP kinase activation in astrocytes by a mechanism involving a staurosporine-sensitive pathway. © 1995 Wiley-Liss, Inc.  相似文献   

10.
Activation of Mitogen-Activated Protein Kinases in Oligodendrocytes   总被引:2,自引:1,他引:1  
Abstract: The proliferation and differentiation of oligodendrocyte progenitors are stringently controlled by an interacting network of growth and differentiation factors. Not much is known, however, about the intracellular signaling pathways activated in oligodendrocytes. In this study, we have examined the activation of m itogen-a ctivated p rotein (MAP) kinase [also called e xtracellular s ignal-r egulated protein k inases (ERKs)] in primary cultures of developing oligodendrocytes and in a primary oligodendrocyte cell line, CG4, in response to platelet-derived growth factor (PDGF) and basic fibroblast growth factor. MAP kinase activation was determined by an in-gel protein kinase renaturation assay using myelin basic protein (MBP) as the substrate. The specificity of MAP kinase activation was further confirmed by an immune complex kinase assay using anti-MAP kinase antibodies. Stimulation of oligodendrocyte progenitors with the growth factors PDGF and basic fibroblast growth factor and a protein kinase C-activating tumor promoter, phorbol 12-myristate 13-acetate, resulted in a rapid activation of p42mapk (ERK2) and, to a lesser extent, p44mapk (ERK1). Immunoblot analysis with anti-phosphotyrosine antibodies revealed an increased Tyr phosphorylation of a 42-kDa phosphoprotein band cross-reacting with anti-MAP kinase antibodies. The phosphorylation of p42mapk in PDGF-treated oligodendrocyte progenitors was preceded by a robust autophosphorylation of the growth factor receptor. Immunoblot analysis with anti-pan-ERK antibodies indicated the presence of ERK-immunoreactive species other than p42mapk and p44mapk in oligodendrocytes. The presence of some of the same pan-ERK-immunoreactive species and certain renaturable MBP kinase activities was also demonstrable in myelin preparations from rat brain, suggesting that MAP kinases (and other MBP kinases) may function not only during oligodendrogenesis but also in myelinogenesis.  相似文献   

11.
AMP-activated protein kinase (AMPK) is recognized as a regulator of energy homeostasis. We have previously reported that basic fibroblast growth factor (FGF-2) stimulates vascular endothelial growth factor (VEGF) release through the activation of p44/p42 mitogen-activated protein (MAP) kinase and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the involvement of AMPK in FGF-2-stimulated VEGF release in these cells. FGF-2 time-dependently induced the phosphorylation of AMPK α-subunit (Thr-172). Compound C, an AMPK inhibitor, which suppressed the FGF-2-induced phosphorylation of AMPK, significantly inhibited the VEGF release stimulated by FGF-2. The AMPK inhibitor also reduced the mRNA expression of VEGF induced by FGF-2. The FGF-2-induced phosphorylation of both p44/p42 MAP kinase and SAPK/JNK was attenuated by compound C. These results strongly suggest that AMPK positively regulates the FGF-2-stimulated VEGF synthesis via p44/p42 MAP kinase and SAPK/JNK in osteoblasts.  相似文献   

12.
《FEBS letters》1994,340(3):269-275
Treatment of Chinese hamster ovary (CHO) cells over-expressing the human insulin receptor (CHO-HIRc) with the insulin mimetic agent, vanadate, resulted in a dose- and time-dependent tyrosine phosphorylation of two proteins with apparent molecular sizes of 42 kDa (p42) and 44 kDa (p44). However, vanadate was unable to stimulate the tyrosyi phosphorylation of theβ-subunit of the insulin receptor. By using myelin basic protein (MBP) as the substrate to measure mitogen-activated protein (MAP) kinase activity in whole cell lysates, vanadate-stimulated tyrosyl phosphorylation of p42 and p44 was associated with a dose- and time-dependent activation of MAP kinase activity. Furthermore, affinity purification of cell lysates on anti-phosphotyrosine agarose column followed by immunoblotting with a specific antibody to MAP kinases demonstrated that vanadate treatment increased the tyrosyl phosphorylation of both p44mapk and p42mapk by several folds, as compared to controls, in concert with MAP kinase activation. In addition, retardation in gel mobility further confirmed that vanadate treatment increased the phosphorylation of p44mapk and p42mapk in CHO-HIRc. A similar effect of vanadate on MAP kinase tyrosyl phosphorylation and activation was also observed in CHO cells over-expressing a protein tyrosine kinase-deficient insulin receptor (CHO-1018). These results demonstrate that the protein tyrosine kinase activity of the insulin receptor may not be required in the signaling pathways leading to the vanadate-mediated tyrosyl phosphorylation and activation of MAP kinases.  相似文献   

13.
Mouse capillary endothelial cells (1G11 cell line) embedded in type I collagen gels undergo in vitro angiogenesis. Cells rapidly reorganize and form capillary-like structures when stimulated with serum. Transforming growth factor beta1 (TGF-beta1) alone can substitute for serum and induce cell survival and tubular network formation. This TGF-beta1-mediated angiogenic activity depends on phosphatidylinositol 3-kinase (PI3K) and p42/p44 mitogen-activated protein kinase (MAPK) signaling. We showed that specific inhibitors of either pathway (wortmannin, LY-294002, and PD-98059) all suppressed TGF-beta1-induced angiogenesis mainly by compromising cell survival. We established that TGF-beta1 stimulated the expression of TGF-alpha mRNA and protein, the tyrosine phosphorylation of a 170-kDa membrane protein representing the epidermal growth factor (EGF) receptor, and the delayed activation of PI3K/Akt and p42/p44 MAPK. Moreover, we showed that all these TGF-beta1-mediated signaling events, including tubular network formation, were suppressed by incubating TGF-beta1-stimulated endothelial cells with a soluble form of an EGF receptor (ErbB-1) or tyrphostin AG1478, a specific blocker of EGF receptor tyrosine kinase. Finally, addition of TGF-alpha alone poorly stimulated angiogenesis; however, by reducing cell death, it strongly potentiated the action of TGF-beta1. We therefore propose that TGF-beta1 promotes angiogenesis at least in part via the autocrine secretion of TGF-alpha, a cell survival growth factor, activating PI3K/Akt and p42/p44 MAPK.  相似文献   

14.
The elevated level of thrombin has been detected in the airway fluids of asthmatic patients. However, the implication of thrombin in the pathogenesis of bronchial hyperreactivity was not completely understood. Therefore, in this study we investigated the effect of thrombin on cell proliferation and p42/p44 mitogen-activated protein kinase (MAPK) activation in human tracheal smooth muscle cells (TSMCs). Thrombin stimulated [3H]thymidine incorporation and p42/p44 MAPK phosphorylation in a time- and concentration-dependent manner in TSMCs. Pretreatment of TSMCs with pertussis toxin (PTX) significantly inhibited [3H]thymidine incorporation and phosphorylation of MAPK induced by thrombin. These responses were attenuated by tyrosine kinase inhibitors genistein and herbimycin A, phosphatidyl inositide (PI)-phospholipase C (PLC) inhibitor U73122, protein kinase C (PKC) inhibitor GF109203X, removal of Ca(2+) by addition of BAPTA/AM plus EGTA, and PI 3-kinase inhibitors wortmannin and LY294002. In addition, thrombin-induced [3H]-thymidine incorporation and p42/p44 MAPK phosphorylation was completely inhibited by PD98059 (an inhibitor of MEK1/2), indicating that activation of MEK1/2 was required for these responses. Furthermore, overexpression of dominant negative mutants, RasN17 and Raf-301, significantly suppressed p42/p44 MAPK activation induced by thrombin and PDGF-BB, indicating that Ras and Raf may be required for activation of these kinases. These results conclude that the mitogenic effect of thrombin was mediated through the activation of Ras/Raf/MEK/MAPK pathway. Thrombin-mediated MAPK activation was modulated by PI-PLC, Ca(2+), PKC, tyrosine kinase, and PI 3-kinase associated with cell proliferation in cultured human TSMCs.  相似文献   

15.
We previously reported that basic fibroblast growth factor (FGF-2) activates stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) and p44/p42 mitogen-activated protein (MAP) kinase resulting in the stimulation of vascular endothelial growth factor (VEGF) release in osteoblast-like MC3T3-E1 cells. In the present study, we investigated whether zinc affects the VEGF release by FGF-2 in MC3T3-E1 cells. The FGF-2-induced VEGF release was significantly enhanced by ZnSO(4) but not Na(2)SO(4). The enhancing effect of ZnSO(4) was dose-dependent between 1 and 100 muM. ZnSO(4) markedly enhanced the FGF-2-induced phosphorylation of p44/p42 MAP kinase while having little effect on the SAPK/JNK phosphorylation. PD98059 significantly reduced the amplification by ZnSO(4) of the FGF-2-stimulated VEGF release. Taken together, our findings strongly suggest that zinc enhances FGF-2-stimulated VEGF release resulting from up-regulating activation of p44/p42 MAP kinase in osteoblasts.  相似文献   

16.
Mitogenic G protein-coupled receptors, such as those for lysophosphatidic acid (LPA) and thrombin, activate the Ras/MAP kinase pathway via pertussis toxin (PTX)-sensitive Gi, tyrosine kinase activity and recruitment of Grb2, which targets guanine nucleotide exchange activity to Ras. Little is known about the tyrosine phosphorylations involved, although Src activation and Shc phosphorylation are thought to be critical. We find that agonist-induced Src activation in Rat-1 cells is not mediated by Gi and shows no correlation with Ras/MAP kinase activation. Furthermore, LPA-induced tyrosine phosphorylation of Shc is PTX-insensitive and Ca2+-dependent in COS cells, but undetectable in Rat-1 cells. Expression of dominant-negative Src or Shc does not affect MAP kinase activation by LPA. Thus, Gi-mediated Ras/MAP kinase activation in fibroblasts and COS cells involves neither Src nor Shc. Instead, we detect a 100 kDa tyrosine-phosphorylated protein (p100) that binds to the C-terminal SH3 domain of Grb2 in a strictly Gi- and agonist-dependent manner. Tyrosine kinase inhibitors and wortmannin, a phosphatidylinositol (PI) 3-kinase inhibitor, prevent p100-Grb2 complex formation and MAP kinase activation by LPA. Our results suggest that the p100-Grb2 complex, together with an upstream non-Src tyrosine kinase and PI 3-kinase, couples Gi to Ras/MAP kinase activation, while Src and Shc act in a different pathway.  相似文献   

17.
The ability of the lectin concanavalin A (ConA) and N-formyl-methionyl-leucyl-phenylalanine (fMLF) to induce protein-tyrosine phosphorylation in human neutrophils was examined by immunoblot analysis. ConA caused an increase in tyrosine phosphorylation of protein bands with apparent molecular masses of 120, 80, 76, 66 and 40 kDa; on the other hand, fMLF caused an increase in those of only 80-kDa and 40-kDa proteins. These protein-tyrosine phosphorylations were time- and dose-dependent. The tyrosine phosphorylation of 40-kDa protein induced by fMLF was suppressed but that by ConA was not suppressed by pertussis toxin pretreatment. At the same time, pertussis toxin pretreatment also inhibited lysozyme release and aggregation of neutrophils induced by fMLF but did not inhibit those responses induced by ConA. These results suggest that the tyrosine phosphorylation of 40-kDa protein may be involved in a part of neutrophil activation and be regulated via pleiotropic signal transduction pathways. In addition, immunoblot analysis employing antibodies against microtubule-associated protein 2 (MAP2) kinase suggested that this tyrosine-phosphorylated 40-kDa protein might be the MAP2 kinase.  相似文献   

18.
2-Arachidonoylglycerol (2-AG), an endogenous cannabinoid receptor ligand, was shown to induce rapid phosphorylation of p42/44 mitogen-activated protein kinase (MAP kinase) in HL-60 cells. We confirmed that the enzyme activity of p42/44 MAP kinase in HL-60 cells was augmented markedly when the cells were stimulated with 2-AG. The addition of SR144528, a cannabinoid CB2 receptor-specific antagonist, to the cells prior to the addition of 2-AG abolished the response induced by 2-AG, indicating that the CB2 receptor is involved in the response. G protein G(i) or G(o) is also assumed to be involved, because pertussis toxin treatment of the cells nullified the response induced by 2-AG. CP55940 and anandamide also induced the activation of p42/44 MAP kinase, although the activation by anandamide was less pronounced than that by 2-AG or CP55940. These results suggest that 2-AG may play an important physiological role in this type of cell through the activation of the p42/44 MAP kinase cascade.  相似文献   

19.
Nerve growth factor-stimulated mitogen-activated protein kinase (pp42/44MAP) kinase was characterized by sequential column chromatography on DEAE-Sephacel, phenyl-Sepharose CL4B, and S-200. The kinase displayed an apparent molecular mass of 42 kDa and reacted with an antiphosphotyrosine antibody. Peptide mapping of myelin basic protein revealed the presence of one phosphopeptide that was phosphorylated on Thr-97. pp42/44MAP kinase activity was dependent on Mg2+ and inhibited by K252a both in vitro and in vivo. Nerve growth factor-stimulated kinase activation was diminished by down-regulation of protein kinase C with 200 nM 12-phorbol 13-myristate acetate or with staurosporine (1 nM), a protein kinase C inhibitor. Genistein, a protein tyrosine kinase inhibitor, blocked nerve growth factor-mediated neurite extension as well as diminished activation of pp42/44MAP kinase. Our data demonstrate that activation of this kinase system by nerve growth factor displays a requirement for both protein kinase C as well as protein tyrosine kinase. In addition, other agents that are capable of promoting neurite outgrowth in PC12 cells, such as fibroblast growth factor or dibutyryl cyclic AMP, do so independently of activating this kinase system.  相似文献   

20.
Abstract: Recent studies have demonstrated that administration of an electroconvulsive shock produces a rapid and transient increase in tyrosyl phosphorylation of a ∼40-kDa protein in rat brain. Initial characterization of this protein's chromatographic properties indicated that it might be a member of a recently identified family of kinases, referred to as mitogen-activated protein (MAP) kinases, that are activated by tyrosyl phosphorylation. In the present study, we have used MAP kinase antisera to assess the identity of this protein. We have found that the ∼40-kDa phosphotyrosine-containing protein comigrates with p42 MAP kinase (p42mapk) and not with two other 44-kDa MAP kinase family members detected by these antisera. Western blots of proteins immunoprecipitated with MAP kinase antibodies confirm that p42mapk displays increased tyrosyl phosphorylation after an electroconvulsive stimulus. Chromatographic separation of hippocampal extracts indicates that MAP kinase activity elutes in parallel with p42mapk. Accordingly, these studies identify p42mapk as a tyrosyl kinase substrate that is activated by this stimulus and suggest that this form of MAP kinase may be selectively regulated by neuronal stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号