首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are four major classes of introns: self-splicing group I and group II introns, tRNA and/or archaeal introns and spliceosomal introns in nuclear pre-mRNA. Group I introns are widely distributed in protists, bacteria and bacteriophages. Group II introns are found in fungal and land plant mitochondria, algal plastids, bacteria and Archaea. Group II and spliceosomal introns share a common splicing pathway and might be related to each other. The tRNA and/or archaeal introns are found in the nuclear tRNA of eukaryotes and in archaeal tRNA, rRNA and mRNA. The mechanisms underlying the self-splicing and mobility of a few model group I introns are well understood. By contrast, the role of these highly distinct processes in the evolution of the 1500 group I introns found thus far in nature (e.g. in algae and fungi) has only recently been clarified. The explosion of new sequence data has facilitated the use of comparative methods to understand group I intron evolution in a broader context and to generate hypotheses about intron insertion, splicing and spread that can be tested experimentally.  相似文献   

2.
3.
The spread of group I introns depends on their association with intron-encoded homing endonucleases. Introns that encode functional homing endonuclease genes (HEGs) are highly invasive, whereas introns that only encode the group I ribozyme responsible for self-splicing are generally stably inherited (i.e., vertical inheritance). A number of recent case studies have provided new knowledge on the evolution of group I introns, however, there are still large gaps in understanding of their distribution on the tree of life, and how they have spread into new hosts and genic sites. During a larger phylogenetic survey of chlorophyceaen green algae, we found that 23 isolates contain at least one group I intron in the rbcL chloroplast gene. Structural analyses show that the introns belong to one of two intron lineages, group IA2 intron-HEG (GIY-YIG family) elements inserted after position 462 in the rbcL gene, and group IA1 introns inserted after position 699. The latter intron type sometimes encodes HNH homing endonucleases. The distribution of introns was analyzed on an exon phylogeny and patterns were recovered that are consistent with vertical inheritance and possible horizontal transfer. The rbcL 462 introns are thus far reported only within the Volvocales, Hydrodictyaceae and Bracteacoccus, and closely related isolates of algae differ in the presence of rbcL introns. Phylogenetic analysis of the intron conserved regions indicates that the rbcL699 and rbcL462 introns have distinct evolutionary origins. The rbcL699 introns were likely derived from ribosomal RNA L2449 introns, whereas the rbcL462 introns form a close relationship with psbA introns.  相似文献   

4.
Group I introns are autonomous genetic elements that can catalyze their own excision from pre-RNA. Understanding how group I introns move in nuclear ribosomal (r)DNA remains an important question in evolutionary biology. Two models are invoked to explain group I intron movement. The first is termed homing and results from the action of an intron-encoded homing endonuclease that recognizes and cleaves an intronless allele at or near the intron insertion site. Alternatively, introns can be inserted into RNA through reverse splicing. Here, we present the sequences of two large group I introns from fungal nuclear rDNA, which both encode putative full-length homing endonuclease genes (HEGs). Five remnant HEGs in different fungal species are also reported. This brings the total number of known nuclear HEGs from 15 to 22. We determined the phylogeny of all known nuclear HEGs and their associated introns. We found evidence for intron-independent HEG invasion into both homologous and heterologous introns in often distantly related lineages, as well as the "switching" of HEGs between different intron peripheral loops and between sense and antisense strands of intron DNA. These results suggest that nuclear HEGs are frequently mobilized. HEG invasion appears, however, to be limited to existing introns in the same or neighboring sites. To study the intron-HEG relationship in more detail, the S943 group I intron in fungal small-subunit rDNA was used as a model system. The S943 HEG is shown to be widely distributed as functional, inactivated, or remnant ORFs in S943 introns.  相似文献   

5.
6.
7.
82 of the 155 chloroplast introns in Euglena gracilis have been categorized as group II introns. Because they are shorter and more divergent than group II introns from other organisms, the assignment of these Euglena introns to the group II class has been questioned. In the current study, two homologs of E. gracilispetB intron 1 and four homologs of psbC intron 2 have been isolated from related species and characterized. Based on a comparative sequence analysis of intron homologs, the intron core and four of the six helical domains present in the canonical group II intron structural model are conserved in E. gracilispetB intron 1 and psbC intron 2 and all of their homologs. Distal portions of domain I, which are involved in most of the tertiary interactions, are less well conserved than the central core.  相似文献   

8.
One family within the Euascomycetes (Ascomycota), the lichen-forming Physciaceae, is particularly rich in nuclear ribosomal [r]DNA group I introns. We used phylogenetic analyses of group I introns and lichen-fungal host cells to address four questions about group I intron evolution in lichens, and generally in all eukaryotes: 1) Is intron spread in the lichens associated with the intimate association of the fungal and photosynthetic cells that make up the lichen thallus? 2) Are the multiple group I introns in the lichen-fungi of independent origins, or have existing introns spread into novel sites in the rDNA? 3) If introns have moved to novel sites, then does the exon context of these sites provide insights into the mechanism of intron spread? and 4) What is the pattern of intron loss in the small subunit rDNA gene of lichen-fungi? Our analyses show that group I introns in the lichen-fungi and in the lichen-algae (and lichenized cyanobacteria) do not share a close evolutionary relationship, suggesting that these introns do not move between the symbionts. Many group I introns appear to have originated in the common ancestor of the Lecanorales, whereas others have spread within this lineage (particularly in the Physciaceae) putatively through reverse-splicing into novel rRNA sites. We suggest that the evolutionary history of most lichen-fungal group I introns is characterized by rare gains followed by extensive losses in descendants, resulting in a sporadic intron distribution. Detailed phylogenetic analyses of the introns and host cells are required, therefore, to distinguish this scenario from the alternative hypothesis of widespread and independent intron gains in the different lichen-fungal lineages.  相似文献   

9.
Group II introns are both catalytic RNAs (ribozymes) and mobile retroelements that were discovered almost 14 years ago. It has been suggested that eukaryotic mRNA introns might have originated from the group II introns present in the alphaproteobacterial progenitor of the mitochondria. Bacterial group II introns are of considerable interest not only because of their evolutionary significance, but also because they could potentially be used as tools for genetic manipulation in biotechnology and for gene therapy. This review summarizes what is known about the splicing mechanisms and mobility of bacterial group II introns, and describes the recent development of group II intron-based gene-targetting methods. Bacterial group II intron diversity, evolutionary relationships, and behaviour in bacteria are also discussed.  相似文献   

10.
82 of the 155 chloroplast introns in Euglena gracilis have been categorized as group II introns. Because they are shorter and more divergent than group II introns from other organisms, the assignment of these Euglena introns to the group II class has been questioned. In the current study, two homologs of E. gracilispetB intron 1 and four homologs of psbC intron 2 have been isolated from related species and characterized. Based on a comparative sequence analysis of intron homologs, the intron core and four of the six helical domains present in the canonical group II intron structural model are conserved in E. gracilispetB intron 1 and psbC intron 2 and all of their homologs. Distal portions of domain I, which are involved in most of the tertiary interactions, are less well conserved than the central core. Received: 27 June 1997 / Accepted: 6 August 1997  相似文献   

11.
Group II introns are self-splicing RNAs and retroelements found in bacteria and lower eukaryotic organelles. During the past several years, they have been uncovered in surprising numbers in bacteria due to the genome sequencing projects; however, most of the newly sequenced introns are not correctly identified. We have initiated an ongoing web site database for mobile group II introns in order to provide correct information on the introns, particularly in bacteria. Information in the web site includes: (1) introductory information on group II introns; (2) detailed information on subfamilies of intron RNA structures and intron-encoded proteins; (3) a listing of identified introns with correct boundaries, RNA secondary structures and other detailed information; and (4) phylogenetic and evolutionary information. The comparative data should facilitate study of the function, spread and evolution of group II introns. The database can be accessed at http://www.fp.ucalgary.ca/group2introns/.  相似文献   

12.
B Dujon 《Gene》1989,82(1):91-114
Group I introns form a structural and functional group of introns with widespread but irregular distribution among very diverse organisms and genetic systems. Evidence is now accumulating that several group I introns are mobile genetic elements with properties similar to those originally described for the omega system of Saccharomyces cerevisiae: mobile group I introns encode sequence-specific double-strand (ds) endoDNases, which recognize and cleave intronless genes to insert a copy of the intron by a ds-break repair mechanism. This mechanism results in: the efficient propagation of group I introns into their cognate sites; their maintenance at the site against spontaneous loss; and, perhaps, their transposition to different sites. The spontaneous loss of group I introns occurs with low frequency by an RNA-mediated mechanism. This mechanism eliminates introns defective for mobility and/or for RNA splicing. Mechanisms of intron acquisition and intron loss must create an equilibrium, which explains the irregular distribution of group I introns in various genetic systems. Furthermore, the observed distribution also predicts that horizontal transfer of intron sequences must occur between unrelated species, using vectors yet to be discovered.  相似文献   

13.
14.
In eukaryotes, introns are located in nuclear and organelle genes from several kingdoms. Large introns (up to 5 kbp) are frequent in mitochondrial genomes of plant and fungi but scarce in Metazoa, even if these organisms are grouped with fungi among the Opisthokonts. Mitochondrial introns are classified in two groups (I and II) according to their RNA secondary structure involved in the intron self-splicing mechanism. Most of these mitochondrial group I introns carry a "Homing Endonuclease Gene" (heg) encoding a DNA endonuclease acting in transfer and site-specific integration ("homing") and allowing intron spreading and gain after lateral transfer even between species from different kingdoms. Opposed to this gain mechanism, is another which implies that introns, which would have been abundant in the ancestral genes, would mainly evolve by loss. The importance of both mechanisms (loss and gain) is matter of debate. Here we report the sequence of the cox1 gene of the button mushroom Agaricus bisporus, the most widely cultivated mushroom in the world. This gene is both the longest mitochondrial gene (29,902 nt) and the largest group I intron reservoir reported to date with 18 group I and 1 group II. An exhaustive analysis of the group I introns available in cox1 genes shows that they are mobile genetic elements whose numerous events of loss and gain by lateral transfer combine to explain their wide and patchy distribution extending over several kingdoms. An overview of intron distribution, together with the high frequency of eroded heg, suggests that they are evolving towards loss. In this landscape of eroded and lost intron sequences, the A. bisporus cox1 gene exhibits a peculiar dynamics of intron keeping and catching, leading to the largest collection of mitochondrial group I introns reported to date in a Eukaryote.  相似文献   

15.
Group II introns are self-splicing RNAs that also act as retroelements in bacteria, mitochondria, and chloroplasts. Group II introns were identified in Escherichia coli in 1994, but have not been characterized since, and, instead, other bacterial group II introns have been studied for splicing and mobility properties. Despite their apparent intractability, at least five distinct group II introns exist naturally in E. coli strains. To illuminate their function and learn how the introns have dispersed in their natural host, we have investigated their distribution in the ECOR reference collection. Two introns were cloned and sequenced to complete their partial sequences. Unexpectedly, southern blots showed all ECOR strains to contain fragments and/or full-length copies of group II introns, with some strains containing up to 15 intron copies. One intron, E.c.14, has two natural homing sites in IS629 and IS911 elements, and the intron can be present in one, both, or neither homing site in a given strain. Nearly all strains that contain full-length introns also contain unfilled homing sites, suggesting either that mobility is highly inefficient or that most full-length copies are nonfunctional. The data indicate independent mobility of the introns, as well as mobility via the host DNA elements, and overall, the pattern of intron distribution resembles that of IS elements.  相似文献   

16.
Chloroplast genomes in angiosperms encode approximately 20 group II introns, approximately half of which are classified as subgroup IIB. The splicing of all but one of the subgroup IIB introns requires a heterodimer containing the peptidyl-tRNA hydrolase homolog CRS2 and one of two closely related proteins, CAF1 or CAF2, that harbor a recently recognized RNA binding domain called the CRM domain. Two CRS2/CAF-dependent introns require, in addition, a CRM domain protein called CFM2 that is only distantly related to CAF1 and CAF2. Here, we show that CFM3, a close relative of CFM2, associates in vivo with those CRS2/CAF-dependent introns that are not CFM2 ligands. Mutant phenotypes in rice and Arabidopsis support a role for CFM3 in the splicing of most of the introns with which it associates. These results show that either CAF1 or CAF2 and either CFM2 or CFM3 simultaneously bind most chloroplast subgroup IIB introns in vivo, and that the CAF and CFM subunits play nonredundant roles in splicing. These results suggest that the expansion of the CRM protein family in plants resulted in two subfamilies that play different roles in group II intron splicing, with further diversification within a subfamily to accommodate multiple intron ligands.  相似文献   

17.
A bacterial ribonucleotide reductase gene was found to encode four inteins and three group II introns in the oceanic N2-fixing cyanobacterium Trichodesmium erythraeum. The 13,650-bp ribonucleotide reductase gene is divided into eight extein- or exon-coding sequences that together encode a 768-amino acid mature ribonucleotide reductase protein, with 83% of the gene sequence encoding introns and inteins. The four inteins are encoded on the second half of the gene, and each has conserved sequence motifs for a protein-splicing domain and an endonuclease domain. These four inteins, together with known inteins, define five intein insertion sites in ribonucleotide reductase homologues. Two of the insertion sites are 10 amino acids apart and next to key catalytic residues of the enzyme. Protein-splicing activities of all four inteins were demonstrated in Escherichia coli. The four inteins coexist with three group II introns encoded on the first half of the same gene, which suggests a breakdown of the presumed barrier against intron insertion in this bacterial conserved protein-coding gene.  相似文献   

18.
19.
We have characterized the structural organization and catalytic properties of the large nucleolar group I introns (NaSSU1) of the different Naegleria species N. jamiesoni, N. andersoni, N. italica, and N. gruberi. NaSSU1 consists of three distinct RNA domains: an open reading frame encoding a homing-type endonuclease, and a small group I ribozyme (NaGIR1) inserted into the P6 loop of a second group I ribozyme (NaGIR2). The two ribozymes have different functions in RNA splicing and processing. NaGIR1 is an unusual self-cleaving group I ribozyme responsible for intron processing at two internal sites (IPS1 and IPS2), both close to the 5' end of the open reading frame. This processing is hypothesized to lead to formation of a messenger RNA for the endonuclease. Structurally, NaGIR2 is a typical group IC1 ribozyme, catalyzing intron excision and exon ligation reactions. NaGIR2 is responsible for circularization of the excised intron, a reaction that generates full-length RNA circles of wild-type intron. Although it is only distantly related in primary sequence, NaSSU1 RNA has a predicted organization and function very similar to that of the mobile group I intron DiSSU1 of Didymium, the only other group I intron known to encode two ribozymes. We propose that these twin-ribozyme introns define a distinct category of group I introns with a conserved structural organization and function.  相似文献   

20.
Group I and group II introns are different catalytic self-splicing and mobile RNA elements that contribute to genome dynamics. In this study, we have analyzed their distribution and evolution in 29 sequenced genomes from the Bacillus cereus group of bacteria. Introns were of different structural classes and evolutionary origins, and a large number of nearly identical elements are shared between multiple strains of different sources, suggesting recent lateral transfers and/or that introns are under a strong selection pressure. Altogether, 73 group I introns were identified, inserted in essential genes from the chromosome or newly described prophages, including the first elements found within phages in bacterial plasmids. Notably, bacteriophages are an important source for spreading group I introns between strains. Furthermore, 77 group II introns were found within a diverse set of chromosomal and plasmidic genes. Unusual findings include elements located within conserved DNA metabolism and repair genes and one intron inserted within a novel retroelement. Group II introns are mainly disseminated via plasmids and can subsequently invade the host genome, in particular by coupling mobility with host cell replication. This study reveals a very high diversity and variability of mobile introns in B. cereus group strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号