首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Esterification of dehydroepiandrosterone by human plasma HDL   总被引:2,自引:0,他引:2  
Evidence for metabolic esterification of dehydroepiandrosterone (DHEA) in human blood plasma, identification of the active lipoprotein (LP) subclass involved, namely HDL3, as well as positive identification of the long-chain fatty acid esters of DHEA formed as incubation products is presented. The esterification reaction of DHEA and subsequent transfer and transport of DHEA esters in human plasma appears to proceed in a manner similar to that of cholesterol. The experiments presented serve as a model predicting similar metabolic transformations during HDL3 interactions with other steroid hormones that have the delta 5-3 beta-hydroxy steroid ring structure and exhibit nonequilibrium associations with HDL. These observations imply that significant quantities of DHEA, particularly in the conjugated ester form, can enter cells via the membrane receptor-mediated pathways of LP internalization.  相似文献   

2.
The purpose of the present experiments was to examine the short- and long-term effects of estradiol-17 beta (E2), progesterone (P), and 5 alpha-dihydrotestosterone (DHT), alone and in combination, on the gonadotrophin-releasing hormone (GnRH)-induced luteinizing hormone (LH) secretion, using an ovariectomized rat pituitary cells culture model. After 72 h in steroid-free medium, pituitary cells were further cultured for 24 h in medium with or without E2 (1 nM), P (100 nM), or DHT (10 nM). Cultures were then incubated for 5 h in the absence or presence of 1 nM GnRH with or without steroids. LH was measured in the medium and cell extract by radioimmunoassay. The results show that the steroid hormones exert opposite effects on the release of LH induced by GnRH, which seems to be dependent upon the length of time the pituitary cells have been exposed to the steroids. In fact, short-term (5 h) action of E2 resulted in a partial inhibition (64% of control) of LH release in response to GnRH, while long-term (24 h) exposure enhanced (158%) GnRH-induced LH release. Similar results were obtained with DHT, although the magnitude of the effect was lower than with E2. Conversely, P caused an acute stimulatory action (118%) on the LH released in response to GnRH and a slightly inhibitory effect (90%) after chronic treatment. GnRH-stimulated LH biosynthesis was also influenced by steroid treatment. Significant increases in total (cells plus medium) LH were observed in pituitary cells treated with E2 or DHT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
In order to satisfy government mandates, numerous studies have been performed categorizing potential endocrine disrupting chemicals as (anti)estrogens or (anti)androgens. We report here that dihydrotestosterone (DHT), a potent, non-aromatizable androgen receptor agonist, induces antiestrogenic responses through direct and/or indirect modulation of vitellogenin (Vg), steroid hormone and total cytochrome P450 levels. DHT and two weak, aromatizable androgens, DHEA and androstenedione (0.05-50 mg/kg per day), were fed to juvenile trout for 2 weeks. DHEA and androstenedione significantly increased blood plasma Vg by up to 30- and 45-fold, respectively (P<0.05, t-test). 17beta-Estradiol (E2) increases were also observed with both androgens, albeit with lower sensitivity. DHT markedly decreased Vg and E2 levels, suggesting that DHEA and androstenedione increased Vg and E2 via conversion to E2 and not by estrogen receptor agonism. DHEA and androstenedione had no effect on total cytochrome P450 content, while DHT significantly decreased P450 content in a dose dependent fashion. These results indicate that alterations in metabolism mediated by androgen receptor binding may be responsible for the Vg and E2 decreases by DHT. In an attempt to decipher between receptor and non-receptor androgenic mechanisms of the observed DHT effects, DHT (0, 50 or 100 mg/kg per day) and flutamide (0-1250 mg/kg per day), an androgen receptor antagonist, were fed to juvenile rainbow trout for 2 weeks. Flutamide alone was as effective as DHT in decreasing E2 and Vg levels in males but did not significantly reverse DHT induced Vg decreases in either sex (P>0.05, F-test). DHT decreases in total P450 content were partially attenuated in males by flutamide co-treatment, but not females, suggesting a partial androgenic mechanism to the P450 decreases as well as a fundamental sex difference responding to androgen receptor binding. Moreover, flutamide alone decreased P450 content by up to 30% in males and 40% in females. These effects may be mediated through direct androgen receptor binding irrespective of whether the binding is agonistic or antagonistic. This study indicates that androgen receptor agonists/antagonists can elicit significant antiestrogenic effects that may not necessarily be mediated through classic receptor binding mechanisms and signal transduction pathways.  相似文献   

4.
Serum levels of the adrenal androgen dehydroepiandrosterone (DHEA) peak in men and women in the third decade of life and decrease progressively with age. Increasing numbers of middle-aged and older individuals consume over-the-counter preparations of DHEA, hoping it will retard aging by increasing muscle and bone mass and strength, decreasing fat, and improving immunologic and neurobehavioral functions. Because DHEA can serve as a precursor to more potent androgens and estrogens, like testosterone (T), dihydrotestosterone (DHT), and 17beta-estradiol (E2), supplemental DHEA use may pose a cancer risk in patients with nascent or occult prostate cancer. The steroid-responsive human LNCaP prostate cancer cells, containing a functional but mutated androgen receptor (AR), were used to compare effects of DHEA with those of T, DHT, and E2 on cell proliferation and protein and/or gene expression of AR, prostate-specific antigen (PSA), IGF-I, IGF-I receptor (IGF-IR), IGF-II, IGF-binding proteins-2, -3, and -5, (IGFBPs-2, -3, and -5), and estrogen receptor-beta (ERbeta). Cell proliferation assays revealed significant stimulation by all four steroids. DHEA- and E2-induced responses were similar but delayed and reduced compared with that of T and DHT. All four hormones increased gene and/or protein expression of PSA, IGF-IR, IGF-I, and IGFBP-2 and decreased that of AR, ERbeta, IGF-II, and IGFBP-3. There were no significant effects of hormone treatment on IGFBP-5 mRNA. DHEA and E2 responses were similar, and distinct from those of DHT and T, in time- and dose-dependent studies. Further studies of the mechanisms of DHEA effects on prostate cancer epithelial cells of varying AR status, as well as on prostate stromal cells, will be required to discern the implications of DHEA supplementation on prostatic health.  相似文献   

5.
Pregnenolone- (PREG-), and dehydroepiandrosterone- (DHEA-) fatty acid esters (FA) are present in human plasma, where they are associated with lipoproteins. Because plasma has the ability to form PREG-FA and DHEA-FA in vitro from their unconjugated steroid counterparts, we postulated that the LCAT enzyme might be responsible for their formation. Here we show that lecithin-cholesterol acyltransferase (LCAT) has PREG and DHEA esterifying activities. First, VLDL, IDL, LDL, and HDL were isolated by the sequential ultracentrifugation micromethod from the plasma of fasting men and women and tested for their ability to form PREG-FA, DHEA-FA, and cholesteryl esters in vitro from their respective unconjugated counterparts. The results showed that the three steroids were esterified only in HDL subfractions. The rate of tritiated PREG esterification was clearly higher than that of tritiated cholesterol and DHEA, both in total plasma and isolated HDL, and no gender difference was observed. Second, human and guinea pig LCAT were purified and used in phosphatidylcholine-reconstituted vesicles containing human apoAI to show their ability to esterify tritiated cholesterol, PREG, and DHEA in the absence of unlabeled steroid. The amount of cholesteryl ester, PREG-FA, and DHEA-FA increased after incubation as a function of time and amount of purified LCAT, showing that PREG is preferentially acylated by LCAT compared to cholesterol and DHEA. The PREG and DHEA esterifying activities of LCAT were cofactor-dependent, as shown by the absence of acylation without apoAI. Finally, we determined by HPLC the fatty acid moiety of PREG-GA and DHEA-FA formed in human plasma and guinea pig and rat sera in vitro after incubation with unconjugated tritiated PREG and DHEA. We showed that the fatty acid moieties of newly formed tritiated PREG-FA and DHEA-FA were similar to that reported for cholesteryl esters in the plasma of the three species. We conclude that LCAT has a lecithin-steroid acyltransferase activity and that PREG is probably the preferential substrate of this enzyme. In addition, the fact that the differences in the fatty acid moieties of cholesteryl esters of human, guinea pig, and rat plasmas are also observed for PREG-FA and DHEA-FA suggests that the LCAT is the sole circulating enzyme that has PREG and DHEA esterifying activities.  相似文献   

6.
Pregnenolone (PREG) and dehydroepiandrosterone (DHEA), and their respective sulfated forms PREGS and DHEAS, were among the first steroids to be identified in rodent brain. However, unreliable steroid isolation and solvolysis procedures resulted in errors, particularly in the case of brain steroid sulfates analyzed by radioimmunology or GC-MS of liberated free steroids. By using a solid-phase extraction recycling/elution procedure, allowing the strict separation of sulfated, free, and fatty acid esters of PREG and DHEA, PREGS and DHEAS, unlike free PREG, were not detected in rat and mouse brain and plasma. Conversely, considerable amounts of PREG and DHEA were released from unknown precursor(s) present in the lipoidal fraction, distinct from fatty acid ester conjugates. Chromatographic and mass spectrometric studies of the nature of the precursor(s) showed that autoxidation of brain cholesterol (CHOL) was responsible for the release of PREG and DHEA from the lipoidal fraction. When inappropriate protocols were used, CHOL was also the precursor of PREG and DHEA obtained from the fraction assumed to contain sulfated steroids. In contrast, free PREG was definitely confirmed as an endogenous steroid in rat brain. Our study shows that an early removal of CHOL from brain extracts coupled to well-validated extraction and fractionation procedures are prerequisites for reliable measurements of free and conjugated PREG and DHEA by GC-MS or other indirect methods.  相似文献   

7.
Yolk steroid hormones have been documented to have growth and behavior effects on hatchlings in several avian species. The purpose of these investigations was to determine initial levels of androstenedione (A), dihydrotestosterone (DHT), estradiol (E(2)), and testosterone (T), and document any changes in those hormones during the course of embryonic development in the Leghorn chicken, Gallus domesticus. Eggs were collected, labeled for hen of origin and egg sequence, incubated at 37.8 degrees C, and sacrificed at predetermined times during development. The embryos were staged, the yolk material collected, homogenized and hormones extracted. A, DHT, E(2), and T were separated via column chromatography and hormone levels determined using radioimmunoassays (RIAs). Results indicate a significant decrease in A and T during embryonic development, similar to that reported by our laboratory for the alligator, with A levels being significantly greater initially than levels of all other hormones. Changes in DHT mirrored changes in T levels. Chicken E(2) yolk content dynamics differ from those we have measured in both the turtle and the alligator. After an initial decline, E(2) in the yolks of chicken eggs undergoes a significant increase at the end of development, between embryonic stages 40 and 45 (days 14 and 20 of development). As the increase is much larger than could be accounted for by hormones present in the yolk material, this may represent early embryonic production of steroid hormones by the developing gonads.  相似文献   

8.
Dehydroepiandrosterone (DHEA) fatty acyl esters once incorporated in high density lipoprotein (HDL) induce a stronger vasodilatory response in rat mesenteric arteries ex vivo compared to native HDL. We studied the role of HDL receptor, scavenger receptor class B, type 1 (SR-B1), as well as estrogen and androgen receptors in the vasodilatory response of HDL-associated DHEA fatty acyl esters. Using cultured human vascular endothelial cells (HUVEC), we investigated the possible internalization and cellular response of HDL-associated DHEA esters. We prepared DHEA ester-enriched HDL by incubating human plasma in the presence of DHEA. After isolation and purification, HDL was added in cumulative doses to arterial rings precontracted with noradrenaline. Inhibition of the function of SR-B1 almost completely abolished maximal vasorelaxation by DHEA-enriched HDL while estrogen or androgen receptor blockage had no significant effect. When HUVECs were incubated in the presence of [3H]DHEA ester-enriched HDL, the amount of intracellular [3H]-radioactivity increased steadily during 24 h. Blocking of SR-B1 reduced this uptake by a mean of 30%. The proportion of unesterified [3H]DHEA, as analyzed by thin-layer chromatography, increased intracellularly and in the cell culture media after several hours of incubation of the cells in the presence of [3H]DHEA ester-enriched HDL. This indicated slow hydrolysis of DHEA fatty acyl esters and subsequent excretion of unesterified DHEA by the cells. In conclusion, DHEA-enriched HDL induced vasorelaxation via the SR-B1-facilitated pathway. However, this vasodilation is not likely to be attributed to rapid hydrolysis of HDL-associated DHEA esters by the vascular endothelium.  相似文献   

9.
Dihydrotestosterone (DHT) can be used by an athlete as an anabolic steroid to evade the current International Olympic Committee approved drug tests. To investigate the possibility of a method for its detection, the heptanoate ester of DHT was administered to two male subjects (150 mg i.m.). Urine samples, collected before and after the injection, were subjected to enzymatic hydrolysis and the excretion rates of DHT, 5 alpha-androstane-3 alpha,17 beta-diol (3 alpha-diol) and testosterone (T) were determined by radioimmunoassay. Relative changes in the excretion of DHT, 3 alpha-diol, 5 alpha-androstane-3 beta,17 beta-diol (3 beta-diol), 5 beta-androstane-3 alpha, 17 beta-diol (5 beta-diol), T and epitestosterone (17 alpha hydroxyandrost-4-en-3-one; Epi-T) were determined by gas chromatography-mass spectrometry (GC-MS). Following administration of DHT, the urinary excretion rates of DHT, 3 alpha-diol and 3 beta-diol increased when compared to those of T, Epi-T, 5 beta-diol and luteinizing hormone (LH). Concentrations of DHT in the plasma increased whereas those of T, LH and follicle stimulating hormone decreased. The changes following such modest doses of DHT suggest that these ratios of urinary hormones may be used for the detection of doping with DHT.  相似文献   

10.
Adrenal and gonadal steroids inhibit IL-6 secretion by human marrow cells   总被引:2,自引:0,他引:2  
Gordon CM  LeBoff MS  Glowacki J 《Cytokine》2001,16(5):178-186
Adrenal and gonadal steroids have protective effects on the skeleton that may be conferred partly by their ability to inhibit bone resorptive cytokines such as interleukin 6 (IL-6). We tested the hypothesis that IL-6 secretion by human marrow cells and a line of marrow stromal cells (KM101) is inhibited by dehydroepiandrosterone (DHEA), dihydrotestosterone (DHT) and 17beta-oestradiol (E(2)). We also examined whether the estrogen status of the donor influenced the steroids' effects on IL-6 secretion. Femoral bone marrow was obtained from 19 postmenopausal women undergoing hip arthroplasty, and from seven subjects receiving oestrogen replacement therapy (ERT) at the time of surgery. Low-density mononuclear cells were isolated and cultured in IL-1beta-supplemented media, with or without DHEA, DHT or E(2). DHEA suppressed IL-6 more consistently than DHT or E(2): DHEA significantly suppressed IL-6 in 84% of cultures, DHT suppressed IL-6 in 58%, and E(2)did so in 50%. The magnitude of IL-6 inhibition was also greater for DHEA (group mean, treated/control of 62%) compared to DHT (81%) and E(2)(76%). In cultures from subjects receiving ERT, DHEA and DHT suppressed IL-6 in some, whereas E(2)did not suppress IL-6 secretion. Each steroid also significantly inhibited IL-6 secretion by KM101 cells. In summary, in marrow cultured from postmenopausal women, DHEA suppressed IL-6 secretion more consistently and to a greater degree than did DHT and E(2). Second, the inhibitory effect of E(2)was abrogated in marrow from women receiving ERT.  相似文献   

11.
Inflammatory mammary carcinoma (IMC) is the most aggressive spontaneous type of mammary malignant tumor both in women and dogs. Latest studies in dogs indicate that different endocrine mechanisms seem to be involved in inflammatory carcinomas (IMCs). The aim of the present study was to characterize the steroid hormone profile of inflammatory carcinoma, and to compare it with mammary dysplasias, benign tumors and other malignant tumors. Eighty-six mammary samples (10 normal mammary tissue, 21 dysplasias, 26 benign, 22 malignant, and 7 IMC) from 30 female dogs were used. Hormone levels of progesterone (P4), 17beta-estradiol (E2), androstenedione (A4), dehydroepiandrosterone (DHEA), and estrone sulphate (E1SO4) in tissue homogenates were measured by enzyme immunoassays (EIAs) techniques, previously validated for this species. IMC displayed the following steroid profile: P4: 13.80+/-0.56 microg/g; E2: 675.19+/-33.00 ng/g; A4: 631.73+/-70.73 microg/g; DHEA: 702.22+/-89.93 microg/g, and E1SO4: 2.84+/-0.32 mg/g. All of these hormones were significantly higher (P<0.001) compared with the hormone steroid profile determined for malignant, benign, dysplasias, and normal mammary tissue. The most relevant finding was the increased levels, two or three times, of both DHEA and E1SO4 in IMC respect to other groups (P<0.001). These results, together with the highest immunohistochemical expression of P450scc found in IMC, suggest the hypothesis that an autocrine mechanism could be especially involved in the development of canine inflammatory carcinoma.  相似文献   

12.
The acute-phase protein secretory phospholipase A2 (sPLA2) influences the metabolism of high-density lipoproteins (HDL). The adrenals are known to utilize HDL cholesterol as a source of sterols. The aim of the present study was to test the hypothesis that sPLA2 enhances the selective uptake of HDL into the adrenals in response to acute inflammation as a possible physiological role for the sPLA2-HDL interaction. Human sPLA2-transgenic mice, in which sPLA2 expression is upregulated by inflammatory stimuli, were used. Ten hours after induction of the acute-phase response (APR) by injection of bacterial lipopolysaccharide (LPS), plasma levels of HDL cholesterol decreased significantly in sPLA2-transgenic mice (-18%, P < 0.05) but remained unchanged in wild-type mice. The fractional catabolic rates of both 125I-labeled tyraminecellobiose (TC)-HDL and [3H]cholesteryl ether increased significantly in the sPLA2-transgenic mice after induction of the APR (0.18 +/- 0.01 vs. 0.21 +/- 0.01 pool/h, P < 0.05, and 0.31 +/- 0.02 vs. 0.42 +/- 0.05 pool/h, P < 0.05, respectively) but remained unchanged in the wild-type mice (0.10 +/- 0.01 vs. 0.22 +/- 0.02 pool/h, respectively). After induction of the APR, in both groups HDL holoparticle uptake by the liver was increased (P < 0.001). sPLA2-transgenic mice had 2.4-fold higher selective uptake into the adrenals after induction of the APR than wild-type mice (156 +/- 6 vs. 65 +/- 5%/ micro g tissue protein, P < 0.001). In summary, upregulation of sPLA2 expression during the APR specifically increases the selective uptake of HDL cholesteryl ester into the adrenals. These data suggest a novel metabolic role for sPLA2: modification of HDL during the APR to promote increased adrenal uptake of HDL cholesteryl ester to serve as source for steroid hormone synthesis.  相似文献   

13.
Characteristics of acyl-coenzyme A (acyl-CoA):steroid acyltransferase from the digestive gland of the oyster Crassostrea virginica were determined by using estradiol (E2) and dehydroepiandrosterone (DHEA) as substrates. The apparent Km and Vmax values for esterification of E2 with the six fatty acid acyl-CoAs tested (C20:4, C18:2, C18:1, C16:1, C18:0, and C16:0) were in the range of 9-17 microM E2 and 35-74 pmol/min/mg protein, respectively. Kinetic parameters for esterification of DHEA (Km: 45-120 microM; Vmax: 30-182 pmol/min/mg protein) showed a lower affinity of the enzyme for this steroid. Formation of endogenous fatty acid esters of steroids by microsomes of digestive gland and gonads incubated in the presence of ATP and CoA was assessed, and at least seven E2 fatty acid esters and five DHEA fatty acid esters were observed. Some peaks eluted at the same retention times as palmitoleoyl-, linoleoyl-, oleoyl/palmitoyl-, and stearoyl-E2; and palmitoleoyl-, oleoyl/palmitoyl-, and stearoyl-DHEA. The same endogenous esters, although in different proportions, were produced by gonadal microsomes. The kinetic parameters for both E2 (Km: 10 microM; Vmax: 38 pmol/min/mg protein) and DHEA (Km: 61 microM; Vmax: 60 pmol/min/mg protein) were similar to those obtained in the digestive gland. Kinetic parameters obtained are similar to those observed in mammals; thus, fatty acid esterification of sex steroids appears to be a well-conserved conjugation pathway during evolution.  相似文献   

14.
Le Bail JC  Lotfi H  Charles L  Pépin D  Habrioux G 《Steroids》2002,67(13-14):1057-1064
Metabolism of dehydroepiandrosterone (DHEA), its sulfate (DHEAS), and androstene-3,17-dione (delta(4)) was performed at their physiological plasma concentrations in MCF-7 cell cultures (1 microM, 10 and 2 nM, respectively). Final metabolic products of these steroids were separated by HPLC-radioactive flow detection and identified by LC/MS or MS/MS. Typical and specific mass fragmentation spectra identified the presence of estrone (E(1)), 17beta-estradiol (E(2)), delta(4), DHEA, 5-androstene-3beta,17beta-diol (delta(5)), and testosterone as principal DHEAS metabolites. Other steroids, such as androstenedione, androsterone, and DHEA fatty acid esters at very low concentrations (from pM to nM), were also obtained after steroid incubation. This highly specific method allowed us to conclude whether a metabolite and enzymatic activity of interest were present in MCF-7 cells or not. We also showed that DHEAS at its physiological plasma concentration may be converted into estrogens and estrogen-like compounds in breast cancer cells. The estrogenic action of DHEAS on breast cancer cells was also measured by bioluminescence in a stably transfected human breast cancer MCF-7 cell line with a reporter gene that allowed expression of the firefly luciferase enzyme under the control of an estrogen regulatory element.  相似文献   

15.
The incidence of atherosclerosis and related diseases increases with age. The aging process may enhance lipoprotein modification, which leads to an increase in the susceptibility of low density lipoprotein (LDL) and high density lipoprotein (HDL) to oxidation. Dehydroepiandrosterone (DHEA), the most abundant steroid hormone in humans, has been shown to have antiatherogenic effects. This hormone also decreases dramatically with age. In the present study, we were interested in determining the presence of DHEA/DHEAS (dehydroepiandrosterone sulfate) and changes in their concentrations in HDL and LDL lipoproteins with age. Moreover, we studied the susceptibility of LDL to oxidation with age in the presence or absence of vitamin E or DHEA. We demonstrated that vitamin E is unable to restore the decreased resistance to oxidation of LDL from elderly subjects to that of LDL obtained from young subjects. Furthermore, our results provide evidence that DHEA is an integral part of LDL and HDL and disappears to almost nondetectable levels during aging. The DHEA incorporated into the LDL from elderly subjects increased LDL resistance to oxidation in a concentration-dependent manner. The increased resistance provided by DHEA was higher than that with vitamin E. DHEA seems to act either by protecting vitamin E from disappearance from LDL under oxidation or by scavenging directly the free radicals produced during the oxidative process. Our results suggests that DHEA exerts an antioxidative effect on LDL, which could have antiatherogenic consequences. Careful clinical trials of DHEA replacement should determine whether this ex vivo effect could be translated into any measurable antiatherogenic (cardioprotective) action.  相似文献   

16.
Steroid hormones share a very similar structure, but they behave distinctly. We present structures of human estrogenic 17beta-hydroxysteroid dehydrogenase (17beta-HSD1) complexes with dehydroepiandrosterone (DHEA) and dihydrotestosterone (DHT), providing the first pictures to date of DHEA and DHT bound to a protein. Comparisons of these structures with that of the enzyme complexed with the most potent estrogen, estradiol, revealed the structural basis and general model for sex hormone recognition and discrimination. Although the binding cavity is almost entirely composed of hydrophobic residues that can make only nonspecific interactions, the arrangement of residues is highly complementary to that of the estrogenic substrate. Relatively small changes in the shape of the steroid hormone can significantly affect the binding affinity and specificity. The K(m) of estrone is more than 1000-fold lower than that of DHEA and the K(m) of estradiol is about 10 times lower than that of DHT. The structures suggest that Leu-149 is the primary contributor to the discrimination of C-19 steroids and estrogens by 17beta-HSD1. The critical role of Leu-149 has been well confirmed by site-directed mutagenesis experiments, as the Leu-149 --> Val variant showed a significantly decreased K(m) for C-19 steroids while losing discrimination between estrogens and C-19 steroids. The electron density of DHEA also revealed a distortion of its 17-ketone toward a beta-oriented form, which approaches the transition-state conformation for DHEA reduction.  相似文献   

17.
《Free radical research》2013,47(5):587-598
Abstract

Despite the fact that gender dimorphism in diet-induced oxidative stress is associated with steroid sex hormones, there are some contradictory results concerning roles of steroid hormones in gender dimorphism. To evaluate the role of gender dimorphism as well as the effects of sex steroid hormones in response to high-fat diet (HFD)-induced oxidative stress, we measured cellular levels of major antioxidant proteins in the liver, abdominal white adipose tissue, and skeletal muscles of Sprague-Dawley rats following HFD or sex hormone treatment using Western blot analysis. Animal experiments revealed that 17β-estradiol, (E2) and dihydrotestosterone (DHT) negatively and positively affected body weight gain, respectively. Interestingly, plasma levels of malondialdehyde (MDA) increased in both E2- and DHT-treated rats. We also observed that cellular levels of classical antioxidant proteins, including catalase, glutathion peroxidase, peroxiredoxin, superoxide dismutase, and thioredoxin, were differentially regulated hormone- and gender-dependent manner in various metabolic tissues. In addition, tissue-specific expression of DJ-1 protein with respect to HFD-induced oxidative stress in association with sex steroid hormone treatment was observed for the first time. Taken together, our data show that females were more capable at overcoming oxidative stress than males through feasible expression of antioxidant proteins in metabolic tissues. Although the exact regulatory mechanism of sex hormones in diet-induced oxidative stress could not be fully elucidated, the current data will provide clues regarding the tissue-specific roles of antioxidant proteins during HFD-induced oxidative stress in association with sex steroid hormones.  相似文献   

18.
Dehydroepiandrosterone-fatty acyl esters (DHEA-FAE) are naturally occurring water-insoluble metabolites of DHEA, which are transported in plasma exclusively by lipoproteins. To find out whether DHEA, like estradiol, might be stored in adipose tissue in FAE form, we set up a mass spectrometric method to quantify DHEA-FAE and free DHEA in human adipose tissue and serum. The method consists of chromatographic purification steps and final determination of hydrolyzed DHEA-FAE and free DHEA, which was carried out by gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-tandem mass spectrometry (LC-MS/MS). Our results showed that no detectable amounts of DHEA-FAE could be found in adipose tissue although 32-178 pmol/g of free DHEA were determined by GC-MS and LC-MS/MS. The DHEA-FAE concentrations in serum quantified by GC-MS were 1.4±0.7 pmol/ml in premenopausal women (n=7), and 0.9±0.4 pmol/ml in postmenopausal women (n=5). Correspondingly, the free DHEA concentrations were 15.2±6.3 pmol/ml and 6.8±3.0 pmol/ml. In addition, the mean proportions of DHEA-FAE of total DHEA (DHEA-FAE+free DHEA) in serum were 8.6% and 11.2% in pre- and postmenopausal women, respectively. Serum DHEA-FAE concentration was below quantification limit for LC-MS/MS (signal-to-noise ratio, S/N=10), while free DHEA concentrations varied between 5.8 and 23.2 pmol/ml. In conclusion, the proportion of DHEA-FAE of total DHEA in serum was approximately 9%. However, in contrast to our previous findings for estradiol fatty acid esters in adipose tissue which constituted about 80% of total estradiol (esterified+free), the proportion of DHEA-FAE of total DHEA was below 5%. Four to ten times higher concentrations of free DHEA were quantified in adipose tissue compared to those in serum.  相似文献   

19.
Circulating dehydroepiandrosterone (DHEA) is converted to testosterone or estrogen in the target tissues. Recently, we demonstrated that skeletal muscles are capable of locally synthesizing circulating DHEA to testosterone and estrogen. Furthermore, testosterone is converted to 5alpha-dihydrotestosterone (DHT) by 5alpha-reductase and exerts biophysiological actions through binding to androgen receptors. However, it remains unclear whether skeletal muscle can synthesize DHT from testosterone and/or DHEA and whether these hormones affect glucose metabolism-related signaling pathway in skeletal muscles. We hypothesized that locally synthesized DHT from testosterone and/or DHEA activates glucose transporter-4 (GLUT-4)-regulating pathway in skeletal muscles. The aim of the present study was to clarify whether DHT is synthesized from testosterone and/or DHEA in cultured skeletal muscle cells and whether these hormones affect the GLUT-4-related signaling pathway in skeletal muscles. In the present study, the expression of 5alpha-reductase mRNA was detected in rat cultured skeletal muscle cells, and the addition of testosterone or DHEA increased intramuscular DHT concentrations. Addition of testosterone or DHEA increased GLUT-4 protein expression and its translocation. Furthermore, Akt and protein kinase C-zeta/lambda (PKC-zeta/lambda) phosphorylations, which are critical in GLUT-4-regulated signaling pathways, were enhanced by testosterone or DHEA addition. Testosterone- and DHEA-induced increases in both GLUT-4 expression and Akt and PKC-zeta/lambda phosphorylations were blocked by a DHT inhibitor. Finally, the activities of phosphofructokinase and hexokinase, main glycolytic enzymes, were enhanced by testosterone or DHEA addition. These findings suggest that skeletal muscle is capable of synthesizing DHT from testosterone, and that DHT activates the glucose metabolism-related signaling pathway in skeletal muscle cells.  相似文献   

20.
White (WAT) and brown (BAT) adipose tissue, the two main types of adipose organ, are responsible for lipid storage and non-shivering thermogenesis, respectively. Thermogenesis is a process mediated by mitochondrial uncoupling protein 1 (UCP1) which uncouples oxidative phosphorylation from ATP production, leading to the conversion of free fatty acids to heat. This process can be triggered by exposure to low ambient temperatures, caloric excess, and the immune system. Recently mitochondrial thermogenesis has also been associated with plasma lipoprotein transport system. Specifically, apolipoprotein (APO) E3 is shown to have a bimodal effect on WAT thermogenesis that is highly dependent on its site of expression. Similarly, APOE2 and APOE4 differentially affect BAT and WAT mitochondrial metabolic activity in processes highly modulated by APOA1. Furthermore, the absence of classical APOA1 containing HDL (APOA1-HDL), is associated with no measurable non-shivering thermogenesis in WAT of mice fed high fat diet. Based on these previous observations which indicate important regulatory roles for both APOA1 and APOE in adipose tissue mitochondrial metabolic activity, here we sought to investigate the potential roles of these apolipoproteins in BAT and WAT metabolic activation in mice, following stimulation by cold exposure (7 °C). Our data indicate that APOA1-HDL promotes metabolic activation of BAT only in the presence of very low levels (virtually undetectable) of APOE3-containing HDL (APOE3-HDL), which acts as an inhibitor in this process. In contrast, induction of WAT thermogenesis is subjected to a more complicated regulation which requires the combined presence of both APOA1-HDL and APOE3-HDL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号