首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 826 毫秒
1.
Several members of the CLCA family of proteins, originally named chloride channels, calcium-activated, have been shown to modulate chloride conductance in various cell types via an unknown mechanism. Moreover, the human (h) hCLCA1 is thought to modulate the severity of disease in asthma and cystic fibrosis (CF) patients. All CLCA proteins are post-translationally cleaved into two subunits, and recently, a conserved HEXXH zinc-binding amino acid motif has been identified, suggesting a role for CLCA proteins as metalloproteases. Here, we have characterized the cleavage and autoproteolytic activity of the murine model protein mCLCA3, which represents the murine orthologue of human hCLCA1. Using crude membrane fractions from transfected HEK293 cells, we demonstrate that mCLCA3 cleavage is zinc-dependent and exclusively inhibited by cation-chelating metalloprotease inhibitors. Cellular transport and secretion were not affected in response to a cleavage defect that was introduced by the insertion of an E157Q mutation within the HEXXH motif of mCLCA3. Interspecies conservation of these key results was further confirmed with the porcine (p) orthologue of hCLCA1 and mCLCA3, pCLCA1. Importantly, the mCLCA3E157Q mutant was cleaved after co-transfection with the wild-type mCLCA3 in HEK293 cells, suggesting that an intermolecular autoproteolytic event takes place. Edman degradation and MALDI-TOF-MS of the protein fragments identified a single cleavage site in mCLCA3 between amino acids 695 and 696. The data strongly suggest that secreted CLCA proteins have zinc-dependent autoproteolytic activity and that they may cleave additional proteins.  相似文献   

2.
3.
Proteins of the CLCA gene family have been proposed to mediate calcium-activated chloride currents. In this study, we used detailed bioinformatics analysis and found that no transmembrane domains are predicted in hCLCA1 or mCLCA3 (Gob-5). Further analysis suggested that they are globular proteins containing domains that are likely to be involved in protein-protein interactions. In support of the bioinformatics analysis, biochemical studies showed that hCLCA1 and mCLCA3, when expressed in HEK293 cells, could be removed from the cell surface and could be detected in the extracellular medium, even after short incubation times. The accumulation in the medium was shown to be brefeldin A-sensitive, demonstrating that hCLCA1 is constitutively secreted. The N-terminal cleavage products of hCLCA1 and mCLCA3 could be detected in bronchoalveolar lavage fluid taken from asthmatic subjects and ovalbumin-challenged mice, demonstrating release from cells in a physiological setting. We conclude that hCLCA1 and mCLCA3 are non-integral membrane proteins and therefore cannot be chloride channels in their own right.  相似文献   

4.
Two new calcium-activated chloride channel (CLCA) family members, mCLCA5 and mCLCA6, have been cloned from mouse eye and intestine, respectively. mCLCA5 is highly homologous to hCLCA2, and mCLCA6 is highly homologous to hCLCA4. mCLCA5 is widely expressed with strong expression in eye and spleen, whereas mCLCA6 is primarily expressed in intestine and stomach. mCLCA6 is also expressed as a splice variant lacking exon 8 and part of exon 10 in intestine and stomach. Transfection of tsA201 cells with enhanced green fluorescent protein-tagged versions of the three cDNAs reveals protein products of 155 and 65 kDa for mCLCA5 and mCLCA6 and 145 and 65 kDa for the mCLCA6 splice variant. In vitro translation of mCLCA5 generates a 90-kDa protein that does not appear to be glycosylated. mCLCA6 also generates a 90-kDa protein that is glycosylated to a 110-kDa product, whereas the mCLCA6 splice variant generates an 80-kDa product that is 100 kDa after glycosylation. Treatment of enhanced green fluorescent protein-tagged mCLCA6 with PNGase F (peptide: N-glycosidase F) to remove N-linked glycosyl groups shows a reduction in size of the 65 kDa product to 60 kDa. Consistent with the hypothesis that mCLCA5, mCLCA6, and its splice variant encode calcium-activated chloride channels, in HEK293 cells expressing CLCAs ionomycin-evoked increases in intracellular calcium stimulated a current that reversed near Cl(-) equilibrium potential, E(Cl). Furthermore, these currents were inhibited by the chloride channel blocker niflumic acid. Given the prominent role of hCLCA2 in cancer cell adhesion and the unique high level of expression of hCLCA4 in brain, the identification of their murine counterparts presents the opportunity to clarify the role of CLCAs in disease and normal cell physiology.  相似文献   

5.
Pig models of cystic fibrosis (CF) have recently been established that are expected to mimic the human disease closer than mouse models do. The human CLCA (originally named chloride channels, calcium-activated) member hCLCA4 is considered a potential modifier of disease severity in CF, but its murine ortholog, mCLCA6, is not expressed in the mouse lung. Here, we have characterized the genomic structure, protein processing, and tissue expression patterns of the porcine ortholog to hCLCA4, pCLCA4a. The genomic structure and cellular protein processing of pCLCA4a were found to closely mirror those of hCLCA4 and mCLCA6. Similar to human lung, pCLCA4a mRNA was strongly expressed in porcine lungs, and the pCLCA4a protein was immunohistochemically detected on the apical membranes of tracheal and bronchial epithelial cells. This stands in sharp contrast to mouse mCLCA6, which has been detected exclusively in intestinal epithelia but not the murine lung. The results may add to the understanding of species-specific differences in the CF phenotype and support the notion that the CF pig model may be more suitable than murine models to study the role of hCLCA4.  相似文献   

6.
The human hCLCA1 and murine mCLCA3 (chloride channels, calcium-activated) have recently been identified as promising therapeutic targets in asthma. Recurrent airway obstruction in horses is an important animal model of human asthma. Here, we have cloned and characterized the first equine CLCA family member, eCLCA1. The 913 amino acids eCLCA1 polypeptide forms a 120-kDa transmembrane glycoprotein that is processed to an 80-kDa protein in vivo. Three single nucleotide polymorphisms were detected in the eCLCA1 coding region in 14 horses, resulting in two amino acid changes (485H/R and 490V/L). However, no functional differences were recorded between the channel properties of the two variants in transfected HEK293 cells. The eCLCA1 protein was detected immunohistochemically in mucin-producing cells in the respiratory and intestinal tracts, cutaneous sweat glands, and renal mucous glands. Strong overexpression of eCLCA1 was observed in the airways of horses with recurrent airway obstruction using Northern blot hybridization, Western blotting, immunohistochemistry, and real-time quantitative RT-PCR. The results suggest that spontaneous or experimental recurrent airway obstruction in horses may serve as a model to study the role of CLCA homologs in chronic airway disease with overproduction of mucins.  相似文献   

7.
The putative anion channel mCLCA3 (alias gob-5) is the third murine member of the recently discovered family of calcium-activated chloride channels (CLCA family). Preliminary data suggest that mCLCA3 may play a significant role in diseases with secretory dysfunctions, including asthma and cystic fibrosis. In this study, the mCLCA3 protein was characterized biochemically and its cellular and subcellular distribution pattern was established in normal murine tissues. Polyclonal rabbit antibodies were generated and affinity-immunopurified using synthetic oligopeptides corresponding to the extracellular amino terminus of the mCLCA3 polypeptide. After in vitro translation and glycosylation, proteinase K protection assay, and heterologous expression in COS-7 or HEK 293 cells, SDS-PAGE and immunoblotting revealed a protein structure similar to that of previously characterized CLCA proteins. A systematic light, confocal laser scanning, and transmission electron microscopic immunolocalization study, including virtually all murine tissues, identified the mCLCA3 protein exclusively associated with mucin granule membranes of gastrointestinal, respiratory, and uterine goblet cells and other mucin-producing cells. The results suggest that mCLCA3 may be involved in the synthesis, condensation, or secretion of mucins.  相似文献   

8.
CLCA (chloride channel, calcium-activated) proteins are novel pulmonary vascular addresses for blood-borne, lung-metastatic cancer cells. They facilitate vascular arrest of cancer cells via adhesion to beta4 integrin and promote early, intravascular, metastatic growth. Here we identify the interacting binding domains of endothelial CLCA proteins (e.g. hCLCA2, mCLCA5, mCLCA1, and bCLCA2) and beta4 integrin. Endothelial CLCAs share a common beta4-binding motif (beta4BM) in their 90- and 35-kDa subunits of the sequence F(S/N)R(I/L/V)(S/T)S, which is located in the second extracellular domain of the 90-kDa CLCA and near the N terminus of the 35-kDa CLCA, respectively. Using enzyme-linked immunosorbent, pull-down, and adhesion assays, we showed that glutathione S-transferase fusion proteins of beta4BMs from the 90- and 35-kDa CLCA subunits bind to the beta4 integrin in a metal ion-dependent manner. Fusion proteins from fibronectin and the integrins beta1 and beta3 served as negative controls. beta4BM fusion proteins competitively blocked the beta4/CLCA adhesion and prevented lung colonization of MDA-MB-231 breast cancer cells. A disrupted beta4BM in hCLCA1, which is not expressed in endothelia, failed to interact with beta4 integrin. The corresponding CLCA-binding domain of the beta4 integrin is localized to the specific determining loop (SDL). Again enzyme-linked immunosorbent, pull-down, and adhesion assays were used to confirm the interaction with CLCA proteins using a glutathione S-transferase fusion protein representing the C-terminal two-thirds of beta4 SDL (amino acids 184-203). A chimeric beta4 integrin in which the indicated SDL sequence had been replaced with the corresponding sequence from the beta1 integrin failed to bind hCLCA2. The dominance of the CLCA ligand in beta4 activation and outside-in signaling is discussed in reference to our previous report that beta4/CLCA ligation elicits selective signaling via focal adhesion kinase to promote metastatic growth.  相似文献   

9.
CLCA proteins (calcium-activated chloride channel regulators) have been linked to diseases involving secretory disorders, including cystic fibrosis (CF) and asthma. They have been shown to modulate endogenous chloride conductance, possibly by acting as metalloproteases. Based on the differential processing of the subunits after posttranslational cleavage, two subgroups of CLCA proteins can be distinguished. In one subgroup, both subunits are secreted, in the other group, the carboxy-terminal subunit possesses a transmembrane segment, resulting in shedding of only the amino-terminal subunit. Recent data on the post-translational cleavage and proteolytic activity of CLCA are limited to secreted CLCA. In this study, we characterized the cleavage of mCLCA6, a murine CLCA possessing a transmembrane segment. As for secreted CLCA, the cleavage in the endoplasmic reticulum was not observed for a protein with the E157Q mutation in the HEXXH motif of mCLCA6, suggesting that this mutant protein and secreted CLCA family members share a similar autoproteolytic cleavage mechanism. In contrast to secreted CLCA proteins with the E157Q mutation, the uncleaved precursor of the mCLCA6E157Q mutant reached the plasma membrane, where it was cleaved and the amino-terminal subunit was shed into the supernatant. Using crude membrane fractions, we showed that cleavage of the mCLCA6E157Q protein is zinc-dependent and sensitive to metalloprotease inhibitors, suggesting secondary cleavage by a metalloprotease. Interestingly, anchorage of mCLCA6E157Q to the plasma membrane is not essential for its secondary cleavage, because the mCLCA6Δ™E157Q mutant still underwent cleavage. Our data suggest that the processing of CLCA proteins is more complex than previously recognized.  相似文献   

10.
Despite the discovery of the widely expressed CLCA (chloride channel regulators, calcium-activated) proteins more than 15?years ago, their seemingly diverse functions are still poorly understood. With the recent generation of porcine animal models for cystic fibrosis (CF), members of the porcine CLCA family are becoming of interest as possible modulators of the disease in the pig. Here, we characterize pCLCA2, the porcine ortholog of the human hCLCA2 and the murine mCLCA5, which are the only CLCA members expressed in the skin. Immunohistochemical studies with a specific antibody against pCLCA2 have revealed a highly restricted pCLCA2 protein expression in the skin. The protein is strictly co-localized with filaggrin and trichohyalin in the granular layer of the epidermis and the inner root sheath of the hair follicles, respectively. No differences have been observed between the expression patterns of wild-type pigs and CF transmembrane conductance regulator -/- pigs. We speculate that pCLCA2 plays an as yet undefined role in the structural integrity of the skin or, possibly, in specialized functions of the epidermis, including barrier or defense mechanisms.  相似文献   

11.
The calcium-activated chloride channel hCLCA2 has been identified as a candidate tumor suppressor in human breast cancer. It is greatly down-regulated in breast cancer, and its re-expression suppresses tumorigenesis by an unknown mechanism. To establish a mouse model, we identified the mouse ortholog of hCLCA2, termed mCLCA5, and investigated its behavior in mammary epithelial cell lines and tissues. Expression in the immortalized cell line HC11 correlated with slow or arrested growth. Although rapidly dividing, sparsely plated cells had low levels of expression, mCLCA5 was induced by 10-fold when cells became confluent and 30-fold when cells were deprived of growth factors or anchorage. The apoptosis effector Bax was induced in parallel. Like hCLCA2, mCLCA5 was down-regulated in metastatic mammary tumor cell lines such as 4T1 and CSML-100. Ectopic re-expression in 4T1 cells caused a 20-fold reduction in colony survival relative to vector control. High mCLCA5 expression in stable clones inhibited proliferation and enhanced sensitivity to detachment. Moreover, mCLCA5 was induced in lactating and involuting mammary gland, correlating with differentiation and onset of apoptosis. Together, these results establish mCLCA5 as the mouse ortholog of hCLCA2, demonstrate that mCLCA5 is a detachment-sensitive growth inhibitor, and suggest a mechanism whereby these channels may antagonize mammary tumor progression.  相似文献   

12.
The human hCLCA1 and its murine ortholog mCLCA3 (calcium-activated chloride channel regulators) are exclusively expressed in mucus cells and linked to inflammatory airway diseases with increased mucus production, such as asthma, cystic fibrosis and chronic obstructive pulmonary disease. Both proteins have a known impact on the mucus cell metaplasia trait in these diseases. However, growing evidence points towards an additional role in innate immune responses. In the current study, we analyzed Staphylococcus aureus pneumonia, an established model to study pulmonary innate immunity, in mCLCA3-deficient and wild-type mice, focusing on the cellular and cytokine-driven innate inflammatory response. We compared clinical signs, bacterial clearance, leukocyte immigration and cytokine responses in the bronchoalveolar compartment, as well as pulmonary vascular permeability, histopathology, mucus cell number and mRNA expression levels of selected genes (mClca1 to 7, Muc5ac, Muc5b, Muc2, Cxcl-1, Cxcl-2, Il-17). Deficiency of mCLCA3 resulted in decreased neutrophilic infiltration into the bronchoalveolar space during bacterial infection. Only the cytokines IL-17 and the murine CXCL-8 homolog CXCL-1 were decreased on mRNA and protein levels during bacterial infection in mCLCA3-deficient mice compared to wild-type controls. However, no differences in clinical outcome, histopathology or mucus cell metaplasia were observed. We did not find evidence for regulation of any other CLCA homolog that would putatively compensate for the lack of mCLCA3. In conclusion, mCLCA3 appears to modulate leukocyte response via IL-17 and murine CXCL-8 homologs in acute Staphylococcus aureus pneumonia which is well in line with the proposed function of hCLCA1 as a signaling molecule acting on alveolar macrophages.  相似文献   

13.
Calcium-activated chloride channel (CLCA) proteins were first described as a family of plasma membrane Cl(-) channels that could be activated by calcium. Genetic and electrophysiological studies have supported this view. The human CLCA2 protein is expressed as a 943-amino-acid precursor whose N-terminal signal sequence is removed followed by internal cleavage near amino acid position 680. Earlier investigations of transmembrane geometry suggested five membrane passes. However, analysis by the more recently derived simple modular architecture research tool algorithm predicts that a C-terminal 22-amino-acid hydrophobic segment comprises the only transmembrane pass. To resolve this question, we raised an antibody against hCLCA2 and investigated the synthesis, localization, maturation, and topology of the protein. Cell surface biotinylation and endoglycosidase H analysis revealed a 128-kDa precursor confined to the endoplasmic reticulum and a maturely glycosylated 141-kDa precursor at the cell surface by 48 h post-transfection. By 72 h, 109-kDa N-terminal and 35-kDa C-terminal cleavage products were detected at the cell surface but not in the endoplasmic reticulum. Surprisingly, however, the 109-kDa product was spontaneously shed into the medium or removed by acid washes, whereas the precursor and 35-kDa product were retained by the membrane. Two other CLCA family members, bCLCA2 and hCLCA1, also demonstrated preferential release of the N-terminal product. Transfer of the hCLCA2 C-terminal hydrophobic segment to a secreted form of green fluorescent protein was sufficient to target that protein to the plasma membrane. Together, these data indicate that hCLCA2 is mostly extracellular with only a single transmembrane segment followed by a short cytoplasmic tail and is itself unlikely to form a channel.  相似文献   

14.
The CLCA family of proteins consists of a growing number of structurally and functionally diverse members with distinct expression patterns in different tissues. Several CLCA homologs have been implicated in diseases with secretory dysfunctions in the respiratory and intestinal tracts. Here we present biochemical protein characterization and details on the cellular and subcellular expression pattern of the murine mCLCA6 using specific antibodies directed against the amino- and carboxy-terminal cleavage products of mCLCA6. Computational and biochemical characterizations revealed protein processing and structural elements shared with hCLCA2 including anchorage in the apical cell membrane by a transmembrane domain in the carboxy-terminal subunit. A systematic light- and electron-microscopic immunolocalization found mCLCA6 to be associated with the microvilli of non-goblet cell enterocytes in the murine small and large intestine but in no other tissues. The expression pattern was confirmed by quantitative RT-PCR following laser-capture microdissection of relevant tissues. Confocal laser scanning microscopy colocalized the mCLCA6 protein with the cystic fibrosis transmembrane conductance regulator CFTR at the apical surface of colonic crypt cells. Together with previously published functional data, the results support a direct or indirect role of mCLCA6 in transepithelial anion conductance in the mouse intestine.  相似文献   

15.
The murine mCLCA5 protein is a member of the chloride channel regulators, calcium-activated (CLCA) family and is suspected to play a role in airway mucus cell differentiation. Although mCLCA5 mRNA was previously found in total lung extracts, the expressing cells and functions in the naive murine respiratory tract are unknown. Therefore, mCLCA5 protein expression was identified by immunohistochemistry and confocal laser scanning microscopy using entire lung sections of naive mice. Moreover, we determined mRNA levels of functionally related genes (mClca3, mClca5, Muc5ac and Muc5b) and quantified mCLCA5-, mCLCA3- and CC10-positive cells and periodic acid-Schiff-positive mucus cells in naive, PBS-treated or Staphylococcus aureus-infected mice. We also investigated mCLCA5 protein expression in Streptococcus pneumoniae and influenza virus lung infection models. Finally, we determined species-specific differences in the expression patterns of the murine mCLCA5 and its human and porcine orthologs, hCLCA2 and pCLCA2. The mCLCA5 protein is uniquely expressed in highly select bronchial epithelial cells and submucosal glands in naive mice, consistent with anatomical locations of progenitor cell niches. Under conditions of challenge (PBS, S. aureus, S. pneumoniae, influenza virus), mRNA and protein expression strongly declined with protein recovery only in models retaining intact epithelial cells. In contrast to mice, human and porcine bronchial epithelial cells do not express their respective mCLCA5 orthologs and submucosal glands had fewer expressing cells, indicative of fundamental differences in mice versus humans and pigs.  相似文献   

16.
17.
Recent studies have identified members of the CLCA (chloride channels, calcium-activated) gene family as potential modulators of the cystic fibrosis (CF) phenotype, but differences between the human and murine CLCA genes and proteins may limit the use of murine CF models. Recently established pig models of CF are expected to mimic the human disease more closely than the available mouse models do. Here, we characterized the porcine CLCA gene locus, analyzed the expression pattern and protein processing of pCLCA1, and compared it to its human ortholog, hCLCA1. The porcine CLCA gene family is located on chromosome 4q25, with a broad synteny with the human and murine clca gene loci, except for a pig-specific gene duplication of pCLCA4. Using pCLCA1-specific antibodies, the protein was immunohistochemically localized in mucin-producing cells, including goblet cells and mucinous glands in the respiratory and alimentary tracts. Similar to hCLCA1, biochemical characterization of pCLCA1 identified a secreted soluble protein that could serve as an extracellular signaling molecule or functional constituent of the protective mucous layers. The results suggest that pCLCA1 shares essential characteristics of hCLCA1, supporting the pig model as a promising tool for studying the modulating role of pCLCA1 in the complex pathology of CF. (J Histochem Cytochem 57:1169–1181, 2009)  相似文献   

18.
Little is known of the roles played by ion channels in cancer. Here we describe a pair of closely related calcium-activated chloride channels whose differential regulation in normal, apoptotic, and transformed mouse cells suggests that channel function is proapoptotic and antineoplastic. While mCLCA1 predominates over mCLCA2 under normal physiological conditions, this relationship is reversed by apoptotic stress both in developing mammary gland and in cultured HC11 mammary epithelial cells. Consistent with an apoptosis-promoting role, splicing of mCLCA2 is disrupted in apoptosis-resistant tumor cell lines and in HC11 cells selected for resistance to detachment-induced apoptosis (anoikis). Unexpectedly, mCLCA1 message is also down-regulated in these cells by at least 30-fold. These results suggest that both genes antagonize survival of mammary tumor cells by sensitizing them to anoikis. When MCF7 or HEK293 tumor cells were transfected with plasmids encoding either mCLCA1 or mCLCA2, colony formation was greatly reduced relative to a vector-transfected control, demonstrating that calcium-sensitive chloride channel (CLCA) expression is deleterious to tumor cell survival. Furthermore, mammary epithelial cells overexpressing mCLCA2 had twice the rate of apoptosis of normal cells when subjected to serum starvation and formed multinuclear giants at a high frequency in normal culture, suggesting that mCLCA2 can promote either apoptosis or senescence.  相似文献   

19.
Ca(+)-activated Cl(-) channel (CLCA) proteins are encoded by a family of highly related and clustered genes in mammals that are markedly upregulated in inflammation and have been shown to affect chloride transport. Here we describe the cellular processing and regulatory sequences underlying murine (m) CLCA4 proteins. The 125-kDa mCLCA4 gene product is cleaved to 90- and 40-kDa fragments, and the NH(2)- and COOH-terminal fragments are secreted, where they are found in cell media and associated with the plasma membrane. The 125-kDa full-length protein is only found in the endoplasmic reticulum (ER), and specific luminal diarginine retention and dileucine forward trafficking signals contained within the CLCA4 sequence regulate export from the ER and proteolytic processing. Mutation of the dileucine luminal sequences resulted in ER trapping of the immaturely glycosylated 125-kDa peptide, indicating that proteolytic cleavage occurs following recognition of the trafficking motifs. Moreover, the mutated dileucine and diarginine signal sequences directed processing of a secreted form of enhanced green fluorescent protein in a manner consistent with the effects on mCLCA4.  相似文献   

20.
We have recently compared the biophysical and pharmacological properties of native Ca(2+)-activated Cl(-) currents in murine portal vein with mCLCA1 channels cloned from murine portal vein myocytes (Britton, F. C., Ohya, S., Horowitz, B., and Greenwood, I. A. (2002) J. Physiol. (Lond.) 539, 107-117). These channels shared a similar relative permeability to various anions, but the expressed channel current lacked the marked time dependence of the native current. In addition, the expressed channel showed a lower Ca(2+) sensitivity than the native channel. As non-pore-forming regulatory beta-subunits alter the kinetics and increase the Ca(2+) sensitivity of Ca(2+)-dependent K(+) channels (BK channels) we investigated whether co-expression of beta-subunits with CLCA1 would alter the kinetics/Ca(2+) sensitivity of mCLCA1. Internal dialysis of human embryonic kidney cells stably expressing CLCA1 with 500 nM Ca(2+) evoked a significantly larger current when the beta-subunit KCNMB1 was co-expressed. In a small number of co-transfected cells marked time dependence to the activation kinetics was observed. Interaction studies using the mammalian two-hybrid technique demonstrated a physical association between CLCA1 and KCNMB1 when co-expressed in human embryonic kidney cells. These data suggest that activation of CLCA1 can be modified by accessory subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号