首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yarrowia lipolytica was usually transformed by heat shock, but linearized integrative vectors always resulted in a low transformation efficiency when electroporation was used. To develop a high efficiency integrative transformation method by electroporation of F. lipolytica, we report here that pretreatment of F. lipolytica with 150 mM LiAc for 1 h before electroporation will approximately 30-fold of increase transformation efficiency. A cell concentration of 1010/ml and instrument settings of 1.5 kV will generate the highest transformation efficiencies. We have developed a procedure to transform F. lipolytica that will be able to yield an efficiency of 2.1 × 104 transformants/ug for integrative linear DNA. With our modifications, the electroporation procedures became a very efficient and reliable tool for F. lipolytica transformation.  相似文献   

2.
We explore the transformation of antenna to leg in Drosophila melanogaster, using ectopically expressed transgenes with heat shock promoters: heat shock Antennapedia, heat shock Ultrabithorax, and heat shock mouse Hox A5. We determined the frequency of transformation of several leg markers in response to Antennapedia protein delivered by heat shock at different times and doses. We also studied stage-specific responses to the transgene, heat shock mouse Hox A5. Results show that each marker has its own stage and dose-specific pattern of response. The same marker could pass through a period of high-dose inhibition followed by a dose-independent response and then a positive dose-dependent phase. The heat shock-induced transgenes and spineless aristapedia transformed the apterous enhancer trap antenna disc expression pattern toward the pattern found in leg discs. These results are considered in relation to developmental competence—the ability of developing tissue to respond to internal or external influences. The results suggest that all genes tested interact with the same competence system and that at least two classes of mechanisms are associated with antenna to leg transformation: one comprises global mechanisms that permit transformation over approximately 24 hr; the second class of mechanisms act very locally and are responsible for changes in dose response on the order of 4–8 hr. © 1996 Wiley-Liss, Inc.  相似文献   

3.
Agrobacterium genetically transforms plants by transferring and integrating T‐(transferred) DNA into the host genome. This process requires both Agrobacterium and host proteins. VirE2 interacting protein 1 (VIP1), an Arabidopsis bZIP protein, has been suggested to mediate transformation through interaction with and targeting of VirE2 to nuclei. We examined the susceptibility of Arabidopsis vip1 mutant and VIP1 overexpressing plants to transformation by numerous Agrobacterium strains. In no instance could we detect altered transformation susceptibility. We also used confocal microscopy to examine the subcellular localization of Venus‐tagged VirE2 or Venus‐tagged VIP1, in the presence or absence of the other untagged protein, in different plant cell systems. We found that VIP1–Venus localized in both the cytoplasm and the nucleus of Arabidopsis roots, agroinfiltrated Nicotiana benthamiana leaves, Arabidopsis mesophyll protoplasts and tobacco BY‐2 protoplasts, regardless of whether VirE2 was co‐expressed. VirE2 localized exclusively to the cytoplasm of tobacco and Arabidopsis protoplasts, whether in the absence or presence of VIP1 overexpression. In transgenic Arabidopsis plants and agroinfiltrated N. benthamina leaves we could occasionally detect small aggregates of the Venus signal in nuclei, but these were likely to be imagining artifacts. The vast majority of VirE2 remained in the cytoplasm. We conclude that VIP1 is not important for Agrobacterium‐mediated transformation or VirE2 subcellular localization.  相似文献   

4.
We previously established an efficient Agrobacterium-mediated transformation system using primary calli derived from mature seeds of the model japonica rice variety Nipponbare. We expected that the shortened tissue culture period would reduce callus browning—a common problem with the indica transformation system during prolonged tissue culture in the undifferentiated state. In this study, we successfully applied our efficient transformation system to Kasalath—a model variety of indica rice. The Luc reporter system is sensitive enough to allow quantitative analysis of the competency of rice callus for Agrobacterium-mediated transformation. We unexpectedly discovered that primary callus of Kasalath exhibits a remarkably high competency for Agrobacterium-mediated transformation compared to Nipponbare. Southern blot analysis and Luc luminescence showed that independent transformation events in primary callus of Kasalath occurred successfully at ca. tenfold higher frequency than in Nipponbare, and single copy T-DNA integration was observed in ~40% of these events. We also compared the competency of secondary callus of Nipponbare and Kasalath and again found superior competency in Kasalath, although the identification and subsequent observation of independent transformation events in secondary callus is difficult due to the vigorous growth of both transformed and non-transformed cells. An efficient transformation system in Kasalath could facilitate the identification of QTL genes, since many QTL genes are analyzed in a Nipponbare × Kasalath genetic background. The higher transformation competency of Kasalath could be a useful trait in the establishment of highly efficient systems involving new transformation technologies such as gene targeting.  相似文献   

5.
A number of in planta transformation protocols that avoid long culture under sterile conditions were developed for Arabidopsis thaliana. The most widely used methods are based on vacuum infiltration and floral dip. These methods were adapted for transformation of other species as well. Successful in planta transformations of alfalfa, radish, pakchoi and petunia were reported recently. In this short review we present several modified procedures originally developed for Arabidopsis thaliana and in some cases adapted to other species. We emphasize the crucial parameters involved in in planta transformation. We also describe here the studies attempting to shed light on the mechanisms and estimating the cellular target of transformation, which may help in transforming new plant species.  相似文献   

6.
Spotted wing drosophila, Drosophila suzukii, is an invasive pest that primarily attacks fresh, soft‐skinned fruit. Although others have reported successful integration of marked piggyBac elements into the D. suzukii genome, with a very respectable transgenesis rate of ~16%, here we take this work a step further by creating D. suzukii jumpstarter strains. These were generated through integration of a fluorescent‐marked Minos element carrying a heat shock protein 70‐driven piggyBac transposase gene. We demonstrate that there is a dramatic increase in transformation rates when germline transformation is performed in a transposase‐expressing background. For example, we achieved transformation rates as high as 80% when microinjecting piggyBac‐based plasmids into embryos derived from one of these D. suzukii jumpstarter strains. We also investigate the effect of insert size on transformation efficiency by testing the ability of the most efficient jumpstarter strain to catalyze integration of differently‐sized piggyBac elements. Finally, we demonstrate the ability of a jumpstarter strain to remobilize an already‐integrated piggyBac element to a new location, demonstrating that our jumpstarter strains could be used in conjunction with a piggyBac‐based donor strain for genome‐wide mutagenesis of D. suzukii.  相似文献   

7.
Acremonium implicatum is a seed-transmitted endophytic fungus that forms symbiotic associations with the economically significant tropical forage grasses, Brachiaria species. To take advantage of the endophyte's plant protective properties, we developed an efficient Agrobacterium-mediated transformation system for Acremonium implicatum, using green fluorescent protein (GFP) expression and vector pSK1019 (trpC promoter) or pCAMBIA1300 (CaMV35S promoter). We found that transformation efficiency doubled for both mycelial and conidial transformation as the co-cultivation period for Agrobacterium tumefaciens and Acremonium implicatum was increased from 48 to 72 h. Significantly, optimal results were obtained for either mycelial or conidial transformation with Agrobacterium tumefaciens strain AGL-1 and vector pSK1019 under the control of the trpC promoter. However, mycelial transformation consistently generated a significantly higher number of transformants than did conidial transformation. The mitotic stability of the transferred DNA was confirmed by growing ten transformants in liquid and agar media for six generations. In all cases, resistance to the selection pressure (hygromycin B) was maintained. Fluorescence emission was retained by the transformants and also expressed in Brachiaria tissues from plants inoculated with GFP-transformed A. implicatum. This technology will help in the transfer and expression of agronomically important genes in host plants.  相似文献   

8.
We developed a transformation system for Aspergillus oryzae using the Aspergillus nidulans sC gene encoding ATP sulfurylase as a selectable marker. The sC? mutants can be readily isolated by positive selection for selenate resistance, thereby the niaD? mutant strain of A. oryzae was bestowed with the sC? mutation. Transformation of the A. oryzae host (niaD?,sC?) with the plasmid carrying A. nidulans sC gave random and multi-copy integrants, while that with the A. oryzae niaD-carrying plasmid occurred mainly by single-copy and homologous integration events (more than 50% frequency), indicating that with this transformation system, the transformation marker could be selected according to the integration pattern one desires.  相似文献   

9.
We have investigated transformation with heterologous DNA as a method for insertional mutagenesis of Aspergillus fumigatus. Two methods, polyethylene glycol-mediated transformation of protoplasts and electroporation of germinating spores, were used to establish conditions leading to single-copy integration of transforming DNA at different genomic sites. We have assessed the effect of restriction enzyme-mediated integration (REMI) for both methods. Non-REMI protoplast transformation led to integration of multiple copies of transforming DNA in the majority of transformants. Results of REMI with protoplast transformation varied depending on the enzyme used. Low concentrations of several restriction enzymes stimulated transformation, but of ten enzymes investigated only REMI with XhoI and KpnI resulted in single-copy integration of transforming DNA for the majority of transformants. For protoplast transformation with XhoI- or KpnI-based REMI, 50% and 76% of insertions, respectively, were due to integrations at a genomic enzyme site corresponding to the enzyme used for REMI. Electroporation of spores without addition of restriction enzyme resulted in a high transformation efficiency, with up to 67% of transformants containing a single copy of transforming DNA. In contrast to protoplast transformation, electroporation of spores in the presence of a restriction enzyme did not improve transformation efficiency or lead to insertion at genomic restriction sites. Southern analysis indicated that for both protoplast transformation with REMI using KpnI or XhoI and for electroporation of spores without addition of restriction enzymes, transforming DNA inserted at different genomic sites in a high proportion of transformants. Received: 6 March 1998 / Accepted: 25 May 1998  相似文献   

10.
Agrobacterium tumefaciens is a plant pathogenic bacterium that causes neoplastic growths, called ‘crown gall’, via the transfer and integration of transferred DNA (T‐DNA) from the bacterium into the plant genome. We characterized an acetosyringone (AS)‐induced tumour‐inducing (Ti) plasmid gene, tzs (trans‐zeatin synthesizing), that is responsible for the synthesis of the plant hormone cytokinin in nopaline‐type A. tumefaciens strains. The loss of Tzs protein expression and trans‐zeatin secretions by the tzs frameshift (tzs‐fs) mutant is associated with reduced tumorigenesis efficiency on white radish stems and reduced transformation efficiencies on Arabidopsis roots. Complementation of the tzs‐fs mutant with a wild‐type tzs gene restored wild‐type levels of trans‐zeatin secretions and transformation efficiencies. Exogenous application of cytokinin during infection increased the transient transformation efficiency of Arabidopsis roots infected by strains lacking Tzs, which suggests that the lower transformation efficiency resulted from the lack of Agrobacterium‐produced cytokinin. Interestingly, although the tzs‐fs mutant displayed reduced tumorigenesis efficiency on several tested plants, the loss of Tzs enhanced tumorigenesis efficiencies on green pepper and cowpea. These data strongly suggest that Tzs, by synthesizing trans‐zeatin at early stage(s) of the infection process, modulates plant transformation efficiency by A. tumefaciens.  相似文献   

11.
The ability of the CRE recombinase to catalyze excision of a DNA fragment flanked by directly repeated lox sites has been exploited to modify gene expression and proved to function well in particular case studies. However, very often variability in CRE expression and differences in efficiency of CRE-mediated recombination are observed. Here, various approaches were investigated to reproducibly obtain optimal CRE activity. CRE recombination was analyzed either by transforming the CRE T-DNA into plants containing a lox-flanked fragment or by transforming a T-DNA harboring a lox-flanked fragment into plants producing the CRE recombinase. Although somatic CRE-mediated excision of a lox-flanked fragment was obtained in all transformants, a variable amount of germline-transmitted deletions was found among different independent transformants, irrespective of the orientation of transformation. Also, the efficiency of CRE-mediated excision correlated well with the CRE mRNA level. In addition, CRE-mediated fragment excision was compared after floral dip and after root tissue transformation when transforming in a CRE-expressing background. Importantly, less CRE activity was needed to excise the lox-flanked fragment from the transferred T-DNA after root tissue transformation than after floral dip transformation. We hypothesize that this is correlated with the lower T-DNA copy number inserted during root transformation as compared to floral dip transformation. Gordana Marjanac and Annelies De Paepe contributed equally to this work.  相似文献   

12.
This paper describes a so-called ternary transformation system for plant cells. We demonstrate that Agrobacterium tumefaciens strain LBA4404 supplemented with a constitutive virG mutant gene (virGN54D) on a compatible plasmid is capable of very efficient T-DNA transfer to a diverse range of plant species. For the plant species Catharanthus roseus it is shown that increased T-DNA transfer results in increased stable transformation frequencies. Analysis of stably transformed C. roseus cell lines showed that, although the T-DNA transfer frequency is greatly enhanced by addition of virGN54D, only one or a few T-DNA copies are stably integrated into the plant genome. Thus, high transformation frequencies of different plant species can be achieved by introduction of a ternary plasmid carrying a constitutive virG mutant into existing A. tumefaciens strains in combination with standard binary vectors.  相似文献   

13.
Transformation of Liquidambar styraciflua using Agrobacterium tumefaciens   总被引:1,自引:0,他引:1  
Summary We describe the molecular transformation of Liquidambar styraciflua using Agrobacterium tumefaciens. A binary TI-plasmid vector containing a chimeric neomycin phosphotransferagene which confers resistance to kanamycin and either a chimeric Bacillus thuringiensis toxin gene, a chimeric E. coli -glucuronida(GUS), or a chimeric tobacco anionic peroxidase gene was introduced into sweetgum by co-cultivation with Agrobacterium tumefaciens. Sweetgum shoots regenerated in the presence of kanamycin were confirmed to be transformed by genomic DNA blots or the presence of GUS activity. The optimization of the transformation protocol and the incorporation of molecular transformation into a rapid germplasm improvement protocol are discussed.  相似文献   

14.
A large-scale transformation procedure handling an adequate number of stable transformants with highly efficient positive-negative selection is a necessary prerequisite to successful gene targeting by homologous recombination, as the integration of a transgene by somatic homologous recombination in higher plants has been reported to be 10-3 to 10-5 compared with random integration by non-homologous end joining. We established an efficient and large-scale Agrobacterium-mediated rice transformation protocol that generated around 103 stable transformants routinely from 150 seeds and a strong positive-negative selection procedure that resulted in survivors at 10-2 using the gene for diphtheria toxin A fragment as a negative marker. The established transformation procedure provides a basis for efficient gene targeting in rice.Abbreviations AS: Acetosyringone - 5-FU: 5-Fluorouracil - FW: Fresh weight - GT: Gene targeting - HR: Homologous recombination - NHEJ: Non-homologous end joining Communicated by H. Ebinuma  相似文献   

15.
We describe a highly efficient and reproducible Agrobacterium-mediated transformation protocol applicable to several varieties of tomato (Solanum lycopersicum, earlier known as Lycopersicum esculentum). Conditions such as co-cultivation period, bacterial concentration, concentration of benzyl amino purine (BAP), zeatin and indole acetic acid (IAA) were optimized. Co-cultivation of explants with a bacterial concentration of 108 cells/ml for three days on 2 mg/l BAP, followed by regeneration on a medium containing 1 mg/ml zeatin resulted in a transformation frequency of 41.4%. Transformation of tomato plants was confirmed by Southern blot analysis and β-glucuronidase (GUS) assay. The protocol developed showed very high efficiency of transformation for tomato varieties Pusa Ruby, Arka Vikas and Sioux. The optimized transformation procedure is simple, efficient and does not require tobacco, Petunia, tomato suspension feeder layer or acetosyringone.  相似文献   

16.
Transgenic herbicide-resistant sweet potato plants [Ipomoea batatas (L.) Lam.] were produced through Agrobacterium-mediated transformation system. Embryogenic calli derived from shoot apical meristems were infected with Agrobacterium tumefaciens strain EHA105 harboring the pCAMBIA3301 vector containing the bar gene encoding phosphinothricin N-acetyltransferase (PAT) and the gusA gene encoding β-glucuronidase (GUS). The PPT-resistant calli and plants were selected with 5 and 2.5 mg l−1 PPT, respectively. Soil-grown plants were obtained 28–36 weeks after Agrobacterium-mediated transformation. Genetic transformation of the regenerated plants growing under selection was demonstrated by PCR, and Southern blot analysis revealed that one to three copies of the transgene were integrated into the plant genome of each transgenic plant. Expression of the bar gene in transgenic plants was confirmed by RT-PCR and application of herbicide. Transgenic plants sprayed with Basta containing 900 mg l−1 of glufosinate ammonium remained green and healthy. The transformation frequency was 2.8% determined by herbicide application which was high when compared to our previous biolistic method. In addition, possible problems with multiple copies of transgene were also discussed. We therefore report here a successful and reliable Agrobacterium-mediated transformation of the bar gene conferring herbicide-resistance and this method may be useful for routine transformation and has the potential to develop new varieties of sweet potato with several important genes for value-added traits such as enhanced tolerance to the herbicide Basta.  相似文献   

17.
Summary We developed efficient genetic transformation protocols for two species of duckweed, Lemna gibba (G3) and Lemna minor (8627 and 8744), using Agrobacterium-mediated gene transfer. Partially differentiated nodules were co-cultivated with Agrobacterium tumefaciens harboring a binary vector containing β-glucuronidase and nptII expression cassettes. Transformed cells were selected and allowed to grow into nodules in the presence of kanamycin. Transgenic duckweed fronds were regenerated from selected nodules. We demonstrated that transgenic duckweed could be regenerated within 3 mo. after Agrobacterium-mediated transformation of nodules. Furthermore, we developed a method for transforming L. minor 8627 in 6 wk. These transformation protocols will facilitate genetic engineering of duckweed, ideal plants for bioremediation and large-scale industrial production of biomass and recombinant proteins.  相似文献   

18.
Early detection of plant transformation events is necessary for the rapid establishment and optimization of plant transformation protocols. We have assessed modified versions of the green fluorescent protein (GFP) from Aequorea victoria as early reporters of plant transformation using a dissecting fluorescence microscope with appropriate filters. Gfp-expressing cells from four different plant species (sugarcane, maize, lettuce, and tobacco) were readily distinguished, following either Agrobacterium-mediated or particle bombardment-mediated transformation. The identification of gfp-expressing sugarcane cells allowed for the elimination of a high proportion of non-expressing explants and also enabled visual selection of dividing transgenic cells, an early step in the generation of transgenic organisms. The recovery of transgenic cell clusters was streamlined by the ability to visualize gfp-expressing tissues in vitro. Received: 17 May 1998 / Revision received: 2 September 1998 / Accepted: 23 November 1998  相似文献   

19.
Three constructs harbouring novel Bacillus thuringiensis genes (Cry1C, Cry2A, Cry9C) and bar gene were transformed into four upland cotton cultivars, Ekangmian10, Emian22, Coker201 and YZ1 via Agrobacterium-mediated transformation. With the bar gene as a selectable marker, about 84.8 % of resistant calli have been confirmed positive by polymerase chain reaction (PCR) tests, and totally 50 transgenic plants were regenerated. The insertions were verified by means of Southern blotting. Bioassay showed 80 % of the transgenic plantlets generated resistance to both herbicide and insect. We optimized conditions for improving the transformation efficiency. A modified in vitro shoot-tip grafting technique was introduced to help entire transplantation. This result showed that bar gene can replace antibiotic marker genes (ex. npt II gene) used in cotton transformation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号