首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of RNA polymerase III (Pol III) in developing vertebrates has not been examined. Here, we identify a causative mutation of the second largest Pol III subunit, polr3b, that disrupts digestive organ development in zebrafish slim jim (slj) mutants. The slj mutation is a splice-site substitution that causes deletion of a conserved tract of 41 amino acids in the Polr3b protein. Structural considerations predict that the slj Pol3rb deletion might impair its interaction with Polr3k, the ortholog of an essential yeast Pol III subunit, Rpc11, which promotes RNA cleavage and Pol III recycling. We engineered Schizosaccharomyces pombe to carry an Rpc2 deletion comparable to the slj mutation and found that the Pol III recovered from this rpc2-Δ yeast had markedly reduced levels of Rpc11p. Remarkably, overexpression of cDNA encoding the zebrafish rpc11 ortholog, polr3k, rescued the exocrine defects in slj mutants, indicating that the slj phenotype is due to deficiency of Rpc11. These data show that functional interactions between Pol III subunits have been conserved during eukaryotic evolution and support the utility of zebrafish as a model vertebrate for analysis of Pol III function.  相似文献   

2.
3.
Assembly of the RNA polymerases in both yeast and humans is proposed to occur in the cytoplasm prior to their nuclear import. Our previous studies identified a cold-sensitive mutation, rpc128-1007, in the yeast gene encoding the second largest Pol III subunit, Rpc128. rpc128-1007 is associated with defective assembly of Pol III complex and, in consequence, decreased level of tRNA synthesis. Here, we show that rpc128-1007 mutant cells remain largely unbudded and larger than wild type cells. Flow cytometry revealed that most rpc128-1007 mutant cells have G1 DNA content, suggesting that this mutation causes pronounced cell cycle delay in the G1 phase. Increased expression of gene encoding Rbs1, the Pol III assembly/import factor, could counteract G1 arrest observed in the rpc128-1007 mutant and restore wild type morphology of mutant cells. Concomitantly, cells lacking Rbs1 show a mild delay in G1 phase exit, indicating that Rbs1 is required for timely cell cycle progression. Using the double rpc128-1007 maf1Δ mutant in which tRNA synthesis is recovered, we confirmed that the Pol III assembly defect associated with rpc128-1007 is a primary cause of cell cycle arrest. Together our results indicate that impairment of Pol III complex assembly is coupled to cell cycle inhibition in the G1 phase.  相似文献   

4.
5.
Full-length copies of cDNAs of the rpc19+ and rpc40+ genes encoding the common subunits of nuclear RNA polymerases I and III and the corresponding fragments of chromosomes were isolated from genomic and cDNA libraries of Schizosaccharomyces pombe and characterized. It was established that the cloned genes are located on chromosomes III and II of the fission yeast, respectively. The rpc40+ gene lacks introns, and the rpc19+ gene contains two intervening sequences. The comparison of subunits Rpc19 (125 aa; M 13 722 Da; pI 4.51) and Rpc40 (348 aa; M 39 141 Da; pI 5.40) of Sz. pombe, whose characteristics were deduced from the sequences of their cDNAs, with the orthologous components of other eukaryotes allowed the most conserved structure-functional domains of these proteins to be identified.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
A genetic look at the active site of RNA polymerase III   总被引:1,自引:0,他引:1       下载免费PDF全文
rpc160-112, a mutant of the RNA polymerase III active site, is corrected in vivo by six second-site mutants obtained by random mutagenesis. These mutants introduce single-site amino acid replacements at the two large subunits of the enzyme. The mutated motifs are conserved in RNA polymerases I and II and, for some of them, in the bacterial enzyme, thus delineating key elements of the active site in eukaryotic RNA polymerases.  相似文献   

14.
15.
The single-stranded DNA (ssDNA)-binding protein replication protein A (RPA) is essential for both DNA replication and recombination. Chromatin immunoprecipitation techniques were used to visualize the kinetics and extent of RPA binding following induction of a double-strand break (DSB) and during its repair by homologous recombination in yeast. RPA assembles at the HO endonuclease-cut MAT locus simultaneously with the appearance of the DSB, and binding spreads away from the DSB as 5′ to 3′ exonuclease activity creates more ssDNA. RPA binding precedes binding of the Rad51 recombination protein. The extent of RPA binding is greater when Rad51 is absent, supporting the idea that Rad51 displaces RPA from ssDNA. RPA plays an important role during RAD51-mediated strand invasion of the MAT ssDNA into the donor sequence HML. The replication-proficient but recombination-defective rfa1-t11 (K45E) mutation in the large subunit of RPA is normal in facilitating Rad51 filament formation on ssDNA, but is unable to achieve synapsis between MAT and HML. Thus, RPA appears to play a role in strand invasion as well as in facilitating Rad51 binding to ssDNA, possibly by stabilizing the displaced ssDNA.  相似文献   

16.
Saccharomyces cerevisiae DNA polymerase delta (Pol delta) is a heterotrimeric enzyme consisting of Pol3 (the catalytic subunit), Pol31 and Pol32. New pol31 alleles were constructed by introducing mutations into conserved amino acid residues in all 10 identified regions of Pol31. Six novel temperature-sensitive (ts) or cold-sensitive (cs) alleles, carrying mutations in regions III, IV, VII, VIII or IX, conferred a range of defects in the response to replication stress or DNA damage. Deletion of SGS1, RAD52, SRS2, MRC1 or RAD24 had a deleterious effect only in combination with those pol31 alleles that had a phenotype as single mutants, suggesting a requirement for recombination and checkpoint functions in processing the DNA lesions or structures that form as a consequence of replication with a defective Pol delta. In contrast, deletion of POL32 negatively affected the growth of almost all pol31 mutants, suggesting an important role for all conserved amino acids of Pol31 in maintaining the integrity of Pol delta complex structurally, at least in the absence of the third subunit. Surprisingly, deletions of RAD18 and MGS1 aggravated the temperature sensitivity conferred by most ts or cs alleles and specifically suppressed the hys2-1 and hys2-1-like mutations of POL31. Deletion of RAD5 or MMS2 had an effect on pol31 ts/cs mutants similar to that of RAD18, whereas deletion of RAD30 or REV3 had no effect. We propose that Rad18/Rad5/Mms2 and Mgs1 are required to promote replication when forks are destabilized or stalled due to defects in Pol delta. These data are consistent with the biochemical activity of the human Mgs1 orthologue, which binds and stimulates Pol deltain vitro. We also demonstrate that Mgs1 interacts physically with Pol31 in vivo. Moreover, regions I and VII of Pol31, which are specifically sensitive to high levels of Mgs1 and PCNA, could be sites of interaction.  相似文献   

17.
18.
Eukaryotic RNA polymerase III (Pol III) is a multisubunit enzyme responsible for transcribing tRNA, 5S rRNA, and several small RNAs. Of the 17 subunits in Pol III, the C17 (Rpc17) and C25 (Rpc25) subunits form a stable subcomplex that protrudes from the core polymerase. In this study, we determined the crystal structure of the C17/25 subcomplex from Schizosaccharomyces pombe. The subcomplex adopts an elongated shape, and each subunit has two domains. The two subunits in the subcomplex are tightly packed and extensively interact, with a contact area of 2080 Å2. The overall conformation of S. pombe C17/25 is considerably different from the previously reported structure of C17/25 from Saccharomyces cerevisiae, with respect to the position of the C17 HRDC domain, a helix bundle essential for cell viability. In contrast, the S. pombe C17/25 structure is quite similar to those of the Pol II and archaeal counterparts, Rpb4/7 and RpoE/F, respectively, despite the low sequence similarity. A phylogenetic comparison of the C17 subunits among eukaryotes revealed that they can be classified into three groups, according to the length of the interdomain linker. S. pombe C17, as well as Rpb4 and RpoF, belongs to the largest group, with the short linker. On the other hand, S. cerevisiae C17 belongs to the smallest group, with the long linker, which probably enables the subcomplex to assume the alternative conformation.  相似文献   

19.
The catalytic subunit of herpes simplex virus 1 DNA polymerase (HSV-1 Pol) has been extensively studied; however, its full complement of functional domains has yet to be characterized. A crystal structure has revealed a previously uncharacterized pre-NH2-terminal domain (residues 1 to 140) within HSV-1 Pol. Due to the conservation of the pre-NH2-terminal domain within the herpesvirus Pol family and its location in the crystal structure, we hypothesized that this domain provides an important function during viral replication in the infected cell distinct from 5′-3′ polymerase activity. We identified three pre-NH2-terminal Pol mutants that exhibited 5′-3′ polymerase activity indistinguishable from that of wild-type Pol in vitro: deletion mutants PolΔN43 and PolΔN52 that lack the extreme N-terminal 42 and 51 residues, respectively, and mutant PolA6, in which a conserved motif at residues 44 to 49 was replaced with alanines. We constructed the corresponding pol mutant viruses and found that the polΔN43 mutant displayed replication kinetics similar to those of wild-type virus, while polΔN52 and polA6 mutant virus infection resulted in an 8-fold defect in viral yield compared to that achieved with wild type and their respective rescued derivative viruses. Additionally, both polΔN52 and polA6 viruses exhibited defects in viral DNA synthesis that correlated with the observed reduction in viral yield. These results strongly indicate that the conserved motif within the pre-NH2-terminal domain is important for viral DNA synthesis and production of infectious virus and indicate a functional role for this domain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号