首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibromodulin, a keratan-sulfate proteoglycan, was first isolated in articular cartilage and tendons. We have identified fibromodulin as a gene regulated during BMP-2-induced differentiation of a mouse prechondroblastic cell line. Because expression of fibromodulin during endochondral bone formation has not been studied, we examined whether selected cells of the chondrocytic and osteoblastic lineage expressed fibromodulin. Fibromodulin mRNA was detected in conditionally immortalized murine bone marrow stromal cells, osteoblasts, and growth plate chondrocytes, as well as in primary murine calvarial osteoblasts. We, therefore, investigated the temporo-spatial expression of fibromodulin in vivo during endochondral bone formation by in situ hybridization. Fibromodulin was first detected at 15.5 days post coitus (dpc) in the perichondrium and proliferating chondrocytes. Fibromodulin mRNA was also detected at 15.5 dpc in the bone collar and periosteum. At later time points fibromodulin was expressed in the primary spongiosa and the endosteum. To determine whether fibromodulin was expressed during intramembranous bone formation as well, in situ hybridization was performed on calvariae. Fibromodulin mRNA was present in calvarial osteoblasts from 15.5 dpc. These results demonstrate that fibromodulin is developmentally expressed in cartilage and bone cells during endochondral and intramembranous ossification. These findings suggest that this extracellular matrix protein plays a role in both endochondral and intramembranous bone formation.  相似文献   

2.
The small keratan sulfate-substituted proteoglycan (fibromodulin) from articular cartilage was shown to contain keratan sulfate linked to the core protein through N-glycosidic linkages to residues Asn-109, Asn-147, Asn-182, and Asn-272. Biosynthetic experiments with articular chondrocytes in the presence of tunicamycin, an inhibitor of N-linked oligosaccharide synthesis, demonstrated a specific inhibition of [35S]SO4 incorporation into fibromodulin. Under the same conditions no effect on the addition of keratan sulfate to the large aggregating proteoglycan was detected. Fibromodulin substituted with keratan sulfate was purified from bovine articular cartilage extracts by density gradient centrifugation, ion-exchange chromatography, and gel-permeation chromatography. Isolation of glycosylated peptides from tryptic digests of fibromodulin by ion-exchange chromatography and reversed-phase high performance liquid chromatography revealed four separate hexosamine-rich species, that were also immunoreactive with monoclonal antibody 5D4. Sequence analysis of these glycopeptides gave blank cycles at positions which corresponded to Asn followed by X-Ser/Thr in the sequence derived from cDNA (Oldberg, A., Antonsson, P., Lindblom, K., and Heinegard, D. (1989) EMBO J. 8, 2601-2604). Hence, all four Asn residues in the leucine-rich region of the fibromodulin core protein can serve as acceptor sites for keratan sulfate addition.  相似文献   

3.
Mutations in the cartilage oligomeric matrix protein (COMP) gene result in pseudoachondroplasia (PSACH), which is a chondrodysplasia characterized by early-onset osteoarthritis and short stature. COMP is a secreted pentameric glycoprotein that belongs to the thrombospondin family of proteins. We have identified a novel missense mutation which substitutes a glycine for an aspartic acid residue in the thrombospondin (TSP) type 3 calcium-binding domain of COMP in a patient diagnosed with PSACH. Immunohistochemistry and immunoelectron microscopy both show abnormal retention of COMP within characteristically enlarged rER inclusions of PSACH chondrocytes, as well as retention of fibromodulin, decorin and types IX, XI and XII collagen. Aggrecan and types II and VI collagen were not retained intracellularly within the same cells. In addition to selective extracellular matrix components, the chaperones HSP47, protein disulfide isomerase (PDI) and calnexin were localized at elevated levels within the rER vesicles of PSACH chondrocytes, suggesting that they may play a role in the cellular retention of mutant COMP molecules. Whether the aberrant rER inclusions in PSACH chondrocytes are a direct consequence of chaperone-mediated retention of mutant COMP or are otherwise due to selective intracellular protein interactions, which may in turn lead to aggregation within the rER, is unclear. However, our data demonstrate that retention of mutant COMP molecules results in the selective retention of ECM molecules and molecular chaperones, indicating the existence of distinct secretory pathways or ER-sorting mechanisms for matrix molecules, a process mediated by their association with various molecular chaperones.  相似文献   

4.
5.
We assessed the distribution and relative staining intensity of bone morphogenetic protein (BMP)-1-7 by immunohistochemistry in tibial growth plates, epiphyses, metaphyses, and articular cartilage in one 21-week and one 22-week human fetus and in five 10-week-old Sprague-Dawley rats. In the rats, articular cartilage was also examined. BMP proteins were mostly cytoplasmic, with negligible matrix staining. Highest BMP levels were seen in (a) hypertrophic and calcifying zone chondrocytes of growth plate (BMP-1-7), (b) osteoblasts and/or osteoprogenitor fibroblasts and vascular cells of the metaphyseal cortex and medulla (BMP-1-6), (c) osteoclasts of the metaphysis and epiphysis (BMP-1,-4,-5, and -6), and (d) mid to deep zone articular chondrocytes of weanling rats (BMP-1-7). BMP staining in osteoclasts, an unexpected finding, was consistently strong with BMP-4, -5, and -6 but was variable and dependent on osteoclast location with BMP-2,-3, and -7. BMP-1-7 were moderately to intensely stained in vascular canals of human fetal epiphyseal cartilage by endothelial cells and pericytes. BMP-1,-3,-5,-6, and -7 were localized in hypertrophic chondrocytes adjacent to cartilage canals. We conclude that BMP expression is associated with maturing chondrocytes of growth plate and articular cartilage, and may play a role in chondrocyte differentiation and/or apoptosis. BMP appears to be expressed by osteoclasts and might be involved in the intercellular "cross-talk" between osteoclasts and neighboring osteoprogenitor cells at sites of bone remodeling.  相似文献   

6.
Articular chondrocytes are a unique set of cells from the time the cellular condensations that become the anlagen of the long bones develop in the embryo. In the presumptive joint the cells of the opposing bones are packed very closely together, but at cavitation, the central, flattened cells move apart to form the articular surfaces. As the articular cartilage develops the cells are pushed further apart by the cartilaginous matrix. To determine the contributions of cell proliferation and death to cavitation and the subsequent development and growth of articular cartilage, direct observations were made to identify mitotic cells and those with apoptotic bodies in haematoxylin-stained sections of developing joints, and growing and ageing articular cartilage of the rabbit knee. These observations were extended using antibodies to the proliferating cell nuclear antigen (PCNA) and TdT-mediated dUTP nick end labelling (TUNEL) on corresponding sections. Low levels of cell division do occur in the articular cartilage up to 6 weeks postnatally, but matrix formation makes the major contribution to the increase in size of the cartilage. Cell death is not observed during cavitation, nor during the development of the articular cartilage proper. Apoptosis is essential, however, for the removal of the epiphyseal cartilage during ossification of the epiphyses and in the growth plate.  相似文献   

7.
The mechanosensitivity of cartilage oligomeric matrix protein (COMP)   总被引:1,自引:0,他引:1  
  相似文献   

8.
Articular cartilage lacks self-repair capacity. Currently, two methods employing autologous cells are used to stimulate repair of articular cartilage. Micro-fracture induced repair induces autologous mesenchymal cell migration from bone marrow. Autologous chondrocytes' transplantation involves in vitro expansion of chondrocytes, and later implantation. In 15 patients de-differentiated chondrocytes obtained by cartilage biopsy were compared to cells derived from repair tissue induced by micro-fracture. These patients all underwent micro-fracture during the cartilage biopsy procedure. Autologous chondrocytes' transplantation was performed at least two months later then the biopsy. Tissue bits from articular cartilage and micro-fracture repair tissue were incubated in-vitro and explant cell cultures established. The cell cultures were assessed by immunohistochemistry and induced to differentiate. Differentiation into bone tissue was stimulated by addition of basic fibroblast growth factor, ascorbate and dexamethasone. High density (micro-mass) culture was used to stimulate chondrogenesis. Both cell cultures consist of mesenchymal progenitors as indicated by fibroblast growth factor receptor 3 expression and anti-CD-34+ antibodies. However, the micro-fracture generated repair tissue consists of osteocalcin-expressing cells destined to become bone. Collagen type II expression does not occur in these cells compared to autologous chondrocytes. Inducible nitric oxide synthase expression by microfracture cells is likely to damage surrounding articular cartilage in vivo. In conclusion, cells recruited by micro-fracture are inferior for cartilage regeneration purposes to those from cartilage biopsies.  相似文献   

9.
The use of autologous chondrocyte implantation (ACI) and its further development combining autologous chondrocytes with bioresorbable matrices may represent a promising new technology for cartilage regeneration in orthopaedic research. Aim of our study was to evaluate the applicability of a resorbable three-dimensional polymer of pure polyglycolic acid (PGA) for the use in human cartilage tissue engineering under autologous conditions. Adult human chondrocytes were expanded in vitro using human serum and were rearranged three-dimensionally in human fibrin and PGA. The capacity of dedifferentiated chondrocytes to re-differentiate was evaluated after two weeks of tissue culture in vitro and after subcutaneous transplantation into nude mice by propidium iodide/fluorescein diacetate (PI/FDA) staining, scanning electron microscopy (SEM), gene expression analysis of typical chondrocyte marker genes and histological staining of proteoglycans and type II collagen. PI/FDA staining and SEM documented that vital human chondrocytes are evenly distributed within the polymer-based cartilage tissue engineering graft. The induction of the typical chondrocyte marker genes including cartilage oligomeric matrix protein (COMP) and cartilage link protein after two weeks of tissue culture indicates the initiation of chondrocyte re-differentiation by three-dimensional assembly in fibrin and PGA. Histological analysis of human cartilage tissue engineering grafts after 6 weeks of subcutaneous transplantation demonstrates the development of the graft towards hyaline cartilage with formation of a cartilaginous matrix comprising type II collagen and proteoglycan. These results suggest that human polymer-based cartilage tissue engineering grafts made of human chondrocytes, human fibrin and PGA are clinically suited for the regeneration of articular cartilage defects.  相似文献   

10.
Epiphyses of the proximal tibiae of 7-week-old normal and homozygous recessive brachymorphic mice (bm/bm) were immunostained using a monoclonal antibody to basic fibroblast growth factor to determine its expression in growth plate cartilage, osteoblasts on the surfaces of the primary spongiosa and articular cartilage. In the normal growth plate, the immunoreactive factor was present in chondrocytes of the proliferating and upper hypertrophic zones but absent from lower hypertrophic chondrocytes. Immunostaining was present only in the territorial extracellular matrix immediately adjacent to the chondrocytes of the proliferating and upper hypertrophic zones. Osteoblasts of the primary spongiosa stained heavily in normal mice. Strong staining was observed in intermediate zone articular chondrocytes. Cells in the superficial layer of articular cartilage were unstained. The extracellular matrix of the articular cartilage was completely free of immunostaining. In contrast, the reduced size of bm/bm growth plates was accompanied by significantly reduced staining intensity in proliferating and upper hypertrophic chondrocytes, and staining was absent from the territorial extracellular matrix of all zones of the bm/bm growth plate. Osteoblasts of the primary spongiosa of bm/bm mice stained less than those of normal mice. Articular cartilage chondrocytes in the intermediate zone stained with less intensity in bm/bm mice, and the cells of the superficial layer were unstained. The extracellular matrix of bm/bm articular cartilage was completely free of staining. Brachymorphic epiphyseal growth plate and articular chondrocytes, and osteoblasts in the primary spongiosa, express reduced amounts of immunoreactive fibroblast growth factor-2. This phenotypical characteristic may be associated with abnormal endochondral ossification and development of bone in brachymorphic mice  相似文献   

11.
Epiphyses of the proximal tibiae of 7-week-old normal and homozygous recessive brachymorphic mice (bm/bm) were immunostained using a monoclonal antibody to basic fibroblast growth factor to determine its expression in growth plate cartilage, osteoblasts on the surfaces of the primary spongiosa and articular cartilage. In the normal growth plate, the immunoreactive factor was present in chondrocytes of the proliferating and upper hypertrophic zones but absent from lower hypertrophic chondrocytes. Immunostaining was present only in the territorial extracellular matrix immediately adjacent to the chondrocytes of the proliferating and upper hypertrophic zones. Osteoblasts of the primary spongiosa stained heavily in normal mice. Strong staining was observed in intermediate zone articular chondrocytes. Cells in the superficial layer of articular cartilage were unstained. The extracellular matrix of the articular cartilage was completely free of immunostaining. In contrast, the reduced size of bm/bm growth plates was accompanied by significantly reduced staining intensity in proliferating and upper hypertrophic chondrocytes, and staining was absent from the territorial extracellular matrix of all zones of the bm/bm growth plate. Osteoblasts of the primary spongiosa of bm/bm mice stained less than those of normal mice. Articular cartilage chondrocytes in the intermediate zone stained with less intensity in bm/bm mice, and the cells of the superficial layer were unstained. The extracellular matrix of bm/bm articular cartilage was completely free of staining. Brachymorphic epiphyseal growth plate and articular chondrocytes, and osteoblasts in the primary spongiosa, express reduced amounts of immunoreactive fibroblast growth factor-2. This phenotypical characteristic may be associated with abnormal endochondral ossification and development of bone in brachymorphic mice  相似文献   

12.
Human bone marrow-derived mesenchymal stem cells (MSCs) have been shown to differentiate into distinct mesenchymal tissues including bone and cartilage. The capacity of MSCs to replicate undifferentiated and to mature into cartilaginous tissues suggests these cells as an attractive cell source for cartilage tissue engineering. Here we show that the stimulation of human bone marrow-derived MSCs with recombinant bone morphogenetic protein-2 (BMP2) results in chondrogenic lineage development under serum-free conditions. Histological staining of proteoglycan with Alcian blue and immunohistochemical staining of cartilage-specific type II collagen revealed the deposition of typical cartilage extracellular matrix components. Semi-quantitative real-time gene expression analysis of characteristic chondrocytic matrix genes, such as cartilage link protein, cartilage oligomeric matrix protein, aggrecan, and types I, II, and IX collagen, confirmed the induction of the chondrocytic phenotype in high-density culture upon stimulation with BMP2 and transforming growth factor-beta3 (TGFbeta3). Histologic staining of mineralized extracellular matrix with von Kossa, immunostaining of type X collagen (typical for hypertrophic chondrocytes), and gene expression analysis of osteocalcin and adipocyte-specific fatty acid binding protein (aP2) further documented that BMP2 induced chondrogenic lineage development and not osteogenesis and/or adipogenesis in human MSCs. These results suggest BMP2 as a promising candidate for tissue engineering approaches regenerating articular cartilage on the basis of mesenchymal progenitors from bone marrow.  相似文献   

13.
M Wong  M Siegrist  X Cao 《Matrix biology》1999,18(4):391-399
In this study, we investigated the biosynthetic response of full thickness, adult bovine articular cartilage explants to 45 h of static and cyclic unconfined compression. The cyclic compression of articular cartilage resulted in a progressive consolidation of the cartilage matrix. The oscillatory loading increased protein synthesis ([35S]methionine incorporation) by as much as 50% above free swelling control values, but had an inhibitory influence on proteoglycan synthesis ([35SO4] incorporation). As expected, static compression was associated with a dose-dependent decrease in biosynthetic activity. ECM oligomeric proteins which were most affected by mechanical loading were fibronectin and cartilage oligomeric matrix protein (COMP). Static compression at all amplitudes caused a significant increase in fibronectin synthesis over free swelling control levels. Cyclic compression of articular cartilage at 0.1 Hz and higher was consistently associated with a dramatic increase in the synthesis of COMP as well as fibronectin. The biosynthetic activity of chondrocytes appears to be sensitive to both the frequency and amplitude of the applied load. The results of this study support the hypothesis that cartilage tissue can remodel its extracellular matrix in response to alterations in functional demand.  相似文献   

14.
Signaling by fibroblast growth factor (FGF) 18 and FGF receptor 3 (FGFR3) have been shown to regulate proliferation, differentiation, and matrix production of articular and growth plate chondrocytes in vivo and in vitro. Notably, the congenital absence of either FGF18 or FGFR3 resulted in similar expansion of the growth plates of fetal mice and the addition of FGF18 to human articular chondrocytes in culture enhanced proliferation and matrix production. Based on these and other experiments it has been proposed that FGF18 signals through FGFR3 to promote cartilage production by chondrocytes. Its role in chondrogenesis remains to be defined. In the current work we used the limb buds of FGFR3(+/+) and FGFR3(-/-) embryonic mice as a source of mesenchymal cells to determine how FGF18 signaling affects chondrogenesis. Confocal laser-scanning microscopy demonstrated impaired cartilage nodule formation in the FGFR3(-/-) cultures. Potential contributing factors to the phenotype were identified as impaired mitogenic response to FGF18, decreased production of type II collagen and proteoglycan in response to FGF18 stimulation, impaired interactions with the extracellular matrix resulting from altered integrin receptor expression, and altered expression of FGFR1 and FGFR2. The data identified FGF18 as a selective ligand for FGFR3 in limb bud mesenchymal cells, which suppressed proliferation and promoted their differentiation and production of cartilage matrix. This work, thus, identifies FGF18 and FGFR3 as potential molecular targets for intervention in tissue engineering aimed at cartilage repair and regeneration of damaged cartilage.  相似文献   

15.

Introduction

The small leucine-rich proteoglycans (SLRPs) modulate tissue organization, cellular proliferation, matrix adhesion, growth factor and cytokine responses, and sterically protect the surface of collagen type I and II fibrils from proteolysis. Catabolism of SLRPs has important consequences for the integrity of articular cartilage and meniscus by interfering with their tissue homeostatic functions.

Methods

SLRPs were dissociatively extracted from articular cartilage from total knee and hip replacements, menisci from total knee replacements, macroscopically normal and fibrillated knee articular cartilage from mature age-matched donors, and normal young articular cartilage. The tissue extracts were digested with chondroitinase ABC and keratanase-I before identification of SLRP core protein species by Western blotting using antibodies to the carboxyl-termini of the SLRPs.

Results

Multiple core-protein species were detected for all of the SLRPs (except fibromodulin) in the degenerate osteoarthritic articular cartilage and menisci. Fibromodulin had markedly less fragments detected with the carboxyl-terminal antibody compared with other SLRPs. There were fewer SLRP catabolites in osteoarthritic hip than in knee articular cartilage. Fragmentation of all SLRPs in normal age-matched, nonfibrillated knee articular cartilage was less than in fibrillated articular cartilage from the same knee joint or total knee replacement articular cartilage specimens of similar age. There was little fragmentation of SLRPs in normal control knee articular cartilage. Only decorin exhibited a consistent increase in fragmentation in menisci in association with osteoarthritis. There were no fragments of decorin, biglycan, lumican, or keratocan that were unique to any tissue. A single fibromodulin fragment was detected in osteoarthritic articular cartilage but not meniscus. All SLRPs showed a modest age-related increase in fragmentation in knee articular and meniscal cartilage but not in other tissues.

Conclusion

Enhanced fragmentation of SLRPs is evident in degenerate articular cartilage and meniscus. Specific decorin and fibromodulin core protein fragments in degenerate meniscus and/or human articular cartilage may be of value as biomarkers of disease. Once the enzymes responsible for their generation have been identified, further research may identify them as therapeutic targets.  相似文献   

16.
目的:研究软骨寡聚基质蛋白(cartilage oligomeric matrix protein,COMP)过表达对BMP-2诱导骨髓间充质干细胞成骨及成软骨分化的影响。方法:BMP-2诱导骨髓间充质干细胞分化,通过脂质体转染含人COMP基因的质粒使骨髓间充质干细胞过表达COMP,采用实时定量PCR和Western blotting分析COMP基因过表达、成骨相关基因Ⅰ型胶原、RUNX2、骨钙蛋白以及成软骨相关基因Ⅱ型胶原、SOX9、蛋白聚糖、X型胶原的表达变化;通过茜素红染色观察成骨终末阶段矿化结节的生成情况,阿利新蓝染色观察细胞基质蛋白多糖的合成情况。结果:质粒转染后骨髓间充质干细胞COMP基因蛋白和mRNA表达水平显著提高(P<0.05)。COMP基因过表达后,成骨标记基因RUNX2、Ⅰ型胶原(Col1a1)mRNA水平均显著低于对照组(P<0.05),RUNX2、骨钙蛋白(Osteocalcin)蛋白表达水平明显低于对照组(P<0.05),而成软骨标记基因SOX9、蛋白聚糖(Aggrecan)mRNA水平均显著高于对照组(P<0.05),SOX9、Ⅱ型胶原(Col2a1)蛋白表达均明显多于对照组(P<0.05)。细胞成骨茜素红染色弱于对照组,而阿利新蓝染色强于对照组。过表达组细胞X型胶原(Col10a1)基因表达显著低于对照组(P<0.05),结论:骨髓间充质干细胞COMP基因过表达可抑制BMP-2诱导其成骨分化,促进骨髓间充质干细胞成软骨分化,并抑制软骨细胞的成熟肥大,为软骨组织工程研究提供新的方向。  相似文献   

17.
The repair of articular cartilage following papain injection into the knee joint of the guinea pig was studied by light and electron microscopy, as well as by autoradiography using tritiated thymidine. Papain injection rapidly produced complete degradation of cartilage proteoglycan. Although a number of chondrocytes were also destroyed, the remaining chondrocytes showed mitotic cell division with resultant formation of cell clusters. Such chondrocytic regeneration, however, did not contribute significantly to the repair of cartilage tissue. On the other hand, mesenchymal cells proliferated from the transition zone and extended over the surface of the damaged cartilage. At the peripheral portion of the articular surface, they migrated and differentiated into chondrocytes with the formation of abundant intercellular matrix to produce hyaline cartilage. From these findings, it was apparent that mesenchymal cells in the transition zone were actively engaged in the repair of articular cartilage.  相似文献   

18.
19.
The biomechanical characteristics of septal cartilage depend strongly on the distinct extracellular matrix of cartilage tissue; therefore, it is essential that the components of this matrix are identified and understood. Cartilage oligomeric matrix protein (COMP) and matrilin-3 are localised in articular cartilage. This study was the first to examine all subtypes of mature human nasal cartilages (alar, triangular and septal) with specific attention to the distribution of COMP and matrilin-3. Three whole fresh-frozen noses from human donors were dissected, and exemplary biopsies were examined using histochemical staining (haematoxylin and eosin and Alcian blue) and immunohistochemistry (collagen II, COMP and matrilin-3). The following three zones within the nasal cartilage were identified: superficial, intermediate and central. COMP was detected as highest in the intermediate zones in all three subtypes of nasal cartilage, whereas matrilin-3 was detected with pericellular deposition mainly within septal cartilage predominantly in the superficial zones. The distinct staining patterns of COMP and matrilin-3 underscore the different functional roles of both proteins in nasal cartilage. According to the literature, COMP might be involved with collagen II in the formation of networks, whereas matrilin-3 is reported to prevent ossification or regulate mechanosensitivity. The predominant staining observed in septal cartilage suggests matrilin-3’s modulatory role because of its presence in the osteochondral junctional zone and given that the biomechanical load in septal cartilage is different from that in alar or triangular cartilage. In conclusion, COMP and matrilin-3 were detected in mature human nasal cartilage but displayed different staining patterns that might be explained by the functional roles of the respective matrix protein; however, further research is necessary to identify and define the functional aspects of this morphological difference.  相似文献   

20.
Apoptosis staining in cultured pseudoachondroplasia chondrocytes   总被引:1,自引:0,他引:1  
Pseudoachondroplasia (PSACH) is a skeletal dysplasia caused by a mutation in cartilage oligomeric matrix protein (COMP), a glycoprotein of normal cartilage matrix. PSACH chondrocytes have a distinctive phenotype with enlarged rER cisternae containing COMP, aggrecan, type IX collagen, and chaperone proteins. Ultrastructural studies suggested that this accumulation compromises cell function, hastening cell death, and consequently reducing the number of cells in the growth plate contributing to linear bone growth. Using the alginate bead system, we cultured control and PSACH chondrocytes for twenty weeks and one year to determine the effect of the mutation on size and number of cartilage nodules; and the presence of apoptotic cell death (TUNEL assay). At 20 weeks, beads containing PSACH or control chondrocytes did not differ in size and number of cartilage nodules or number of TUNEL-positive cells. After one year, nodule number, size and percent cartilage per bead were significantly less in PSACH nodules, and the number of cells staining positive for apoptosis was significantly greater than in controls (71.8% vs. 44.6%). The increase in apoptosis in PSACH nodules correlates with a decrease in growth of cartilage, supporting our hypothesis that death of damaged cells contributes to the growth plate defects in PSACH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号