首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the current work, the molecular recognition and interaction were studied by taking advantages of the environmentally sensitive fluorescence of hypocrellin B (HB) and the structural knowledge of hyaluronan (HYA), a polysaccharide over-expressed in tumor cells or tissues. Interestingly, it was found that, binding to HYA, the absorbance of HB would be greatly strengthened, suggesting HB fitting to a hydrophobic environment in HYA, while the fluorescence seriously quenched at pH 7.0, which was very distinct from the binding of HB to proteins, liposome, other polysaccharide molecules or HYA at pH 2.0. Synchronously, the particle size of HYA would become bigger after interaction with HB, suggesting an aggregation of HYA. Considering the spectral responses of HB and the particle size change of HYA, a specific interaction of HB with HYA was proposed, that is, an HB molecule would link two HYA molecules not only by hydrophobic interaction but also by formations of intermolecular hydrogen bonds at physiological pH values. Furthermore, the estimated binding constant suggests a quite high affinity of HB to HYA. Besides, an oxygen-dependent degradation of HYA and photobleaching of HB were observed via photosensitization of HB.  相似文献   

2.
Molecular binding of hypocrellins to human serum albumin (HSA) needs to be further clarified considering the phototherapeutic potentials of hypocrellins to vascular diseases. In the current work, it was estimated that the binding constant of hypocrellin B (HB) to HSA was 2.28 x 10(4) M(-1). Furthermore, based on the fluorescence responses for both HB and the tryptophan of HSA, it was suggested that the binding of HB to HSA should be more specific rather than distributed randomly on the surface of HSA, which was also confirmed by photobleaching of the tryptophan via photosensitization of HB. Besides, it was found that both of the photo-bleaching of the tryptophan and the photo-oxidation of HB were principally oxygen-dependent, suggesting reactive oxygen species generated via the photosensitization of HB, instead of the free radicals of the photosensitizer (HB*-), play the most important role in photodynamic processes.  相似文献   

3.
We describe the synthesis, purification, and spectral properties of new dyes and reactive labels. They absorb in the visible range between 450 and 700 nm and display analytically useful fluorescence. They were made amino-reactive by esterification with N-hydroxysuccinimide (NHS). The resulting oxysuccinimide (OSI) esters were covalently linked to the amino groups of human serum albumin (HSA) or certain DNA oligomers. Except for dyes 9 and 13, they contain one reactive group only in order to avoid cross linking of biomolecules. Labeling of amino-modified biomolecules was performed by standard protocols, and the labeled proteins and oligonucleotides were separated from the unreacted dye by gel chromatography using Sephadex G25 as the stationary phase in the case of proteins, and reversed-phase HPLC in the case of DNA oligomers. The dyes also have been used as donor-acceptor pairs in fluorescence energy transfer systems and in energy transfer cascades.  相似文献   

4.
Using intrinsic and probe fluorescence, microcalorimetry and isotopic methods, the interactions of prostaglandins (PG) E2 and F2 alpha and some fatty acids with native and alkylated proteins (human serum albumin (HSA) and rat liver plasma membrane PG receptors), were studied. The fatty acid and PG interactions with human serum albumin (HSA) resulted in effective quenching of fluorescence of the probe, 1.8-anilinonaphthalene sulfonate (ANS), bound to the protein. Fatty acids competed with ANS for the binding sites; the efficiency of this process increased with an increase in the number of double bonds in the fatty acid molecule. PG induced a weaker fluorescence quenching of HSA-bound ANS and stabilized the protein molecule in a lesser degree compared to fatty acids. The sites of PG E2 and F2 alpha binding did not overlap with the sites of fatty acid binding on the HSA molecule. Nonenzymatic alkylation of HSA by acetaldehyde resulted in the abnormalities of binding sites for fatty acids and PG. Modification of the plasma membrane proteins with acetaldehyde sharply diminished the density of PG E2 binding sites without changing the association constants. Alkylation did not interfere with the parameters of PG F2 alpha binding to liver membrane proteins.  相似文献   

5.
A novel F?rster donor-acceptor dye pair for an immunoassay based on resonance energy transfer (RET) is characterized with respect to its photophysical properties. As donor and acceptor, we chose the long-wavelength excitable cyanine dyes Cy5 and Cy5.5, respectively. Due to the perfect spectral overlap, an exceptionally high R(0) value of 68.7 A is obtained in solution. For biochemical applications, antibodies (IgG) are labeled with Cy5, while a tracer for competitive binding is synthesized by labeling bovine serum albumin (BSA) with an analyte derivative and Cy5.5. Binding the dyes to proteins at a low dye/protein ratio increases the fluorescence lifetimes and quantum yields, leading to an enhanced R(0) value of 85.2 A. At higher dye/protein ratios, the formation of nonfluorescent dimeric species causes a decrease in the fluorescence lifetime and quantum yield due to RET from monomeric dyes to dimers within one protein molecule. The F?rster distances could be calculated using the dimer absorption spectra to 83.9 and 83.6 A for Cy5 and Cy5.5, respectively. Upon binding of the Cy5-labeled IgG to the tracer, efficient quenching of Cy5 fluorescence is observed. Steady-state and time-resolved measurements reveal that approximately 50% of the quenching results in F?rster-type RET, while the residual quenching effect is caused by static quenching processes. The applicability of this dye pair is demonstrated in a homogeneous competitive immunoassay for the pesticide simazine.  相似文献   

6.
Interactions of annexins with membrane phospholipids.   总被引:2,自引:0,他引:2  
The annexins are proteins that bind to membranes and can aggregate vesicles and modulate fusion rates in a Ca2(+)-dependent manner. In this study, experiments are presented that utilize a pyrene derivative of phosphatidylcholine to examine the Ca2(+)-dependent membrane binding of soluble human annexin V and other annexins. When annexin V and other annexins were bound to liposomes containing 5 mol % acyl chain labeled 3-palmitoyl-2-(1-pyrenedecanoyl)-L-alpha-phosphatidylcholine, a decrease in the excimer-to-monomer fluorescence ratio was observed, indicating that annexin binding may decrease the lateral mobility of membrane phospholipids without inducing phase separation. The observed increases of monomer fluorescence occurred only with annexins and not with other proteins such as parvalbumin or bovine serum albumin. The extent of the increase of monomer fluorescence was dependent on the protein concentration and was completely and rapidly reversible by EDTA. Annexin V binding to phosphatidylserine liposomes was consistent with a binding surface area of 59 phospholipid molecules per protein. Binding required Ca2+ concentrations ranging between approximately 10 and 100 microM, where there was no significant aggregation or fusion of liposomes on the time scale of the experiments. The polycation spermine also displaced bound annexins, suggesting that binding is largely ionic in nature under these conditions.  相似文献   

7.
Previous work has proved that hypocrellin B (HB) binds to human serum albumin (HSA) at a specific site instead of distributed randomly on the surface of a protein. In the current work, further investigation by using bilirubin as a site I marker indicates that HB can compete for the same site with bilirubin, suggesting that the HB binding site is located at sub-domain IIA (site I) of HSA. Moreover, bound to HSA, the HB fluorescence was found to be pH sensitive in physiological range (pH 6.0-8.0). The increasing of binding constant of HB to HSA in the pH range 6-8 also indicates that the N<-->B transition modulates the microenvironment changes of the binding site and influences considerably the binding between HB and HSA. Furthermore, picosecond time-resolved fluorescence spectra of HB-HSA complex in PBS indicate an additional short-lived component compared to that for HB in benzene, which may be assigned to the process of electron transfer from Trp-214 to HB.  相似文献   

8.
Fitos I  Visy J  Kardos J 《Chirality》2002,14(5):442-448
Kinetic and equilibrium binding studies were performed on the interaction of warfarin enantiomers with human serum albumin (HSA) in the absence and presence of lorazepam acetate (LoAc) enantiomers. Binding kinetics were followed by recording changes in the fluorescence of warfarin upon binding to HSA using the stopped-flow technique. The binding of (R)-warfarin displayed an exponentially increasing fluorescence, satisfying the two-step mechanism reported previously for the racemate, i.e., a diffusion controlled pre-equilibrium is followed by a slower rearrangement of the complex. In the case of (S)-warfarin, the signal was biphasic: a fast fluorescence enhancement was followed by a slow decline. The different kinetic features indicate that the equilibrium conformations of the [(S)-warfarin-HSA] and [(R)-warfarin-HSA] complexes are achieved via different mechanisms. The phenomenon was seen in buffers of different pH and compositions. Equilibrium binding measurements indicated significantly lower molar intrinsic fluorescence for the (S)-warfarin complex, suggesting differences in the microenvironments of the bound enantiomers. In the presence of (S)-LoAc, the allosterically enhanced binding of (S)-warfarin manifested itself in accelerated relaxation kinetics. In accordance with the low molar intrinsic fluorescence determined for the stable ternary complex, the amplitude of the decline in fluorescence became larger.  相似文献   

9.
Nile red is an uncharged hydrophobic molecule whose fluorescence is strongly influenced by the polarity of its environment. It interacts with many, but not all, native proteins, including beta-lactoglobulin, kappa-casein, and albumin, with a wide range of spectral changes for different proteins. It detects the exposure or formation of new hydrophobic surfaces induced by ligand binding to calmodulin, oligomerization of melittin, or unfolding of ovalbumin during early thermal denaturation. The dye is photostable, the working wavelength range is broad and removed from those at which many biomolecules absorb, the fluorescence is unaffected by pH between 4.5 and 8.5, the quantum yield is high, and hydrophobic sites on proteins may be investigated in dilute solutions.  相似文献   

10.
A novel water-soluble amine-reactive dioxaborine trimethine dye was synthesized in a good yield and characterized. The potential of the dye as a specific reagent for protein labeling was demonstrated with bovine serum albumin and lysozyme. Its interaction with proteins was studied by fluorescence spectroscopy and gel electrophoresis. The covalent binding of this almost nonfluorescent dye to proteins results in a 75- to 78-fold increase of its emission intensity accompanied by a red shift of the fluorescence emission maximum by 27 to 45 nm, with fluorescence wavelengths of labeled biomolecules being more than 600 nm. The dye does not require activation for the labeling reaction and can be used in a variety of bioassay applications.  相似文献   

11.
A method for protein and cell patterning on polyelectrolyte-coated surfaces using simple micromolding in capillaries (MIMIC) is described. MIMIC produced two distinctive regions. One contained polyethylene glycol (PEG) microstructures fabricated using photopolymerization that provided physical, chemical, and biological barriers to the nonspecific binding of proteins, bacteria, and fibroblast cells. The second region was the polyelectrolyte (PEL) coated surface that promoted protein and cell immobilization.

The difference in surface functionality between the PEL region and background PEG microstructures resulted in simple patterning of biomolecules. Fluorescein isothiocyanate-tagged bovine serum albumin, E. coli expressing green fluorescence protein (GFP), and fibroblast cells were successfully bound to the exposed PEL surfaces at micron scale. Compared with the simple adsorption of protein, fluorescence intensity was dramatically improved (by about six-fold) on the PEL-modified surfaces. Although animal cell patterning is prerequisite for adhesive protein layer to survive on desired area, the PEL surface without adhesive proteins provides affordable microenvironment for cells.

The simple preparation of functionalized surface but universal platform can be applied to various biomolecules such as proteins, bacteria, and cells.  相似文献   


12.
Jana S  Dalapati S  Ghosh S  Guchhait N 《Biopolymers》2012,97(10):766-777
The nature of binding of specially designed charge transfer (CT) fluorophore at the hydrophobic protein interior of human serum albumin (HSA) has been explored by massive blue-shift (82 nm) of the polarity sensitive probe emission accompanying increase in emission intensity, fluorescence anisotropy, red edge excitation shift, and average fluorescence lifetimes. Thermal unfolding of the intramolecular CT probe bound HSA produces almost opposite spectral changes. The spectral responses of the molecule reveal that it can be used as an extrinsic fluorescent reporter for similar biological systems. Circular dichrosim spectra, molecular docking, and molecular dynamics simulation studies scrutinize this binding process and stability of the protein probe complex more closely.  相似文献   

13.
The interaction of meso-tetrakis(p-sulfonatophenyl)porphyrin (TSPP) sodium salt to human serum albumin and beta-lactoglobulin was studied by steady-state and dynamic fluorescence at different pH of aqueous solutions. The formation of TSPP J-aggregates and a noncovalent TSPP-protein complex was monitored by fluorescence titrations, which depend on pH and on the protein nature and concentration. The complex between TSPP and protein displays a heterogeneous equilibrium with large changes in the binding strength versus pH. The large reduction of the effective binding constant from pH 2 to 7 suggests that electrostatic interactions are a major contribution to the binding of TSPP to the aforementioned proteins. TSPP aggregates and TSPP-protein complex exhibit circular dichroism induced by the presence of the protein. Circular dichroism spectra in the ultraviolet region show that the secondary structure of both proteins is not extensively affected by the TSPP presence. Protein-TSPP interaction was also examined by following the intrinsic fluorescence of the tryptophan residues of the proteins. Fluorescence quenching by acrylamide and TSPP itself also point to small changes on the protein tertiary structure and a critical distance R(0) approximately 56 A, between tryptophan and bound porphyrin, was estimated using the long distance F?rster-type energy transfer formalism.  相似文献   

14.
The interactions between 1-benzoyl-4-p-chlorphenyl thiosemicarbazide (BCPT) and bovine serum albumin (BSA) or human serum albumin (HSA) have been studied by fluorescence spectroscopy. By the analysis of fluorescence spectrum and fluorescence intensity, it was showed that BCPT has a strong ability to quench the intrinsic fluorescence of both bovine serum albumin and human serum albumin through a static quenching procedure. The binding constants of BCPT with BSA or HSA were determined at different temperatures based on the fluorescence quenching results. The binding sites were obtained and the binding force were suggested to be mainly hydrophobic. The effect of common ions on the binding constants was also investigated. A new fluorescence spectroscopy assay of the proteins is presented. The linear range is 5.36-67.0 microg mL(-1) with recovery of 101.1% for BSA, and the linear range is 8.28-144.9 microg mL(-1) with recovery of 102.6% for HSA. Determination of the proteins in bovine serum or in human serum by this method gives results which are very close to those obtained by using Coomassie Brilliant Blue G-250 colorimetry. A practical method was proposed for the determination of BCPT in human serum samples.  相似文献   

15.
A photophysical study on the binding interaction of an efficient cancer cell photosensitizer, norharmane (NHM), with model transport proteins, bovine serum albumin (BSA) and human serum albumin (HSA), has been performed using a combination of steady-state and time-resolved fluorescence techniques. The emission profile undergoes a remarkable change upon addition of the proteins to the buffered aqueous solution of the photosensitizer. The polarity-dependent prototropic transformation is responsible for the remarkable sensitivity of this biological fluorophore to the protein environments. A marked increase in the fluorescence anisotropy in the proteinous environments indicates that the albumin proteins introduce motional restriction on the drug molecule. Light has been thrown on the denaturing action of urea on the probe-bound protein. The probable binding site of the drug in proteins has also been assessed from the combination of denaturation study, micropolarity measurement, and fluorescence resonance energy transfer (FRET) study. The present study suggests that the stability of serum albumins is enhanced upon binding with the drug.  相似文献   

16.
The spectral properties of three tryptophan-substituted mutants of recombinant chicken troponin C are compared. Site-specific mutagenesis was used to introduce a tryptophan residue into the high-affinity (Ca2+/Mg2+) domain of troponin C at residue position 105, thereby creating the mutant phenylalanine-105 to tryptophan (F105W). The spectral properties of F105W and a double mutant, F29W/F105W, were compared with the mutant phenylalanine-29 to tryptophan (F29W). Since wild-type chicken troponin C does not naturally contain either tyrosine or tryptophan residues, the tryptophan substitutions behaved as site-specific reporters of metal ion binding and conformational change. The residues that occupy positions 29 and 105 are at homologous locations in low-affinity and high-affinity domains, preceding the first liganding residues of binding loops I and III, respectively. Mutant proteins were examined by a combination of absorbance and fluorescence methods. Calcium induced significant changes in the near-UV absorbance spectra, fluorescence emission spectra, and far-UV circular dichroism of all three mutant proteins. Magnesium induced significant changes in the spectral properties of only F105W and F29W/F105W proteins. Tryptophan substitutions allowed Ca(2+)-specific and Ca(2+)/Mg(2+) sites to be titrated independently of one another. Results indicate that there is no interaction between the two binding domains under conditions where troponin C is isolated from the troponin complex. Magnesium-induced changes in the environment of the tryptophan reporter at position 105 were significantly different from those induced by calcium. This suggests that calcium and magnesium differ in their influence on the conformation of the high-affinity, Ca(2+)/Mg(2+) sites.  相似文献   

17.
Petersen CE  Ha CE  Curry S  Bhagavan NV 《Proteins》2002,47(2):116-125
The binding of warfarin to the following human serum albumin (HSA) mutants was examined: K195M, K199M, F211V, W214L, R218M, R222M, H242V, and R257M. Warfarin bound to human serum albumin (HSA) exhibits an intrinsic fluorescence that is approximately 10-fold greater than the corresponding signal for warfarin in aqueous solution. This property of the warfarin/HSA complex has been widely used to determine the dissociation constant for the interaction. In the present study, such a technique was used to show that specific substitutions in subdomain 2A altered the affinity of HSA for warfarin. The fluorescence of warfarin/mutant HSA complexes varied widely from the fluorescence of the warfarin/wild-type HSA complex at pH = 7.4, suggesting changes in the structure of the complex resulting from specific substitutions. The fluorescence of the warfarin/wild-type HSA complex increases about twofold as the pH is increased from 6.0 to 9.0 due to the neutral-to-base (N-B) transition, a conformational change that occurs in HSA as a function of pH. Changes in the fluorescence of warfarin/mutant HSA complexes as a function of pH suggests novel behavior for most HSA species examined. For the HSA mutants F211V and H242V, the midpoint of the N-B transition shifts from a wild-type pH of 7.8 to a pH value of 7.1-7.2.  相似文献   

18.
The effects of metal ion binding on the optical spectroscopic properties and temperature stability of two single tryptophan mutants of chicken skeletal TnC, F78W and F154W, have been examined. The absence of tyrosine and other tryptophan residues allowed the unambiguous assignment of the spectral signal from the introduced Trp residue. Changes in the molar ellipticity values in the far-UV CD spectra of the mutant proteins on metal ion binding were similar to those of wild-type TnC suggesting that the introduction of the Trp residue had no effect on the total secondary structure content. The fluorescence and near-UV absorbance data reveal that, in the apo state, Trp-78 is buried while Trp-154 is exposed to solvent. Additionally, the highly resolved (1)L(b) band of Trp-78 seen in the near-UV absorbance and CD spectra of the apo state of F78W suggest that this residue is likely in a rigid molecular environment. In the calcium-saturated state, Trp-154 becomes buried while the solvent accessibility of Trp-78 increases. The fluorescence emission and near-UV CD of Trp-78 in the N-terminal domain were sensitive to calcium binding at the C-terminal domain sites. Measurements of the temperature stability reveal that events occurring in the N-terminal domain affect the stability of the C-terminal domain and vice versa. This, coupled with the titration data, strongly suggests that there are interactions between the N- and C-terminal domains of TnC.  相似文献   

19.
The mitogenic potential of bacterial IgG Fc binding proteins for human PBL is controversial. Wild type and recombinant type III IgG Fc binding proteins induce a wide spectrum of proliferative responses ranging from non-mitogenic to potent responses. To understand the reason for these differences, three recombinant forms of a type III IgG Fc binding protein derived from a single human group C streptococcal strain, 26RP66, were generated. Form I bound human IgG and human serum albumin, form II bound IgG alone and form III bound human serum albumin alone. These functionally distinct forms were compared with the corresponding wild type preparation from the same strain for mitogenic potential. A mitogenic response was induced only with the form I recombinant or the native wild type protein. These proteins shared the functional characteristics of binding human serum albumin and IgG. Mixtures of the IgG binding (form II) and human serum albumin binding fragments (form III) failed to reconstitute the mitogenic potential of the full length proteins. These results demonstrate that the type III IgG Fc binding protein has mitogenic potential for human PBL that is not related to its ability to react with human serum albumin or IgG.  相似文献   

20.
The influence of trehalose on the interaction of liposomes with porphyrins and with human serum albumin (HSA) was studied. Small unilamellar liposomes were prepared from 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) and from DMPC/1,2-dimyristoyl-sn-glycero-3-phosphatidylglycerol (DMPG) 19:1 w/w% and incorporated with mesoporphyrin IX (MP) or magnesium mesoporphyrin (MgMP). The fluorescence intensity and anisotropy of porphyrins were measured within the temperature range of 15-33 degrees C, in the presence and in the absence of 3x10(-2) M trehalose, to study the location of the porphyrins inside the liposomes and their partition between the liposomes and HSA. Based on the presented data and our earlier results (I. Bárdos-Nagy, R. Galántai, A.D. Kaposi, J. Fidy, Int. J. Pharm. 175 (1998) 255-267) we conclude that trehalose - even at this relatively low concentration - interacts with the head groups of the liposomes and that the presence of DMPG enhances the effect. This effect seems to hinder the binding of HSA to the liposome surface and influences the location of MgMP within the liposomes. In the case of MP, the porphyrin partition between the liposomes and HSA was affected by trehalose, while for MgMP, trehalose changed the structural conditions of porphyrin binding to the liposomes. The amount of trehalose used did not have a general trend to modify the association constants of porphyrin derivatives either to liposomes or to HSA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号