首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemerin is an attractant for cells that express the serpentine receptor CMKLR1, which include immature plasmacytoid dendritic cells (pDC) and macrophages. Chemerin circulates in the blood where it exhibits low biological activity, but upon proteolytic cleavage of its C terminus, it is converted to a potent chemoattractant. Enzymes that contribute to this conversion include host serine proteases of the coagulation, fibrinolytic, and inflammatory cascades, and it has been postulated that recruitment of pDC and macrophages by chemerin may serve to balance local tissue immune and inflammatory responses. In this work, we describe a potent, pathogen-derived proteolytic activity capable of chemerin activation. This activity is mediated by staphopain B (SspB), a cysteine protease secreted by Staphylococcus aureus. Chemerin activation is triggered by growth medium of clinical isolates of SspB-positive S. aureus, but not by that of a SspB(null) mutant. C-terminal processing by SspB generates a chemerin isoform identical with the active endogenous attractant isolated from human ascites fluid. Interestingly, SspB is a potent trigger of chemerin even in the presence of plasma inhibitors. SspB may help direct the recruitment of specialized host cells, including immunoregulatory pDC and/or macrophages, contributing to the ability of S. aureus to elicit and maintain a chronic inflammatory state.  相似文献   

2.
Chemerin was isolated as the natural ligand of the G protein-coupled receptor ChemR23. Chemerin acts as a chemotactic factor for leukocyte populations expressing ChemR23, particularly immature plasmacytoid dendritic cells, but also immature myeloid DCs, macrophages and natural killer cells. Chemerin is expressed by epithelial and non-epithelial cells as an inactive precursor, present at nanomolar concentrations in plasma. Processing of the precursor C-terminus is required for generating bioactive forms of chemerin. Various proteases mediate this processing, including neutrophil serine proteases and proteases from coagulation and fibrinolytic cascades. ChemR23-expressing cells are recruited in human inflammatory diseases, such as psoriasis and lupus. In animal models, both pro-inflammatory and anti-inflammatory roles of chemerin have been reported. Recently, two other receptors for chemerin were described, GPR1 and CCRL2, but their functional relevance is largely unknown. Both chemerin and ChemR23 are also expressed by adipocytes, and the emerging role of chemerin as an adipokine regulating lipid and carbohydrate metabolism is an area of intense research.  相似文献   

3.
Chemerin is a potent chemoattractant for cells expressing the GPCR CMKLR1, and is thought to play important roles in cell migration and recruitment to sites of tissue damage and inflammation. Here we report the NMR assignments of the 15.6 kDa active form of uniformly 15N, 13C labeled chemerin.  相似文献   

4.
Chemokine (CC motif) receptor-like 2 (CCRL2) binds leukocyte chemoattractant chemerin and can regulate local levels of the attractant, but does not itself support cell migration. In this study, we show that CCRL2 and VCAM-1 are upregulated on cultured human and mouse vascular endothelial cells (EC) and cell lines by proinflammatory stimuli. CCRL2 induction is dependent on NF-κB and JAK/STAT signaling pathways, and activated endothelial cells specifically bind chemerin. In vivo, CCRL2 is constitutively expressed at high levels by lung endothelial cells and at lower levels by liver endothelium; and liver but not lung EC respond to systemic LPS injection by further upregulation of the receptor. Plasma levels of total chemerin are elevated in CCRL2(-/-) mice and are significantly enhanced after systemic LPS treatment in CCRL2(-/-) mice compared with wild-type mice. Following acute LPS-induced pulmonary inflammation in vivo, chemokine-like receptor 1 (CMKLR1)(+) NK cell recruitment to the airways is significantly impaired in CCRL2(-/-) mice compared with wild-type mice. In vitro, chemerin binding to CCRL2 on endothelial cells triggers robust adhesion of CMKLR1(+) lymphoid cells through an α(4)β(1) integrin/VCAM-1-dependent mechanism. In conclusion, CCRL2 is expressed by EC in a tissue- and activation-dependent fashion, regulates circulating chemerin levels and its bioactivity, and enhances chemerin- and CMKLR1-dependent lymphocyte/EC adhesion in vitro and recruitment to inflamed airways in vivo. Its expression and/or induction on EC by proinflammatory stimuli provide a novel and specific mechanism for the local enrichment of chemerin at inflammatory sites, regulating the recruitment of CMKLR1(+) cells.  相似文献   

5.
Chemerin is a leukocyte chemoattractant and adipokine with important immune and metabolic roles. Chemerin, secreted in an inactive form prochemerin, undergoes C-terminal proteolytic cleavage to generate active chemerin, a ligand for the chemokine-like receptor-1 (CMKLR1). We previously identified that adipocytes secrete and activate chemerin. Following treatment with the obesity-associated inflammatory mediator TNFα, unknown adipocyte mechanisms are altered resulting in an increased ratio of active to total chemerin production. Based on these findings we hypothesized adipocytes produce proteases capable of modifying chemerin and its ability to activate CMKRL1. 3T3-L1 adipocytes expressed mRNA of immunocyte and fibrinolytic proteases known to activate chemerin in vitro. Following treatment with a general protease inhibitor cocktail (PIC), the TNFα-stimulated increase in apparent active chemerin concentration in adipocyte media was amplified 10-fold, as measured by CMKLR1 activation. When the components of the PIC were investigated individually, aprotinin, a serine protease inhibitor, blocked 90% of the TNFα-associated increase in active chemerin. The serine proteases, elastase and tryptase were elevated in adipocyte media following treatment with TNFα and their targeted neutralization recapitulated the aprotinin-mediated effects. In contrast, bestatin, an aminopeptidase inhibitor, further elevated the TNFα-associated increase in active chemerin. Our results support that adipocytes regulate chemerin by serine protease-mediated activation pathways and aminopeptidase deactivation pathways. Following TNFα treatment, increased elastase and tryptase modify the balance between activation and deactivation, elevating active chemerin concentration in adipocyte media and subsequent CMKLR1 activation.  相似文献   

6.
Chemerin is a potent chemoattractant for cells expressing the serpentine receptor CMKLR1 (chemokine-like receptor 1), such as plasmacytoid dendritic cells and tissue macrophages. The bioactivity of chemerin is post-translationally regulated; the attractant circulates in blood in a relatively inactive form (prochemerin) and is activated by carboxyl-terminal proteolytic cleavage. We discovered that plasma carboxypeptidase N (CPN) and B (CPB or activated thrombin-activable fibrinolysis inhibitor, TAFIa) enhanced the bioactivity of 10-mer chemerin peptide NH2-YFPGQFAFSK-COOH by removing the carboxyl-terminal lysine (K). Sequential cleavages of either a prochemerin peptide (NH2-YFPGQFAFSKALPRS-COOH) or recombinant full-length prochemerin by plasmin and CPN/CPB substantially increased their chemotactic activities. Endogenous CPN present in circulating plasma enhanced the activity of plasmin-cleaved prochemerin. In addition, we discovered that platelets store chemerin protein and release it upon stimulation. Thus circulating CPN/CPB and platelets may potentially contribute to regulating the bioactivity of leukocyte chemoattractant chemerin, and further extend the molecular link between blood coagulation/fibrinolysis and CMKLR1-mediated immune responses.Chemerin is a recently discovered chemoattractant molecule that is predicted to share structural similarity with cystatins (cysteine protease inhibitors) and cathelicidin precursors (antibacterial peptides) (1). Chemerin is present in circulating blood and several human inflammatory fluids (1). Even though chemerin is not similar to CXC and CC chemokines based on primary amino acid sequence, it functions like a chemokine in that it induces leukocyte migration and intracellular calcium mobilization. Chemerin receptor chemokine-like receptor 1 (CMKLR1,3 also named ChemR23) is a G protein-coupled receptor specifically expressed by circulating human plasmacytoid dendritic cells, natural killer cells, and tissue macrophages (15). In their capacity as antigen-presenting cells, plasmacytoid dendritic cells and macrophages can influence the activation of many other cell types, including monocytes, myeloid dendritic cells, B cells, T cells, and natural killer cells; thus chemerin appears to be an important chemoattractant in both innate and adaptive immune responses (2, 6, 7).Chemerin circulates in blood in an inactive prochemerin form at low nanomolar concentrations (∼3 nm) (4). Its chemotactic activity is released following proteolytic cleavage of its carboxyl-terminal amino acids by serine proteases of the coagulation, fibrinolytic, and inflammatory cascades (4, 8). These include factor XIIa, VIIa, plasmin, neutrophil elastase, and mast cell tryptase. Of interest, staphopain B, a cysteine protease secreted by Staphylococcus aureus, also cleaves prochemerin and converts it into a potent chemoattractant (9). Interestingly, the cleavage sites in the labile carboxyl terminus (NH2-YFPGQFAFSKALPRS-COOH) are not conserved, and the cleavage products generated by chemerin-activating proteases display different potencies in bioactivity assays. Based on synthetic peptides, the 9-mer NH2-YFPGQFAFS-COOH is the most active, but it is still not as active as intact cleaved chemerin protein, indicating that the amino-terminal part of chemerin is required for maximal activity (4, 10).Plasma carboxypeptidases CPN and CPB cleave the basic amino acids arginine or lysine from the carboxyl terminus of proteins or peptides such as bradykinin and complement proteins C3a and C5a. CPN is a constitutively active zinc metalloprotease present in plasma at a concentration of about 100 nm and is considered the major anaphylatoxins inhibitor (11), generating inactive “desArg” forms of C3a and C5a. In contrast, CPB exists in plasma as a proenzyme, proCPB, or thrombin-activable fibrinolysis inhibitor (TAFI) at a concentration of about 50 nm and is activated by thrombin in complex with thrombomodulin on the vascular endothelial surface. CPB inhibits fibrin degradation by removing carboxyl-terminal lysines from partially digested fibrin, which prevents further incorporation of fibrinolytic plasminogen and tissue plasminogen activator (12, 13). CPB is thermolabile and has a half-life of ∼15 min at 37 °C (14). We have shown that CPB also has broad substrate reactivity and is able to cleave and inactivate bradykinin, C3a, C5a, and thrombin-cleaved osteopontin (1517). CPN and CPB may play complementary roles, with the former being constitutively active and capable of regulating systemic anaphylatoxins, and the latter activated locally at sites of vascular injury to provide site-specific anti-inflammatory control. Peptidases can also modulate the biological activity of certain chemokines (4). For example, dipeptidyl peptidase (DPP-IV/CD26), a serine protease, inactivates CXCL9, CXCL10, CXCL11, and CXCL12 by cleaving these chemokines in the amino terminus (18, 19).Platelets store a variety of potent cytokines and chemokines within α-granules that are released upon cell activation. Platelet degranulation products, particularly the leukocyte chemoattractants, which include CXCL4 (platelet factor 4), β-thromboglobulin, CCL5 (RANTES), CCL7 (monocyte chemotactic protein 3), and CXCL12 (stromal-derived factor 1), may contribute to host defense and also play a role in pathophysiologic conditions (20, 21). For example, platelet factor 4 forms complexes with heparin in blood or some glycosaminoglycans on platelet surfaces to form the major antigen implicated in heparin-induced thrombocytopenia (22, 23). Platelets not only store CXCL12 but also express its receptor CXCR4, a coreceptor for cellular entry of human immunodeficiency virus, type 1, suggesting that platelets may be involved in host defense (24).In this study, we found that plasma CPN or CPB can function in concert with plasmin to elicit and augment the chemotactic activity of prochemerin. Furthermore, we show that platelets could store and release partially active chemerin upon activation. Thus circulating CPN/CPB and platelets may contribute to regulating the bioactivity of leukocyte chemoattractant chemerin and further extend the molecular link between blood coagulation/fibrinolysis and CMKLR1-mediated immune responses.  相似文献   

7.
Interferon α-producing plasmacytoid dendritic cells (pDC) are crucial contributors to pro-inflammatory or tolerogenic immune responses and are important in autoimmune diseases such as psoriasis. pDC accumulate in the lesional skin of psoriasis patients, but are rarely found in the affected skin of patients with atopic dermatitis (AD). While homeostatic chemokine CXCL12 and inducible pro-inflammatory CXCR3 chemokine ligands may regulate pDC influx to psoriatic skin, the mechanism responsible for selective pDC recruitment in psoriasis vs. AD remains unknown. Circulating pDC from normal donors express a limited number of chemoattractant receptors, including CXCR3 and CMKLR1 (chemokine-like receptor 1). In this work, we demonstrate that circulating pDC from normal donors as well as psoriasis and AD patients express similar levels of CXCR3 and responded similarly in functional migration assays to CXCL10. We next found that blood pDC from normal, AD, and psoriasis patients express functional CMKLR1. In contrast to normal skin, however, lesional skin from psoriasis patients contains the active form of the CMKLR1 ligand chemerin. Furthermore, in affected skin from psoriatic patients the level of active chemerin was generally higher than in AD skin. Taken together, these results indicate that local generation of active chemerin may contribute to pDC recruitment to psoriatic skin.  相似文献   

8.
Plasmacytoid dendritic cells (pDCs) are versatile cells of the immune response, secreting type I IFNs and differentiating into potent immunogenic or tolerogenic APCs. pDCs can express adhesion and chemokine receptors for lymphoid tissues, but are also recruited by unknown mechanisms during tissue inflammation. We use a novel mAb specific for serpentine chemokine-like receptor 1 (CMKLR1) to evaluate its expression by circulating leukocytes in humans. We show that CMKLR1 is expressed by circulating pDCs in human blood, whereas myeloid DCs (mDCs) as well as lymphocytes, monocytes, neutrophils, and eosinophils are negative. We identify a major serum agonist activity for CMKLR1 as chemerin, a proteolytically activated attractant and the sole known ligand for CMKLR1, and we show that chemerin is activated during blood coagulation and attracts pDC but not mDC in ex vivo chemotaxis assays. We conclude that CMKLR1 expression and chemerin-mediated chemotaxis distinguish circulating pDCs from mDCs, providing a potential mechanism for their differential contribution to or regulation of immune responses at sites of bleeding or inflammatory protease activity.  相似文献   

9.
Chemokine-like receptor 1 (CMKLR1), also known as ChemR23, and chemokine (C–C motif) receptor-like 2 (CCRL2) are 7-transmembrane receptors that were cloned in the late 1990s based on their homology to known G-protein-coupled receptors. They were previously orphan receptors without any known biological roles; however, recent studies identified ligands for these receptors and their functions have begun to be unveiled. The plasma protein-derived chemoattractant chemerin is a ligand for CMKLR1 and activation of CMKLR1 with chemerin induces the migration of macrophages and dendritic cells (DCs) in vitro, suggesting a proinflammatory role. However, in vivo studies using CMKLR-deficient mice suggest an anti-inflammatory role for this receptor, possibly due to the recruitment of tolerogenic plasmacytoid DCs. Chemerin/CMKLR1 interaction also promotes adipogenesis and angiogenesis. The anti-inflammatory lipid mediator, resolving E1, is another CMKLR1 ligand and it inhibits leukocyte infiltration and proinflammatory gene expression. These divergent results suggest that CMKLR1 is a multifunctional receptor.The chemokine CCL5 and CCL19 are reported to bind to CCRL2. Like Duffy antigen for chemokine receptor (DARC), D6 and CCX-CKR, CCRL2 does not signal, but it constitutively recycles, potentially reducing local concentration of CCL5 and CCL19 and subsequent immune responses. Surprisingly, chemerin, a ligand for CMKLR1, is a ligand for CCRL2. CCRL2 binds chemerin and increases local chemerin concentration to efficiently present it to CMKLR1 on nearby cells, providing a link between CCRL2 and CMKLR1. Although these findings suggest an anti-inflammatory role, a recent study using CCRL2-deficient mice indicates a proinflammatory role; thus, CCRL2 may also be multifunctional. Further studies using CMKLR1- or CCRL2-deficient mice are needed to further define the role of these receptors in immune responses and other cellular processes.  相似文献   

10.
Chemerin, a ligand for the G-protein coupled receptor chemokine-like receptor 1, requires C-terminal proteolytic processing to unleash its chemoattractant activity. Proteolytically processed chemerin selectively attracts specific subsets of immunoregulatory APCs, including chemokine-like receptor 1-positive immature plasmacytoid dendritic cells (pDC). Chemerin is predicted to belong to the structural cathelicidin/cystatin family of proteins composed of antibacterial polypeptide cathelicidins and inhibitors of cysteine proteinases (cystatins). We therefore hypothesized that chemerin may interact directly with cysteine proteases, and that it might also function as an antibacterial agent. In this article, we show that chemerin does not inhibit human cysteine proteases, but rather is a new substrate for cathepsin (cat) K and L. cat K- and L-cleaved chemerin triggered robust migration of human blood-derived pDC ex vivo. Furthermore, cat K- and L-truncated chemerin also displayed antibacterial activity against Enterobacteriaceae. Cathepsins may therefore contribute to host defense by activating chemerin to directly inhibit bacterial growth and to recruit pDC to sites of infection.  相似文献   

11.
Chemerin is an adipocyte-secreted protein that regulates adipogenesis and the metabolic function of mature adipocytes via activation of chemokine-like receptor 1 (CMKLR1). Herein we report the interaction of peroxisome proliferator-activated receptor γ (PPARγ) and chemerin in the context of adipogenesis. Knockdown of chemerin or CMKLR1 expression or antibody neutralization of secreted chemerin protein arrested adipogenic clonal expansion of bone marrow mesenchymal stem cells (BMSCs) by inducing a loss of G(2)/M cyclins (cyclin A2/B2) but not the G(1)/S cyclin D2. Forced expression of PPARγ in BMSCs did not completely rescue this loss of clonal expansion and adipogenesis following chemerin or CMKLR1 knockdown. However, forced expression and/or activation of PPARγ in BMSCs as well as non-adipogenic cell types such as NIH-3T3 embryonic fibroblasts and MCA38 colon carcinoma cells significantly induced chemerin expression and secretion. Sequence analysis revealed a putative PPARγ response element (PPRE) sequence within the chemerin promoter. This PPRE was able to confer PPARγ responsiveness on a heterologous promoter, and mutation of this sequence abolished activation of the chemerin promoter by PPARγ. Chromatin immunoprecipitation confirmed the direct association of PPARγ with this PPRE. Treatment of mice with rosiglitazone elevated chemerin mRNA levels in adipose tissue and bone marrow coincident with an increase in circulating chemerin levels. Together, these findings support a fundamental role for chemerin/CMKLR1 signaling in clonal expansion during adipocyte differentiation as well as a role for PPARγ in regulating chemerin expression.  相似文献   

12.
Obesity is an alarming primary health problem and is an independent risk factor for type II diabetes, cardiovascular diseases, and hypertension. Although the pathologic mechanisms linking obesity with these co-morbidities are most likely multifactorial, increasing evidence indicates that altered secretion of adipose-derived signaling molecules (adipokines; e.g. adiponectin, leptin, and tumor necrosis factor alpha) and local inflammatory responses are contributing factors. Chemerin (RARRES2 or TIG2) is a recently discovered chemoattractant protein that serves as a ligand for the G protein-coupled receptor CMKLR1 (ChemR23 or DEZ) and has a role in adaptive and innate immunity. Here we show an unexpected, high level expression of chemerin and its cognate receptor CMKLR1 in mouse and human adipocytes. Cultured 3T3-L1 adipocytes secrete chemerin protein, which triggers CMKLR1 signaling in adipocytes and other cell types and stimulates chemotaxis of CMKLR1-expressing cells. Adenoviral small hairpin RNA targeted knockdown of chemerin or CMKLR1 expression impairs differentiation of 3T3-L1 cells into adipocytes, reduces the expression of adipocyte genes involved in glucose and lipid homeostasis, and alters metabolic functions in mature adipocytes. We conclude that chemerin is a novel adipose-derived signaling molecule that regulates adipogenesis and adipocyte metabolism.  相似文献   

13.
Therapies that target leukocyte trafficking pathways can reduce disease activity and improve clinical outcomes in multiple sclerosis (MS). Experimental autoimmune encephalomyelitis (EAE) is a widely studied animal model that shares many clinical and histological features with MS. Chemokine-like receptor-1 (CMKLR1) is a chemoattractant receptor that is expressed by key effector cells in EAE and MS, including macrophages, subsets of dendritic cells, natural killer cells and microglia. We previously showed that CMKLR1-deficient (CMKLR1 KO) mice develop less severe clinical and histological EAE than wild-type mice. In this study, we sought to identify CMKLR1 inhibitors that would pharmaceutically recapitulate the CMKLR1 KO phenotype in EAE. We identified 2-(α-naphthoyl) ethyltrimethylammonium iodide (α-NETA) as a CMKLR1 small molecule antagonist that inhibits chemerin-stimulated β-arrestin2 association with CMKLR1, as well as chemerin-triggered CMKLR1+ cell migration. α-NETA significantly delayed the onset of EAE induced in C57BL/6 mice by both active immunization with myelin oligodendrocyte glycoprotein peptide 35-55 and by adoptive transfer of encephalitogenic T cells. In addition, α-NETA treatment significantly reduced mononuclear cell infiltrates within the CNS. This study provides additional proof-of-concept data that targeting CMKLR1:chemerin interactions may be beneficial in preventing or treating MS.  相似文献   

14.
Viral diseases of the respiratory tract, which include influenza pandemic, children acute bronchiolitis, and viral pneumonia of the elderly, represent major health problems. Plasmacytoid dendritic cells play an important role in anti-viral immunity, and these cells were recently shown to express ChemR23, the receptor for the chemoattractant protein chemerin, which is expressed by epithelial cells in the lung. Our aim was to determine the role played by the chemerin/ChemR23 system in the physiopathology of viral pneumonia, using the pneumonia virus of mice (PVM) as a model. Wild-type and ChemR23 knock-out mice were infected by PVM and followed for functional and inflammatory parameters. ChemR23(-/-) mice displayed higher mortality/morbidity, alteration of lung function, delayed viral clearance and increased neutrophilic infiltration. We demonstrated in these mice a lower recruitment of plasmacytoid dendritic cells and a reduction in type I interferon production. The role of plasmacytoid dendritic cells was further addressed by performing depletion and adoptive transfer experiments as well as by the generation of chimeric mice, demonstrating two opposite effects of the chemerin/ChemR23 system. First, the ChemR23-dependent recruitment of plasmacytoid dendritic cells contributes to adaptive immune responses and viral clearance, but also enhances the inflammatory response. Second, increased morbidity/mortality in ChemR23(-/-) mice is not due to defective plasmacytoid dendritic cells recruitment, but rather to the loss of an anti-inflammatory pathway involving ChemR23 expressed by non-leukocytic cells. The chemerin/ChemR23 system plays important roles in the physiopathology of viral pneumonia, and might therefore be considered as a therapeutic target for anti-viral and anti-inflammatory therapies.  相似文献   

15.
Dendritic cells and macrophages are professional APCs that play a central role in initiating immune responses, linking innate and adaptive immunity. Chemerin is a novel chemoattractant factor that specifically attracts APCs through its receptor ChemR23. Interestingly, chemerin is secreted as a precursor of low biological activity, prochemerin, which upon proteolytic removal of a C-terminal peptide, is converted into a potent and highly specific agonist of its receptor. Given the fact that APCs are often preceded by polymorphonuclear cells (PMN) in inflammatory infiltrates, we hypothesized that PMN could mediate chemerin generation. We demonstrate here that human degranulated PMNs release proteases that efficiently convert prochemerin into active chemerin. The use of specific protease inhibitors allowed us to identify the neutrophil serine proteases cathepsin G and elastase as responsible for this process. Mass spectrometry analysis of processed prochemerin showed that each protease generates specifically a distinct form of active chemerin, differing in their C terminus and initially identified in human inflammatory fluids. These findings strongly suggest that bioactive chemerin generation takes place during the early stages of inflammation, underscoring the functional contribution of chemerin as a bridge between innate and adaptive immunity.  相似文献   

16.
Chemerin, a chemoattractant ligand for chemokine-like receptor 1 (CMKLR1) is predicted to share similar tertiary structure with antibacterial cathelicidins. Recombinant chemerin has antimicrobial activity. Here we show that endogenous chemerin is abundant in human epidermis, and that inhibition of bacteria growth by exudates from organ cultures of primary human skin keratinocytes is largely chemerin-dependent. Using a panel of overlapping chemerin-derived synthetic peptides, we demonstrate that the antibacterial activity of chemerin is primarily mediated by Val66-Pro85, which causes direct bacterial lysis. Therefore, chemerin is an antimicrobial agent in human skin.  相似文献   

17.
The chemerin receptor (CMKLR1) is a G protein-coupled receptor found on select immune, epithelial, and dorsal root ganglion/spinal cord neuronal cells. CMKLR1 is primarily coupled to the inhibitory G protein, Gαi, and has been shown to modulate the resolution of inflammation and neuropathic pain. CMKLR1 is activated by both lipid and peptide agonists, resolvin E1 and chemerin, respectively. Notably, these ligands have short half-lives. To expedite the development of long acting, stable chemerin analogs as candidate therapeutics, we used membrane-tethered ligand technology. Membrane-tethered ligands are recombinant proteins comprised of an extracellular peptide ligand, a linker sequence, and an anchoring transmembrane domain. Using this technology, we established that a 9-amino acid-tethered chemerin fragment (amino acids 149–157) activates both mouse and human CMKLR1 with efficacy exceeding that of the full-length peptide (amino acids 21–157). To enable in vivo delivery of a corresponding soluble membrane anchored ligand, we generated lipidated analogs of the 9-amino acid fragment. Pharmacological assessment revealed high potency and wash resistance (an index of membrane anchoring). When tested in vivo, a chemerin SMAL decreased allergic airway inflammation and attenuated neuropathic pain in mice. This compound provides a prototype membrane-anchored peptide for the treatment of inflammatory disease. A parallel approach may be applied to developing therapeutics targeting other peptide hormone G protein-coupled receptors.  相似文献   

18.
Recent research has demonstrated that chemerin may take part in the regulation of reproduction. The aim of this study was to determine the expression of chemerin system – chemerin and its receptors, chemokine-like receptor 1 (CMKLR1), G protein-coupled receptor 1 (GPR1) and C-C chemokine receptor-like 2 (CCRL2) – in the porcine uterus during the oestrous cycle and early pregnancy, and in trophoblasts and conceptuses by real-time PCR and western blotting. Chemerin concentrations in uterine luminal flushings (ULF) were determined using ELISA test. In the endometrium, the highest expression of chemerin and GPR1 proteins was observed during the mid-luteal phase; CMKLR1, during the late luteal phase; and CCRL2, during the follicular phase of the cycle. In the myometrium, chemerin protein expression was enhanced during the early luteal phase, and chemerin receptor proteins were highly expressed during the follicular phase. In the endometrium of pregnant pigs, the highest expression of chemerin and CCRL2 protein was observed during implantation; CMKLR1, during placentation; and GPR1, during embryo migration. In the myometrium, chemerin and CCRL2 protein expression increased at the end of implantation, and the expression of CMKLR1 and GPR1 protein was enhanced during implantation. In the conceptuses and trophoblasts, the highest expression of chemerin system proteins was observed during placentation, with the exception of GPR1 protein in the trophoblasts. The highest concentrations of the analysed adipokine were observed in ULF during the luteal phase of the cycle and during maternal recognition of pregnancy. This is the first study to demonstrate that the expression of the chemerin system in the porcine uterus, conceptuses and trophoblasts, and chemerin concentrations in ULF are influenced by the hormonal milieu in different stages of the oestrous cycle and in early pregnancy. The present results also suggest that chemerin is implicated in the regulation of reproductive functions in pigs.  相似文献   

19.
The discovery of several adipokines with diverse activities and their involvement in regulation of various pathophysiological functions of human body has challenged the researchers. In the family of adipokine, chemerin is a novel and unique addition. Ever since the first report on chemerin as a chemo-attractant protein, there are numerous studies showing a multitasking capacity of chemerin in the maintenance of homeostasis, for the activation of natural killer cells, macrophages and dendritic cells in both innate and adaptive immunity. Its diversity ranges from generalized inflammatory cascades to being explicitly involved in the manifestation of arthritis, psoriasis and peritonitis. Its association with certain cancerous tissue may render it as a potential tumor marker. In present review, we aim to consolidate recent data of investigations on chemerin in context to functional characteristics with a special reference to its role as a metabolic signal in inflammation and non-metabolic syndromes.  相似文献   

20.
Maturation of macrophages is influenced by the composition of surrounding microenvironment. Expression of CMKLR1, the receptor for chemerin, is potentially associated with the differentiation status of macrophages. In this study, CMKLR1 was determined on peritoneal and tumor-infiltrating macrophages. CMKLR1 expression was found to be associated with the fibroblast-assisted maturation of J744A.1 monocyte/macrophage cells in the co-cultures established to model tumor microenvironment, whereas the presence of tumor cells was able to upregulate CMKLR1 expression independent of macrophage maturation. In addition, macrophages cultured with tumor cells or in tumor cell-conditioned media responded to recombinant chemerin(17-156) peptide and increased the expression of proinflammatory IL-1β, TNF-α and IL-12 p40 cytokines. The native form of chemerin (prochemerin) supplied by fibroblasts did not induce a functional response. These observations may indicate a potential role for chemerin and CMKLR1 in the regulation of inflammatory responses in the tumor microenvironment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号