首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Dihydroindenoisoquinolines are analogs of cytotoxic indenoisoquinoline topoisomerase I (Top1) inhibitors, exhibiting potent cytotoxicity but weak inhibitory activity toward Top1. Through COMPARE analysis, cytotoxicity studies in Top1-deficient cells, chemical synthesis and biological evaluation of methylated dihydroindenoisoquinoline 5, we demonstrated that dihydroindenoisoquinolines function as prodrugs of indenoisoquinolines in cancer cells.  相似文献   

2.
The indenoisoquinolines are a novel class of non-camptothecin topoisomerase I (Top1) inhibitors whose mechanism of action involves trapping the covalent complex formed between DNA and Top1 during cellular processes. As an ongoing evaluation of the indenoisoquinolines for Top1 inhibition and anticancer activity, indenoisoquinoline analogs have been screened in the National Cancer Institute's hollow fiber assay (HFA). Some of the derivatives demonstrated significant activity at intraperitoneal and subcutaneous fiber placement sites, along with net cancer cell kill in one or more cell lines.  相似文献   

3.
Luotonin A is a cytotoxic alkaloid that has been shown to inhibit topoisomerase I via stabilization of the binary complex topoisomerase-DNA in the same fashion as camptothecin. The synthesis and the cytotoxic activity on the lung carcinoma cell line H460 of a series of derivatives of Luotonin A is reported. The compounds inhibit topoisomerase I but show weak cytotoxic activity, thus confirming the peculiarity of ring E of camptothecin for antitumor activity.  相似文献   

4.
Fluorine and chlorine are metabolically stable, but generally less active replacements for a nitro group at the 3-position of indenoisoquinoline topoisomerase IB (Top1) poisons. A number of strategies were employed in the present investigation to enhance the Top1 inhibitory potencies and cancer cell growth inhibitory activities of halogenated indenoisoquinolines. In several cases, the new compounds’ activities were found to rival or surpass those of similarly substituted 3-nitroindenoisoquinolines, and several unusually potent analogs were discovered through testing in human cancer cell cultures. A hydroxyethylaminopropyl side chain on the lactam nitrogen of two halogenated indenoisoquinoline Top1 inhibitors was found to also impart inhibitory activity against tyrosyl DNA phosphodiesterases 1 and 2 (TDP1 and TDP2), which are enzymes that participate in the repair of DNA damage induced by Top1 poisons.  相似文献   

5.
A series of structurally simple analogues of natural topopyrone C were synthesized and tested for cytotoxic and topoisomerase I inhibitory activities. The removal of the hydroxyl groups at the 5 and 9 positions resulted in an increased cytotoxic potency and ability to stabilize topoisomerase-mediated cleavage. In addition, the results suggest that some structural features, such as the pyrone ring and a polar group in position 11, are fundamental for topoisomerase I inhibitory effect. These structural requirements are also consistent with the cytotoxic activity.  相似文献   

6.
A series of novel indenoisoquinoline derivatives were synthesized. The anticancer activities of these molecules were tested in human cancer cell lines A549, HepG2, and HCT-116. These compounds were also tested for their activity of topoisomerase I (top1) inhibition. Among them, compound 25 was found to be 10-times more potent in cell-killing activity for both cell lines HepG2 and HCT-116 than reported compound 11, with IC(50) of 0.019 and 0.093μM, respectively. Compound 25 was also found to have stronger top1 inhibition activity than 11 in our inhibition assay. Further in vivo evaluations of compound 25 are in progress and will be reported in due course.  相似文献   

7.
The marine alkaloid lamellarin D (LAM-D) has been recently characterized as a potent poison of human topoisomerase I endowed with remarkable cytotoxic activities against tumor cells. We report here the first structure-activity relationship study in the LAM-D series. Two groups of triester compounds incorporating various substituents on the three phenolic OH at positions 8, 14 and 20 of 6H-[1]benzopyrano[4',3':4,5]pyrrolo[2,1-a]isoquinolin-6-one pentacyclic planar chromophore typical of the parent alkaloid were tested as topoisomerase I inhibitors. The non-amino compounds in group A showed no activity against topoisomerase I and were essentially non cytotoxic. In sharp contrast, compounds in group B incorporating amino acid residues strongly promoted DNA cleavage by human topoisomerase I. LAM-D derivatives tri-substituted with leucine, valine, proline, phenylalanine or alanine residues, or a related amino side chain, stabilize topoisomerase I-DNA complexes. The DNA cleavage sites detected at T downward arrow G or C downward arrow G dinucleotides with these molecules were identical to that of LAM-D but slightly different from those seen with camptothecin which stimulates topoisomerase I-mediated cleavage at T downward arrow G only. In the DNA relaxation and cleavage assays, the corresponding Boc-protected compounds and the analogues of the non-planar LAM-501 derivative lacking the 5-6 double bond in the quinoline B-ring showed no effect on topoisomerase I and were considerably less cytotoxic than the corresponding cationic compounds in the LAM-D series. The presence of positive charges on the molecules enhances DNA interaction but melting temperature studies indicate that DNA binding is not correlated with topoisomerase I inhibition or cytotoxicity. Cell growth inhibition by the 41 lamellarin derivatives was evaluated with a panel of tumor cells lines. With prostate (DU-145 and LN-CaP), ovarian (IGROV and IGROV-ET resistant to ecteinascidin-743) and colon (LoVo and LoVo-Dox cells resistant to doxorubicin) cancer cells (but not with HT29 colon carcinoma cells), the most cytotoxic compounds correspond to the most potent topoisomerase I poisons. The observed correlation between cytotoxicity and topoisomerase I inhibition strongly suggests that topoisomerase I-mediated DNA cleavage assays can be used as a guide to the development of superior analogues in this series. LAM-D is the lead compound of a new promising family of antitumor agents targeting topoisomerase I and the amino acid derivatives appear to be excellent candidates for a preclinical development.  相似文献   

8.
A series of 2-(thienyl-2-yl or -3-yl)-4-furyl-6-aryl pyridine derivatives were designed, synthesized, and evaluated for their topoisomerase I and II inhibition and cytotoxic activity against several human cancer cell lines. Compounds 1019 showed moderate topoisomerase I and II inhibitory activity and 2029 showed significant topoisomerase II inhibitory activity. Structure–activity relationship study revealed that 4-(5-chlorofuran-2-yl)-2-(thiophen-3-yl) moiety has an important role in displaying topoisomerase II inhibition.  相似文献   

9.
For the development of new anticancer agents, 2,2':6',2"-, 2,2':6',3"- and 2,2':6',4"-terpyridine derivatives were designed and evaluated for their topoisomerase I inhibitory activity and antitumor cytotoxicity. Structure-activity relationship studies indicated that 2,2':6',2"-terpyridine derivatives were highly cytotoxic toward several human tumor cell lines, whereas 2,2':6',3"- and 2,2':6',4"-terpyridine derivatives were potent topoisomerase I inhibitors.  相似文献   

10.
Topoisomerase-targeting antitumor drugs   总被引:23,自引:0,他引:23  
Much has been learned about the unusual type of DNA damage produced by the topoisomerases. The mechanism by which these lesions trigger cell death, however, remains unclear, but it appears that DNA metabolic machinery transforms reversible single-strand cleavable complexes to overt strand breaks which may be an initial event in the cytotoxic pathway. For the topoisomerase I poisons, they produce breaks at replication forks that appear to be the equivalent of a break in duplex DNA. Indicating that this may be an important cytotoxic lesion is the hypersensitivity to camptothecin of the yeast mutant rad52, which is deficient in double-strand-break-repair. The topoisomerase poisons preferentially kill proliferating cells. In the case of the topoisomerase I poison camptothecin, dramatic S-phase-specific cytotoxicity can explain its preferential action on proliferating cells. For the topoisomerase II poisons, high levels of the enzyme in proliferating cells, and very low levels in quiescent cells appear to explain the resistance of quiescent cells to the drug's cytotoxic effects. Thus, the topoisomerase poisons convert essential enzymes into intracellular, proliferating-cell toxins. The identification of both topoisomerase I and II as the specific targets of cancer chemotherapeutic drugs now provides a rational basis for the development of topoisomerase I poisons for possible clinical use. Knowledge of the molecular mechanisms of cell killing may lead to the identification of new therapies for treating cancer. The topoisomerase poisons appear to be a good tool for studying cell killing mechanisms as they produce highly specific and reversible lesions.  相似文献   

11.
We have attempted to identify human topoisomerase I-binding proteins in order to gain information regarding the cellular roles of this protein and the cytotoxic mechanisms of the anticancer drug camptothecin, which specifically targets topoisomerase I. In the course of this work we identified an interaction between the N-terminus of human topoisomerase I and the SV40 T antigen that is detectable in vitro using both affinity chromatography and co-immunoprecipitation. Additional results indicate that this interaction does not require intermediary DNA or stoichiometric quantities of other proteins. Furthermore, the interaction is detectable in vivo using a yeast two-hybrid assay. Two binding sites for T antigen are apparent on the topoisomerase I protein: one consisting of amino acids 1-139, the other present in the 383-765 region of the protein. Interestingly, nucleolin, which binds the 166-210 region of topoisomerase I, is able to bind an N-terminal fragment of topoisomerase I concurrently with T antigen. Taken together with our prior identification of nucleolin as a topoisomerase I-binding protein, the current results suggest that helicase-binding is a major role of the N-terminus of human topoisomerase I and that the resultant helicase-topoisomerase complex may function as a eukaryotic gyrase.  相似文献   

12.
Homocamptothecins (hCPTs) represents a new promising class of topoisomerase I inhibitors with enhanced stability and superior antitumor activity. Some phosphodiesters and phosphotriesters homocamptothecin derivatives were designed and synthesized based on our previous synthetic route. The cytotoxicity in vitro on three cancer cell lines and antitumor activity in vivo, and inhibitory properties of topoisomerase I of these derivatives were evaluated. Among them compounds 24e and 24f exhibited higher cytotoxic activity than IRT and the former exhibited the best antitumor activity in vivo and solution stability both at pH 7.4 and pH 3.0.  相似文献   

13.
TAS-103 is a novel antineoplastic agent that is active against in vivo tumor models [Utsugi, T., et al. (1997) Jpn. J. Cancer Res. 88, 992-1002]. This drug is believed to be a dual topoisomerase I/II-targeted agent, because it enhances both topoisomerase I- and topoisomerase II-mediated DNA cleavage in treated cells. However, the relative importance of these two enzymes for the cytotoxic actions of TAS-103 is not known. Therefore, the primary cellular target of the drug and its mode of action were determined. TAS-103 stimulated DNA cleavage mediated by mammalian topoisomerase I and human topoisomerase IIalpha and beta in vitro. The drug was less active than camptothecin against the type I enzyme but was equipotent to etoposide against topoisomerase IIalpha. A yeast genetic system that allowed manipulation of topoisomerase activity and drug sensitivity was used to determine the contributions of topoisomerase I and II to drug cytotoxicity. Results indicate that topoisomerase II is the primary cellular target of TAS-103. In addition, TAS-103 binds to human topoisomerase IIalpha in the absence of DNA, suggesting that enzyme-drug interactions play a role in formation of the ternary topoisomerase II.drug.DNA complex. TAS-103 induced topoisomerase II-mediated DNA cleavage at sites similar to those observed in the presence of etoposide. Like etoposide, it enhanced cleavage primarily by inhibiting the religation reaction of the enzyme. Based on these findings, it is suggested that TAS-103 be classified as a topoisomerase II-targeted drug.  相似文献   

14.
Camptothecin, a cytotoxic drug, is a strong inhibitor of nucleic acid synthesis in mammalian cells and a potent inducer of strand breaks in chromosomal DNA. Neither the equilibrium dialysis nor the unwinding measurement indicates any interaction between camptothecin and purified DNA. However, camptothecin induces extensive single strand DNA breaks in reactions containing purified mammalian DNA topoisomerase I. DNA breakage in vitro is immediate and reversible. Analyses of camptothecin-induced DNA breaks show that topoisomerase I is covalently linked to the 3' end of the broken DNA. In addition, camptothecin inhibits the catalytic activity of mammalian DNA topoisomerase I. We propose that camptothecin blocks the rejoining step of the breakage-reunion reaction of mammalian DNA topoisomerase I. This blockage results in the accumulation of a cleavable complex which resembles the transient intermediate proposed for eukaryotic DNA topoisomerase I. The inhibition of nucleic acid synthesis and the induction of DNA strand breaks observed in vivo may be related to the formation of this drug-induced cleavable complex.  相似文献   

15.
Topoisomerase IIbeta knockout mouse cells (beta-/-) were found to have only slight resistance to m-AMSA, a dual topoisomerase IIalpha-IIbeta poison, as compared to wild-type cells (beta+/+) during 1 h or 3 day exposures to the drug. In contrast, the beta-/- cells were greater than threefold resistant to XK469, a selective topoisomerase IIbeta poison during three day drug exposures (beta+/+ IC(50) = 175 microM, beta-/- IC(50) = 581 microM). Short term (1 h) exposure to XK469 was not cytotoxic to either beta-/- or beta+/+ cells, suggesting that anticancer therapy with XK469 may be more efficacious if systemic levels can be prolonged. During studies on topoisomerase activity in nuclear extracts of the beta+/+ and beta-/- cells, we found evidence that XK469 is a weak topoisomerase I catalytic inhibitor. The high IC(50) for topoisomerase I inhibition (2 mM) suggests that topoisomerase I is not a significant target for XK469 cytotoxicity.  相似文献   

16.
Ten novel camptothecin (CPT) derivatives devoid of the lactone function in the E-ring were synthesized and evaluated as anticancer agents. Several of these CPT analogues bearing a five-membered E-ring are potent inhibitors of the DNA relaxation and cleavage reactions catalyzed by topoisomerase I and exhibit promising cytotoxic activities with IC(50) values in the nM range. This is the first successful design of lactone-free CPT, providing thus a new avenue to the development of topoisomerase I targeted antitumor agents.  相似文献   

17.
In the course of structure-activity relationship studies, new rebeccamycin derivatives substituted in 3,9-positions on the indolocarbazole framework, and a 2',3'-anhydro derivative were prepared by semi-synthesis from rebeccamycin. The antiproliferative activities against nine tumor cell lines were determined and the effect on the cell cycle of murine leukemia L1210 cells was examined. Their DNA binding properties and inhibitory properties toward topoisomerase I and three kinases PKCzeta, CDK1/cyclin B, CDK5/p25 and a phosphatase cdc25A were evaluated. The 3,9-dihydroxy derivative is the most efficient compound of this series toward CDK1/cyclin B and CDK5/p25. It is also characterized as a DNA binding topoisomerase I poison. Its broad spectrum of molecular activities likely accounts for its cytotoxic potential. This compound which displays a tumor cell line-selectivity may represent a new lead for subsequent drug design in this series of glycosylated indolocarbazoles.  相似文献   

18.
Fagaronine and nitidine are natural benzo[c] phenanthridinium alkaloids, which display antileukemic activity. Both act as topoisomerase I and topoisomerase II inhibitors. The objective of the present study was to prepare noncharged isosters of these compounds, with replacement of the aromatic A ring by a pyridine ring, present in other topoisomerase I inhibitors. Various 7,8- and 8,9-dimethoxy and metylenedioxy benzo[c][1,7] and [1,8]phenanthrolines were readily synthesized by benzyne-mediated cyclization of the corresponding substituted N-(2-halobenzyl)-5-quinolinamines or 5-isoquinolinamines. In both series, compounds bearing oxygenated substituents at positions 8 and 9 exhibited cytotoxic properties towards L1210 murine leukemia cells, which may result from their capacities to intercalate into DNA. Topoisomerase I inhibition was observed for all active compounds.  相似文献   

19.
Chalcones (1,3-diaryl-2-propen-1-ones) are alpha, beta-unsaturated ketones with cytotoxic and anticancer properties. Several reports have shown that compounds with cytotoxic properties may also interfere with DNA topoisomerase functions. Five derivatives of 4'-hydroxychalcones were examined for cytotoxicity against transformed human T (Jurkat) cells as well as plasmid supercoil relaxation experiments using mammalian DNA topoisomerase I. The compounds were 3-phenyl-1-(4'-hydroxyphenyl)-2-propen-1-one (I), 3-(p-methylphenyl)-1-(4'-hydroxyphenyl)-2-propen-1-one (II), 3-(p-methoxyphenyl)-1-(4'-hydroxyphenyl)-2-propen-1-one (III), 3-(p-chlorophenyl)-1-(4'-hydroxyphenyl)-2-propen-1-one (IV), and 3-(2- thienyl)-1-(4'-hydroxyphenyl)-2-propen-1-one (V). The order of the cytotoxicity of the compounds was; IV > III > II > I > V. Compound IV, had the highest Hammett and log P values (0.23 and 4.21, respectively) and exerted both highest cytotoxicity and strongest DNA topoisomerase I inhibition. Compounds I and II gave moderate interference with the DNA topoisomerase I while III & V did not interfere with the enzyme.  相似文献   

20.
A series of benz[f]indole-4,9-diones, based on the antitumor activity of 1,4-naphthoquinone, were synthesized and evaluated for their cytotoxic activity in cultured human cancer cell lines A549 (lung cancer), Col2 (colon cancer), and SNU-638 (stomach cancer), and also for the inhibition of human DNA topoisomerases I and II activity in vitro. Several compounds including 2-amino-3-ethoxycarbonyl-N-methyl-benz[f]indole-4,9-dione showed a potential cytotoxic activity judged by IC50<20.0 microg/ml in the panel of cancer cell lines. Especially, 2-hydroxy-3-ethoxycarbonyl-N-(3,4-dimethylphenyl)-benz[f]indole-4,9-dione had potential selective cytotoxicity against lung cancer cells (IC50=0.4 microg/ml)) compared to colon (IC50>20.0 microg/ml) and stomach (IC50>20.0 microg/ml) cancer cells. To further investigate the cytotoxic mechanism, the effects of test compounds on DNA topoisomerase I and II activities were used. In a topoisomerase I-mediated relaxation assay using human placenta DNA topoisomerase I and supercoiled pHOTI plasmid DNA, 2-amino-3-ethoxycarbonyl-N-(4-fluorophenyl)-benz[f]indole-4,9-dione had the most potent inhibitory activity among the compounds tested. However, most of the compounds showed only weak inhibition of the DNA topoisomerase II-mediated KDNA (Kinetoplast DNA) decatenation assay, except for 2-amino-3-ethoxycarbonyl-N-(4-methylphenyl)-benz[f]indole-4,9-dione and 2-amino-3-ethoxycarbonyl-N-(2-bromoehtyl)-benz[f]indole-4,9-dione with a moderate inhibitory activity. These results suggest that several active compounds had relatively selective inhibitory activity against toposiomearse I compared to toposiomerase II. No obvious correlation was observed between the cytotoxicity of the individual compound and the inhibitory activity of DNA relaxation and decatenation by topoisomerase I and II, respectively, in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号