首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 194 毫秒
1.
Abstract: The purpose of this study was to determine the mechanism by which adenosine, inosine, and guanosine delay cell death in glial cells (ROC-1) that are subjected to g lucose d eprivation and m itochondrial respiratory chain inhibition with amobarbital (GDMI). ROC-1 cells are hybrid cells formed by fusion of a rat oligodendrocyte and a rat C6 glioma cell. Under GDMI, ATP was depleted rapidly from ROC-1 cells, followed on a much larger time scale by a loss of cell viability. Restoration of ATP synthesis during this interlude between ATP depletion and cell death prevented further loss of viability. Moreover, the addition of adenosine, inosine, or guanosine immediately before the amobarbital retarded the decline in ATP and preserved cell viability. The protective effects on ATP and viability were dependent on nucleoside concentration between 50 and 1,500 µ M . Furthermore, protection required nucleoside transport into the cell and the continued presence of nucleoside during GDMI. A significant positive correlation between ATP content at 16 min and cell viability at 350 min after the onset of GDMI was established ( r = 0.98). Modest increases in cellular lactate levels were observed during GDMI (1.2 nmol/mg/min lactate produced); however, incubation with 1,500 µ M inosine or guanosine increased lactate accumulation sixfold. The protective effects of inosine and guanosine on cell viability and ATP were >90% blocked after treatment with 50 µ M BCX-34, a nucleoside phosphorylase inhibitor. Accordingly, lactate levels also were lower in BCX-34-treated cells incubated with inosine or guanosine. We conclude that under GDMI, the ribose moiety of inosine and guanosine is converted to phosphorylated glycolytic intermediates via the pentose phosphate pathway, and its subsequent catabolism in glycolysis provides the ATP necessary for maintaining plasmalemmal integrity.  相似文献   

2.
Previous work has shown that nucleosides produce apoptosis in sympathetic ganglion (SG) cells in vitro. The present study examined the effects of nucleosides on the development of the chick embryo in vivo with special attention to the SG and the optic tectum of the central nervous system. In the presence of an adenosine deaminase inhibitor, adenosine and 2'-deoxyadenosine (2'-dAdo) produced different toxicity patterns: both adenosine and 2'-dAdo were toxic to E3 embryos, but only 2'-dAdo was toxic at later stages (E6 1/2, E11). Dosage experiments on E6 1/2 embryos showed that adenosine was less toxic than 2'-dAdo and that 2'-dAdo in sublethal doses was teratogenic. We also examined the effects of 2'-dAdo on embryonic chicken SG and optic tectum in vivo to determine whether sublethal doses of 2'-dAdo produced cell death in these centers on E6 1/2 and 10. In the E6 1/2 SG, 2'-dAdo produced significant neuron loss (83%) and a decrease in SG volume (65%); however, at E10, there was only minor cell loss (7%) and no significant change in SG volume. In the optic tectum at E6 1/2, cell loss was confined mainly to the tectal ventricular zone, but there was little sign of cell loss in this organ at E10. Since cell production is vigorous in the SG and optic tectum at E6 1/2 but relatively low at E10, 2'-dAdo appears to work by stopping cell proliferation. The ineffectiveness of 2'-dAdo at E10 may result from the lethality of 2'-dAdo to the embryo at low concentrations (30 microM) in vivo, well below the apoptosis-inducing concentrations employed in vitro (100-300 microM). These data extend previous findings showing that purine and pyrimidine metabolism plays an important role in development.  相似文献   

3.
Abstract: The neurotoxin 6-hydroxydopamine (6-OHDA) induces apoptosis in the rat phaeochromocytoma cell line PC12. 6-OHDA-induced apoptosis is morphologically indistinguishable from serum deprivation-induced apoptosis. Exposure of PC12 cells to a low concentration of 6-OHDA (25 µ M ) results in apoptosis, whereas an increased concentration (50 µ M ) results in a mixture of apoptosis and necrosis. We investigated the involvement of caspases in the apoptotic death of PC12 cells induced by 6-OHDA, using a general caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD-fmk), and compared this with serum deprivation-induced apoptosis, which is known to involve caspases. We show that zVAD-fmk (100 µ M ) completely prevented the apoptotic morphology of chromatin condensation induced by exposure to either 6-OHDA (25 and 50 µ M ) or serum deprivation. Furthermore, cell lysates from 6-OHDA-treated cultures showed cleavage of a fluorogenic substrate for caspase-3-like proteases (caspase-2, 3, and 7), acetyl-Asp-Glu-Val-Asp-aminomethylcoumarin, and this was inhibited by zVAD-fmk. However, although zVAD-fmk restored total cell viability to serum-deprived cells or cells exposed to 25 µ M 6-OHDA, the inhibitor did not restore viability to cells exposed to 50 µ M 6-OHDA. These data show the involvement of a caspase-3-like protease in 6-OHDA-induced apoptosis and that caspase inhibition is sufficient to rescue PC12 cells from the apoptotic but not the necrotic component of 6-OHDA neurotoxicity.  相似文献   

4.
Abstract: In cultured bovine adrenal chromaffin cells, a nonselective protein kinase inhibitor, staurosporine, inhibits secretory function and induces neurite outgrowth. In the present study, effects of other nonselective protein kinase inhibitors (K-252a, H-7, and H-8) and reportedly selective protein kinase inhibitors (KN-62 and chelerythrine chloride) were examined on bovine adrenal chromaffin cell morphology, secretory function, and 45Ca2+ uptake. Treatment of chromaffin cells with 10 µ M K-252a, 50 µ M H-7, or 50 µ M H-8 induced changes in cell morphology within 3 h; these compounds also induced a time-dependent inhibition of stimulated catecholamine release. Chelerythrine chloride, a selective inhibitor of Ca2+/phospholipid-dependent protein kinase, did not induce outgrowth or inhibit secretory function under our treatment conditions. KN-62, a selective inhibitor of Ca2+/calmodulin-dependent protein kinase II (CaMK II), significantly inhibited stimulated catecholamine release (IC50 value of 0.32 µ M ), but had no effect on cell morphology. The reduction of secretory function induced by 1 µ M KN-62 was significant within 5 min and rapidly reversible. Unlike H-7, H-8, and staurosporine, KN-62 significantly inhibited stimulated 45Ca2+ uptake. KN-04, a structural analogue of KN-62 that does not inhibit CaMK II, inhibited stimulated 45Ca2+ uptake and catecholamine release like KN-62. These studies indicate that KN-62 inhibits secretory function via the direct blockade of activated Ca2+ influx. The nonselective inhibitors, K-252a, H-7, H-8, and staurosporine, inhibit secretory function by another mechanism, perhaps one involving alterations in the cytoskeleton.  相似文献   

5.
Abstract: Recent studies have demonstrated that D1-selective and D2-selective dopamine receptor agonists inhibit catecholamine secretion and Ca2+ uptake into bovine adrenal chromaffin cells by receptor subtypes that we have identified by PCR as D5, a member of the D1-like dopamine receptor subfamily, and D4, a member of the D2-like dopamine receptor subfamily. The purpose of this study was to determine whether activation of D5 or D4 receptors inhibits influx of Na+, which could explain inhibition of secretion and Ca2+ uptake by dopamine agonists. D1-selective agonists preferentially inhibited both dimethylphenylpiperazinium- (DMPP) and veratridine-stimulated 22Na+ influx into chromaffin cells. The D1-selective agonists chloro-APB hydrobromide (CI-APB; 100 µ M ) and SKF-38393 (100 µ M ) inhibited DMPP-stimulated Na+ uptake by 87.5 ± 2.3 and 59.7 ± 4.5%, respectively, whereas the D2-selective agonist bromocriptine (100 µ M ) inhibited Na+ uptake by only 22.9 ± 5.0%. Veratridine-stimulated Na+ uptake was inhibited 95.1 ± 3.2 and 25.7 ± 4.7% by 100 µ M CI-APB or bromocriptine, respectively. The effect of CI-APB was concentration dependent. A similar IC50 (∼18 µ M ) for inhibition of both DMPP- and veratridine-stimulated Na+ uptake was obtained. The addition of 8-bromo-cyclic AMP (1 m M ) had no effect on either DMPP- or veratridine-stimulated Na+ uptake. These observations suggest that D1-selective agonists are inhibiting secretagogue-stimulated Na+ uptake in a cyclic AMP-independent manner.  相似文献   

6.
Transplantable BALB/c and AKR lymphomas of different cell surface immunologic phenotypes have distinctive patterns of response to the ADA inhibitor DCF in vivo and in vitro. BAL 9, a lymphoma of the Lyt-1+,2+ T cell phenotype, was the most sensitive to DCF in vivo, and its DNA synthesis was inhibited more than 95% when cultured in the presence of dAr and DCF in vitro. This was correlated with a 10-fold increase in dATP content. The ADA and AMPDA activities were both high. Two lymphomas of the Lyt-1-,2+ T cell phenotype, BAL 5 and AKTB - lt , as well as two B cell phenotype lymphomas, A20 .3 and AKTB -lb, were all moderately inhibited in their in vivo growth if enough DCF was administered. However, their DNA synthesis in vitro was only inhibited 8 to 24% by dAr and DCF, there was only a twofold increase in the accumulation of dATP, and ADA and AMPDA activities were both low in the two BALB/c lymphomas tested. BAL 13, the only lymphoma of the Lyt-1+,2- phenotype examined, was completely resistant to DCF in vivo and in vitro. When cultured in the presence of dAr and DCF there was a transient increase in dATP content, followed by an abrupt decline. AMPDA activity was five to seven times greater than in the other lymphomas tested. ADA activity was moderate. The activities of 5' nucleotidase and of adenosine kinase were low and approximately equal in all the BALB/c lymphomas. These results suggest that the response to DCF by lymphomas of various immunologic phenotypes can be correlated with their nucleoside metabolism. The sensitivity of BAL 9 and the resistance of BAL 13 to DCF are correlated with their tendency to accumulate dATP and with their AMPDA and ADA activity ratios. The moderate sensitivity to DCF in vivo of the other T and B cell lymphomas, however, could not be clearly explained by any of the in vitro parameters thus far investigated, and this suggests that mechanisms inhibiting lymphoma proliferation other than dATP accumulation may be operating.  相似文献   

7.
Abstract: Preliminary evidence suggests adenosine, a neuromodulator, has neuroprotective properties during cerebral ischemia. It is unclear, however, if adenosine has glioprotective effects. We studied the effect of adenosine on cellular injury in astroglial cultures subjected to combined glucose-oxygen deprivation. Adenosine (100–1,000 µ M ) dramatically reduced astroglial injury, whereas the adenosine agonists 2-chloroadenosine (10 n M –100 µ M ), N 6-cyclopentyladenosine (1 n M –10 µ M ), 5'- N -ethylcarboxamidoadenosine (10 n M –100 µ M ), and N 6-2-(4-aminophenyl)ethyladenosine (10 n M –100 µ M ) had no effect. Furthermore, the adenosine antagonists 8-cyclopentyl-1,3-dipropylxanthine (1 n M –1 µ M ), xanthine amine congener (10 n M –10 µ M ), and 8-( p -sulfophenyl)-theophylline (10–300 µ M ) failed to reverse the protective effect of 200 µ M adenosine. Next, adenosine degradation products were studied. Inosine proved to be glioprotective at concentrations nearly identical to those of adenosine, but hypoxanthine and ribose had no effect. The protective effect of 200 µ M inosine was not reversed by 8-( p -sulfophenyl)theophylline (10–300 µ M ). Adenosine deaminase (1 unit/ml) had no effect on protection produced by adenosine, whereas erythro -9-(2-hydroxy-3-nonyl)adenine hydrochloride (10 µ M ) reversed the protective effect of adenosine. Dipyridamole (4 µ M ) inhibited the protective effect of both adenosine and inosine. We conclude that adenosine dramatically decreases astroglial injury during combined glucose-oxygen deprivation and that this protective effect appears to be mediated by inosine.  相似文献   

8.
Abstract: We have investigated the mechanisms of cell death induced by long-term exposure to the glutamate receptor agonist ( S )-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate [( S )-AMPA]. Using primary cultures of pure neurons (95%) grown in serum-free conditions, we found that 24-h exposure to ( S )-AMPA (0.01–1,000 µ M ) induced concentration-dependent neuronal cell death (EC50 = 3 ± 0.5 µ M ) with cellular changes including neurite blebbing, chromatin condensation, and DNA fragmentation, indicative of apoptosis. ( S )-AMPA induced a delayed cell death with DNA fragmentation occurring in ∼50% of cells at concentrations between 100 and 300 µ M detected using terminal transferase-mediated dUTP nick end-labeling (TUNEL) and agarose gel electrophoresis. Apoptotic chromatin condensation was detected using 4,6-diamidino-2-phenylindole, a fluorescent DNA binding dye. Cell death induced by ( S )-AMPA was attenuated by the AMPA receptor-selective antagonist LY293558 (10 µ M ) and the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 50 µ M ), yielding EC50 values of 73 ± 5 and 265 ± 8 µ M , respectively, and was unaffected by the NMDA receptor antagonist MK-801 (10 µ M ). The number of apoptotic nuclei induced by 300 µ M ( S )-AMPA (57%) was also reduced substantially by the antagonists LY293558 and CNQX, with only 20% and 18% of neurons, respectively, staining TUNEL-positive at 24 h. In addition, cycloheximide (0.5 µg/ml) also inhibited ( S )-AMPA-induced DNA fragmentation and cell death. Our results show that long-term exposure to AMPA can induce substantial neuronal death involving apoptosis in cultured cortical neurons, suggesting a wide involvement of AMPA-sensitive glutamate receptors in excitotoxic injury and neurodegenerative pathologies.  相似文献   

9.
Abstract: Acetylcholine plays an important role in cortical arousal. Adenosine is released during increased metabolism and has been suggested to be a sleep-promoting factor. To understand the interaction of acetylcholine and adenosine in regulating cortical excitability, we examined the effect of carbachol on NMDA-evoked adenosine release and identified the muscarinic receptor subtype that mediated this effect in adult rat cortical slices in vitro. Carbachol (to 300 µ M ) alone did not affect the basal release of adenosine. However, carbachol (100 µ M ) induced a 253% increase in NMDA (20 µ M )-evoked adenosine release in the presence of Mg2+. In the absence of Mg2+, carbachol's potentiating effect was less (60% increase). The nonselective muscarinic antagonist atropine (1.5 µ M ) blocked the facilitatory effect of carbachol on NMDA-evoked adenosine release, and this was mimicked by the M3-selective antagonist 4-diphenylacetoxy- N -methylpiperidine (1 µ M ). Neither an M1-selective dose of pirenzepine (50 n M ) nor the M2-selective antagonist methoctramine (1 µ M ) affected carbachol's action on NMDA-evoked adenosine release. Carbachol had no effect on adenosine release evoked by α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA). These results suggest that acetylcholine does not affect basal adenosine release but enhances NMDA receptor-mediated evoked adenosine release by acting at M3 receptors in the cortex. This interaction may have a role in regulating cortical neuronal excitability on a long-term basis.  相似文献   

10.
Abstract: Intrastriatal injections of the mitochondrial toxins malonate and 3-nitropropionic acid produce selective cell death similar to that seen in transient ischemia and Huntington's disease. The extent of cell death can be attenuated by pharmacological or surgical blockade of cortical glutamatergic input. It is not known, however, if dopamine contributes to toxicity caused by inhibition of mitochondrial function. Exposure of primary striatal cultures to dopamine resulted in dose-dependent death of neurons. Addition of medium supplement containing free radical scavengers and antioxidants decreased neuronal loss. At high concentrations of the amine, cell death was predominantly apoptotic. Methyl malonate was used to inhibit activity of the mitochondrial respiratory chain. Neither methyl malonate (50 µ M ) nor dopamine (2.5 µ M ) caused significant toxicity when added individually to cultures, whereas simultaneous addition of both compounds killed 60% of neurons. Addition of antioxidants and free radical scavengers to the incubation medium prevented this cell death. Dopamine (up to 250 µ M ) did not alter the ATP/ADP ratio after a 6-h incubation. Methyl malonate, at 500 µ M , reduced the ATP/ADP ratio by ∼30% after 6 h; this decrease was not augmented by coincubation with 25 µ M dopamine. Our results suggest that dopamine causes primarily apoptotic death of striatal neurons in culture without damaging cells by an early adverse action on oxidative phosphorylation. However, when combined with minimal inhibition of mitochondrial function, dopamine neurotoxicity is markedly enhanced.  相似文献   

11.
Abstract: Using microdialysis in the hippocampus of anaesthetised rats, the concentration of extracellular adenosine was estimated to be 0.8 µ M . Kainic acid (0.1–25 m M ) in the perfusate evoked a concentration-dependent release of adenosine with an EC50 of 940 µ M . Two 5-min pulses of 1 m M kainic acid in the perfusate increased the dialysate levels with an S2/S1 ratio of 0.52 ± 0.03. Kainate-evoked release of adenosine was reduced significantly by 10 µ M tetrodotoxin and by a κ-receptor agonist, U50,488H (100 µ M ). The S2/S1 ratio was reduced by 4.5 µ M 6-cyano-7-nitroquinoxaline-2,3-dione, a non-NMDA receptor antagonist, but not by the NMDA receptor blockers (+)-MK-801 (dizocilpine; 100 µ M ) or (±)-2-amino-5-phosphonopentanoic acid (1 m M ), indicating a non-NMDA receptor-mediated process. The S2/S1 ratio was also reduced significantly by 10 m M ascorbic acid, 10 m M glutathione (a scavenger of hydroperoxides), and 1 m M oxypurinol (a xanthine oxidase inhibitor), indicating the possible involvement of free radicals. Neither the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dimethylxanthine (100 µ M ) nor the A1 adenosine receptor agonist R (−)- N 6-(2-phenylisopropyl)adenosine (100 µ M ) affected release. Adenosine release evoked by kainic acid is therefore mediated by activation of non-NMDA receptors and may involve the propagation of action potentials and the production of free radicals.  相似文献   

12.
The inborn deficiency of adenosine deaminase is characterised by accumulation of excess amounts of cytotoxic deoxyadenine nucleotides in lymphocytes. Formation of dATP requires phosphorylation of deoxyadenosine by deoxycytidine kinase (dCK), the main nucleoside salvage enzyme in lymphoid cells. Activation of dCK by a number of genotoxic agents including 2-chlorodeoxyadenosine, a deamination-resistant deoxyadenosine analogue, was found previously. Here, we show that deoxyadenosine itself is also a potent activator of dCK if its deamination was prevented by the adenosine deaminase inhibitor deoxycoformycin. In contrast, deoxycytidine was found to prevent stimulation of dCK by various drugs. The activated form of dCK was more resistant to tryptic digestion, indicating that dCK undergoes a substrate-independent conformational change upon activation. Elevated dCK activities were accompanied by decreased pyrimidine nucleotide levels whereas cytotoxic dATP pools were selectively enhanced. dCK activity was found to be downregulated by growth factor and MAP kinase signalling, providing a potential tool to slow the rate of dATP accumulation in adenosine deaminase deficiency.  相似文献   

13.
Abstract: The effects of NMDA and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) on endogenous acetylcholine release from rat striatal slices and synaptosomes were investigated. Both agonists (1–300 µ M ) facilitated acetylcholine release from slices in a dose-dependent manner. NMDA (100–300 µ M ) and AMPA (30–300 µ M ), however, subsequently inhibited acetylcholine release. NMDA (100 µ M )-induced facilitation was antagonized by 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) and dizocilpine (both 1–10 µ M ), whereas the 10 µ M AMPA effect was antagonized by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 1–30 µ M ). NMDA (100 µ M )-induced inhibition was counteracted by CPP, but not dizocilpine, and by the nitric oxide synthase inhibitor l -nitroarginine (1–100 µ M ). Tetrodotoxin (0.5 µ M ) prevented the facilitatory effect of 3 µ M NMDA and AMPA, but left unchanged that of 30 µ M NMDA and 100 µ M AMPA. Acetylcholine release from synaptosomes was stimulated by KCI (7.5–100 m M ) in a dose-dependent manner. NMDA and AMPA maximally potentiated the 20 m M KCl effect at 1 µ M and 0.01 µ M , but were ineffective at 100 µ M and 10 µ M , respectively. Inhibition of acetylcholine release was never found in synaptosomes. The effects of 1 µ M NMDA and 0.01 µ M AMPA were antagonized by CPP (0.0001–1 µ M ) or dizocilpine (0.0001–10 µ M ) and by CNQX (0.001–1 µ M ), respectively. These data suggest that glutamatergic control of striatal acetylcholine release is mediated via both pre- and post-synaptic NMDA and non-NMDA ionotropic receptors.  相似文献   

14.
The importance of ADA (adenosine deaminase) in the immune system and the role of its interaction with an ADA-binding cell membrane protein dipeptidyl peptidase IV (DPPIV), identical to the activated immune cell antigen, CD26, has attracted the interest of researchers for many years. To investigate the specific properties in the structure-function relationship of the ADA/DPPIV-CD26 complex, its soluble form, identical to large ADA (LADA), was isolated from human blood serum, human pleural fluid and bovine kidney cortex. The kinetic constants (Km and Vmax) of LADA and of small ADA (SADA), purified from bovine lung and spleen, were compared using adenosine (Ado) and 2'-deoxyadenosine (2'-dAdo) as substrates. The Michaelis constant, Km, evidences a higher affinity of both substrates (in particular of more toxic 2'-dAdo) for LADA and proves the modulation of toxic nucleoside neutralization in the extracellular medium due to complex formation between ADA and DPPIV-CD26. The values of Vmax are significantly higher for SADA, but the efficiency, Vmax/Km, in LADA-catalyzed 2'-dAdo deamination is higher than that in Ado deamination. The interaction of all enzyme preparations with derivatives of adenosine and erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) was studied. 1-DeazaEHNA and 3-deazaEHNA demonstrate stronger inhibiting activity towards LADA, the DPPIV-CD26-bound form of ADA. The observed differences between the properties of the two ADA isoforms may be considered as a consequence of SADA binding with DPPIV-CD26. Both SADA and LADA indicated a similar pH-profile of adenosine deamination reaction with the optimum at pHs 6.5-7.5, while the pH-profile of dipeptidyl peptidase activity of the ADA/DPPIV-CD26 complex appeared in a more alkaline region.  相似文献   

15.
Abstract: In this work, we have studied the effects of pure nitric oxide (NO) on the regulation of catecholamine (CA) secretion by chromaffin cells, as well as the possible presence of its synthesizing enzyme l -arginine:NO synthase (NOS) in these cells. Our results show that NO produces a large stimulation of basal CA secretion. This effect was calcium- and concentration-dependent (EC50 = 64 ± 8 µ M ) and was not due to nonspecific damage of the tissue by NO. NO also modulates the CA secretion evoked by nicotine in a dose-dependent manner. Although it has a stimulatory effect on the CA secretion evoked by low doses of nicotine (<3 µ M ; EC50 = 16 ± 3 µ M ), it produces a dose-dependent inhibition of the CA secretion induced by high doses of nicotine (≥30 µ M ; IC50 = 52 ± 6 µ M ). The mechanism by which NO modulates CA secretion seems to be through the increase in the cyclic GMP levels, because there was a close correlation between the CA secretion and the cyclic GMP levels. The presence of a specific activity of NOS in chromaffin cells has been demonstrated by two independent methods: release of [14C]citruiline from [14C]arginine and formation of an NO-hemoglobin complex. NOS activity was about 0.5 pmol/min/mg of protein. It was calcium- and mainly calmodulin-dependent and could be specifically blocked by the NOS inhibitor N -methyl- l -arginine. These results suggest that NO could be an important intracellular messenger in the regulation of neurosecretion in chromaffin cells.  相似文献   

16.
Three general questions regarding nucleosides and lymphocytes are discussed: (a) Why are so many measurements being made of adenosine deaminase activity, what do the results mean, and why is there still disagreement about some of the conclusions; (b) what do we understand about nucleosides and lymphocyte death; and (c) to what extent do we really understand nucleoside and nucleotide metabolism in lymphocytes? Experimental studies show that treatment of mice with deoxycoformycin, to produce accumulation of deoxyadenosine, leads to rapid thymus involution, elevated dATP concentrations in thymus and liver, and inhibition of adenosylhomocysteine hydrolase in these tissues. Deoxyguanosine inhibits the growth of mouse lymphoma L5178Y cells, and this toxicity is prevented by deoxycytidine plus adenine. In cells treated with deoxyguanosine, concentrations of both GTP and dGTP are elevated, and this is not affected by deoxycytidine. Adenine, however, reduces GTP concentrations to normal, and prevents most of the elevation in dGTP concentrations. Contrary to previous belief, it has been demonstrated that lymphocytes and nucleated bone marrow cells will synthesize purine nucleotides de novo if incubated in an appropriate medium; carbon dioxide is particularly important for this process.  相似文献   

17.
Abstract: The effects of synthetic β-amyloid (Aβ1–42) on cell viability and cellular Ca2+ homeostasis have been studied in the human neuron-like NT2N cell, which differentiates from a teratocarcinoma cell line, NTera2/C1.D1, by retinoic acid treatment. NT2N viability was measured using morphological criteria and fluorescent live/dead staining and quantified using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide metabolism. Aβ1–42 dose-dependently caused NT2N cell death when it was present in the cell culture for 14 days but had no effect on viability when it was present for 4 days. The lowest effective concentration was 4 µ M , and the strongest effect was produced by 40 µ M . Control NT2N cells produced spontaneous cytosolic Ca2+ oscillations under basal conditions. These oscillations were inhibited dose-dependently (0.4–40 µ M ) by Aβ1–42 that was present in the cell culture for 1 or 4 days. Ca2+ wave frequency was decreased from 0.21 ± 0.02 to 0.05 ± 0.02/min, amplitude from 88 ± 8 to 13 ± 4 n M , and average Ca2+ level from 130 ± 8 to 58 ± 3 n M . The Ca2+ responses to 30 m M K+ and 100 µ M glutamate were not different between control and Aβ-treated cells. Thus, the results do not support the hypothesis that cytosolic early Ca2+ accumulation mediates Aβ-induced NT2N cell death.  相似文献   

18.
19.
The intracellular accumulation of free [3H] adenosine was measured by rapid kinetic techniques in P388 murine leukemia cells in which adenosine metabolism (phosphorylation and deamination) was completely prevented by depletion of cellular ATP and by treatment with deoxycoformycin. Nonlinear regression of integrated rate equations on the data demonstrate that the time courses of labeled adenosine accumulation at various extracellular adenosine concentrations in zero-trans and equilibrium exchange protocols are well described by a simple, completely symmetrical, transport model with a carrier:substrate affinity constant of about 150 μM. Adenosine transport was not affected by 1 mM deoxycoformycin indicating that this analog has a low affinity for the nucleoside transport system. The transport capacity of dog thymocytes and peripheral leukocytes was similar to that of P388 cells. Transport was not inhibited by deoxycoformycin and remained constant during the first two hours after mitogenic stimulation with concanavalin A. In untreated, metabolizing P388 cells transport was found to be the major determinant of the rate of intracellular metabolism, regardless of the extracellular adenosine concentration (up to at least 160 μM), but the long-term accumulation (longer than 30–60 seconds) of radioactivity from extracellular adenosine strictly reflected the rate of formation of nucleotides (mainly ATP). The metabolism of adenosine by whole cells was entirely consistent with the kinetic properties of the transport system and those of the metabolic enzymes. At low exogenous adenosine concentrations (1 μM and below) transport was slow enough to allow direct phosphorylation of most of the entering adenosine. The remainder was deaminated and rapidly converted to nucleotides via inosine, hypoxanthine, and IMP. At concentrations of 100 μM or higher, on the other hand, influx exceeded the maximum velocity of adenosine kinase about 100 times so that most of the entering adenosine was deaminated. But since the maximum velocity of adenosine deaminase exceeded those of nucleoside phosphorylase and hypoxanthine/guanine phosphoribosyltransferase about 5 and 100 times, respectively, hypoxanthine and inosine rapidly exited from the cells and accumulated in the medium. A 98% reduction of adenosine transport (at 100 μM), caused by the transport inhibitor Persantin, inhibited adenosine deamination by whole cells to about the same extent as transport, whereas adenosine phosphorylation was relatively little affected; thus in the presence of Persantin, transport and metabolism resembled that occurring at the low adenosine concentration. These and other results indicate that adenosine deamination is an event distinct from transport, which occurs only subsequent to adenosine's transport into the cell.  相似文献   

20.
Cultured bovine chromaffin cells cosecrete catecholamines and enkephalins following cholinergic nicotinic stimulation. Initial reports on the inhibitory effect of clonidine on catecholamine secretion raised the possibility of a modulation of chromaffin cell function through a presynaptic adrenergic mechanism. The purpose of this work was to investigate the pharmacological characteristics of this inhibitory effect of clonidine on the cosecretion of catecholamines and enkephalins in 4-day-old cultured chromaffin cells. We observed that clonidine completely inhibits nicotine-stimulated secretion of both leucine-enkephalin and catecholamines with an IC50 of 34 microM. Treatment of chromaffin cells for 3 days with 100 nM reserpine leads to a 67% increase in nicotine-stimulated secretion of leucine-enkephalin without any effect on the IC50 of clonidine. In reserpine-treated chromaffin cells, norepinephrine (100 microM) inhibits only by 27% nicotine-stimulated secretion of leucine-enkephalin with an IC50 of 50 microM. Neither the alpha 2-adrenergic antagonist yohimbine nor the alpha 1-adrenergic antagonist prazosin could fully reverse the inhibitory effect of clonidine on leucine-enkephalin secretion at 10 nM. These results tend to rule out the role of alpha-adrenergic receptors in the mediation of clonidine inhibition of cosecretion in chromaffin cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号