首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Alamethicin is a 19-residue hydrophobic peptide, which is extended by a C-terminal phenylalaninol but lacks residues that might anchor the ends of the peptide at the lipid-water interface. Voltage-dependent ion channels formed by alamethicin depend strongly in their characteristics on chain length of the host lipid membranes. EPR spectroscopy is used to investigate the dependence on lipid chain length of the incorporation of spin-labeled alamethicin in phosphatidylcholine bilayer membranes. The spin-label amino acid TOAC is substituted at residue positions n = 1, 8, or 16 in the sequence of alamethicin F50/5 [TOAC(n), Glu(OMe)(7,18,19)]. Polarity-dependent isotropic hyperfine couplings of the three TOAC derivatives indicate that alamethicin assumes approximately the same location, relative to the membrane midplane, in fluid diC(N)PtdCho bilayers with chain lengths ranging from N = 10-18. Residue TOAC(8) is situated closest to the bilayer midplane, whereas TOAC(16) is located farther from the midplane in the hydrophobic core of the opposing lipid leaflet, and TOAC(1) remains in the lipid polar headgroup region. Orientational order parameters indicate that the tilt of alamethicin relative to the membrane normal is relatively small, even at high temperatures in the fluid phase, and increases rather slowly with decreasing chain length (from 13 degrees to 23 degrees for N = 18 and 10, respectively, at 75 degrees C). This is insufficient for alamethicin to achieve hydrophobic matching. Alamethicin differs in its mode of incorporation from other helical peptides for which transmembrane orientation has been determined as a function of lipid chain length.  相似文献   

2.
Alamethicin is a 20-amino acid antibiotic peptide that forms voltage-gated ion channels in lipid bilayers. Here we report calculations of its association free energy with membranes. The calculations take into account the various free-energy terms that contribute to the transfer of the peptide from the aqueous phase into bilayers of different widths. The electrostatic and nonpolar contributions to the solvation free energy are calculated using continuum solvent models. The contributions from the lipid perturbation and membrane deformation effects and the entropy loss associated with peptide immobilization in the bilayer are estimated from a statistical thermodynamic model. The calculations were carried out using two classes of experimentally observed conformations, both of which are helical: the NMR and the x-ray crystal structures. Our calculations show that alamethicin is unlikely to partition into bilayers in any of the NMR conformations because they have uncompensated backbone hydrogen bonds and their association with the membrane involves a large electrostatic solvation free energy penalty. In contrast, the x-ray conformations provide enough backbone hydrogen bonds for the peptide to associate with bilayers. We tested numerous transmembrane and surface orientations of the peptide in bilayers, and our calculations indicate that the most favorable orientation is transmembrane, where the peptide protrudes approximately 4 A into the water-membrane interface, in very good agreement with electron paramagnetic resonance and oriented circular dichroism measurements. The calculations were carried out using two alamethicin isoforms: one with glutamine and the other with glutamate in the 18th position. The calculations indicate that the two isoforms have similar membrane orientations and that their insertion into the membrane is likely to involve a 2-A deformation of the bilayer, again, in good agreement with experimental data. The implications of the results for the biological function of alamethicin and its capacity to oligomerize and form ion channels are discussed.  相似文献   

3.
A computational method to calculate the orientation of membrane-associated alpha-helices with respect to a lipid bilayer has been developed. It is based on a previously derived implicit membrane representation, which was parameterized using the structures of 46 alpha-helical membrane proteins. The method is validated by comparison with an independent data set of six transmembrane and nine antimicrobial peptides of known structure and orientation. The minimum energy orientations of the transmembrane helices were found to be in good agreement with tilt and rotation angles known from solid-state NMR experiments. Analysis of the free-energy landscape found two types of minima for transmembrane peptides: i), Surface-bound configurations with the helix long axis parallel to the membrane, and ii), inserted configurations with the helix spanning the membrane in a perpendicular orientation. In all cases the inserted configuration also contained the global energy minimum. Repeating the calculations with a set of solution NMR structures showed that the membrane model correctly distinguishes native transmembrane from nonnative conformers. All antimicrobial peptides investigated were found to orient parallel and bind to the membrane surface, in agreement with experimental data. In all cases insertion into the membrane entailed a significant free-energy penalty. An analysis of the contributions of the individual residue types confirmed that hydrophobic residues are the main driving force behind membrane protein insertion, whereas polar, charged, and aromatic residues were found to be important for the correct orientation of the helix inside the membrane.  相似文献   

4.
Alamethicin is a 20-residue, hydrophobic, helical peptide, which forms voltage-sensitive ion channels in lipid membranes. The helicogenic, nitroxyl amino acid TOAC was substituted isosterically for Aib at residue positions 1, 8, or 16 in a F50/5 alamethicin analog to enable EPR studies. Electron spin-echo envelope modulation (ESEEM) spectroscopy was used to investigate the water exposure of TOAC-alamethicin introduced into membranes of saturated or unsaturated diacyl phosphatidylcholines that were dispersed in D2O. Echo-detected EPR spectra were used to assess the degree of assembly of the peptide in the membrane, via the instantaneous diffusion from intermolecular spin-spin interactions. The profile of residue exposure to water differs between membranes of saturated and unsaturated lipids. In monounsaturated dioleoyl phosphatidylcholine, D2O-ESEEM intensities decrease from TOAC1 to TOAC8 and TOAC16 but not uniformly. This is consistent with a transmembrane orientation for the protoassembled state, in which TOAC16 is located in the bilayer leaflet opposite to that of TOAC1 and TOAC8. Relative to the monomer in fluid bilayers, assembled alamethicin is disposed asymmetrically about the bilayer midplane. In saturated dimyristoyl phosphatidylcholine, the D2O-ESEEM intensity is greatest for TOAC8, indicating a more superficial location for alamethicin, which correlates with the difference in orientation between gel- and fluid-phase membranes found by conventional EPR of TOAC-alamethicin in aligned phosphatidylcholine bilayers. Increasing alamethicin/lipid ratio in saturated phosphatidylcholine shifts the profile of water exposure toward that with unsaturated lipid, consistent with proposals of a critical concentration for switching between the two different membrane-associated states.  相似文献   

5.
M2delta, one of the transmembrane segments of the nicotinic acetylcholine receptor, is a 23-amino-acid peptide, frequently used as a model for peptide-membrane interactions. In this and the companion article we describe studies of M2delta-membrane interactions, using two different computational approaches. In the present work, we used continuum-solvent model calculations to investigate key thermodynamic aspects of its interactions with lipid bilayers. M2delta was represented in atomic detail and the bilayer was represented as a hydrophobic slab embedded in a structureless aqueous phase. Our calculations show that the transmembrane orientation is the most favorable orientation of the peptide in the bilayer, in good agreement with both experimental and computational data. Moreover, our calculations produced the free energy of association of M2delta with the lipid bilayer, which, to our knowledge, has not been reported to date. The calculations included 10 structures of M2delta, determined by nuclear magnetic resonance in dodecylphosphocholine micelles. All the structures were found to be stable inside the lipid bilayer, although their water-to-membrane transfer free energies differed by as much as 12 kT. Although most of the structures were roughly linear, a single structure had a kink in its central region. Interestingly, this structure was found to be the most stable inside the lipid bilayer, in agreement with molecular dynamics simulations of the peptide and with the recently determined structure of the intact receptor. Our analysis showed that the kink reduced the polarity of the peptide in its central region by allowing the electrostatic masking of the Gln13 side chain in that area. Our calculations also showed a tendency for the membrane to deform in response to peptide insertion, as has been previously found for the membrane-active peptides alamethicin and gramicidin. The results are compared to Monte Carlo simulations of the peptide-membrane system, as presented in the accompanying article.  相似文献   

6.
Alamethicin is a 19-amino-acid residue hydrophobic peptide that produces voltage-dependent ion channels in membranes. Analogues of the Glu(OMe)(7,18,19) variant of alamethicin F50/5 that are rigidly spin-labeled in the peptide backbone have been synthesized by replacing residue 1, 8, or 16 with 2,2,6,6-tetramethyl-piperidine-1-oxyl-4-amino-4-carboxyl (TOAC), a helicogenic nitroxyl amino acid. Conventional electron paramagnetic resonance spectra are used to determine the insertion and orientation of the TOAC(n) alamethicins in fluid lipid bilayer membranes of dimyristoyl phosphatidylcholine. Isotropic (14)N-hyperfine couplings indicate that TOAC(8) and TOAC(16) are situated in the hydrophobic core of the membrane, whereas the TOAC(1) label resides closer to the membrane surface. Anisotropic hyperfine splittings show that alamethicin is highly ordered in the fluid membranes. Experiments with aligned membranes demonstrate that the principal diffusion axis lies close to the membrane normal, corresponding to a transmembrane orientation. Combination of data from the three spin-labeled positions yields both the dynamic order parameter of the peptide backbone and the intramolecular orientations of the TOAC groups. The latter are compared with x-ray diffraction results from alamethicin crystals. Saturation transfer electron paramagnetic resonance, which is sensitive to microsecond rotational motion, reveals that overall rotation of alamethicin is fast in fluid membranes, with effective correlation times <30 ns. Thus, alamethicin does not form large stable aggregates in fluid membranes, and ionic conductance must arise from transient or voltage-induced associations.  相似文献   

7.
Alamethicin is a 19-amino-acid residue hydrophobic peptide of the peptaibol family that has been the object of numerous studies for its ability to produce voltage-dependent ion channels in membranes. In this work, for the first time electron paramagnetic resonance spectroscopy was applied to study the interaction of alamethicin with oriented bicelles. We highlighted the effects of increasing peptide concentrations on both the peptide and the membrane in identical conditions, by adopting a twofold spin labeling approach, placing a nitroxide moiety either on the peptide or on the phospholipids. The employment of bicelles affords additional spectral resolution, thanks to the formation of a macroscopically oriented phase that allows to gain information on alamethicin orientation and dynamics. Moreover, the high viscosity of the bicellar solution permits the investigation of the peptide aggregation properties at physiological temperature. We observed that, at 35 °C, alamethicin adopts a transmembrane orientation with the peptide axis forming an average angle of 25° with respect to the bilayer normal. Moreover, alamethicin maintains its dynamics and helical tilt constant at all concentrations studied. On the other hand, by increasing the peptide concentration, the bilayer experiences an exponential decrease of the order parameter, but does not undergo micellization, even at the highest peptide to lipid ratio studied (1:20). Finally, the aggregation of the peptide at physiological temperature shows that the peptide is monomeric at peptide to lipid ratios lower than 1:50, then it aggregates with a rather broad distribution in the number of peptides (from 6 to 8) per oligomer.  相似文献   

8.
The first direct experimental evidence that gramicidin A (gA), a transmembrane peptide, facilitates the translocation of unlabeled lipids in a phospholipid bilayer was obtained with sum-frequency vibrational spectroscopy (SFVS). SFVS was used to investigate the effect of gA on lipid flip-flop in a planar 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) lipid bilayer. The kinetics of lipid translocation were determined by an analysis of the SFVS intensity versus time at different temperatures in the presence of 2 mol % gA. The rate constants of DSPC flip-flop increase from 2 to 10 times relative to the pure DSPC system. The results indicate that facial lipid exchange can be induced by a hydrophobic transmembrane helix. The increase in lipid flip-flop rates is correlated to an increase in the gauche content of the lipid tails. The results suggest that membrane defects induced by the presence of integral membrane proteins may play a large role in modulating the rate of lipid flip-flop.  相似文献   

9.
The first direct experimental evidence that gramicidin A (gA), a transmembrane peptide, facilitates the translocation of unlabeled lipids in a phospholipid bilayer was obtained with sum-frequency vibrational spectroscopy (SFVS). SFVS was used to investigate the effect of gA on lipid flip-flop in a planar 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) lipid bilayer. The kinetics of lipid translocation were determined by an analysis of the SFVS intensity versus time at different temperatures in the presence of 2 mol % gA. The rate constants of DSPC flip-flop increase from 2 to 10 times relative to the pure DSPC system. The results indicate that facial lipid exchange can be induced by a hydrophobic transmembrane helix. The increase in lipid flip-flop rates is correlated to an increase in the gauche content of the lipid tails. The results suggest that membrane defects induced by the presence of integral membrane proteins may play a large role in modulating the rate of lipid flip-flop.  相似文献   

10.
Gramicidin is a helical peptide, 15 residues in length, which dimerizes to form ion-conducting channels in lipid bilayers. Here we report calculations of its free energy of transfer from the aqueous phase into bilayers of different widths. The electrostatic and nonpolar contributions to the desolvation free energy were calculated using implicit solvent models, in which gramicidin was described in atomic detail and the hydrocarbon region of the membrane was described as a slab of hydrophobic medium embedded in water. The free energy penalties from the lipid perturbation and membrane deformation effects, and the entropy loss associated with gramicidin immobilization in the bilayer, were estimated from a statistical thermodynamic model of the bilayer. The calculations were carried out using two classes of experimentally observed conformations: a head-to-head dimer of two single-stranded (SS) beta-helices and a double-stranded (DS) intertwined double helix. The calculations showed that gramicidin is likely to partition into the bilayer in all of these conformations. However, the SS conformation was found to be significantly more stable than the DS in the bilayer, in agreement with most of the experimental data. We tested numerous transmembrane and surface orientations of gramicidin in bilayers of various widths. Our calculations indicate that the most favorable orientation is transmembrane, which is indeed to be expected from a channel-forming peptide. The calculations demonstrate that gramicidin insertion into the membrane is likely to involve a significant deformation of the bilayer to match the hydrophobic width of the peptide (22 A), again in good agreement with experimental data. Interestingly, deformation of the bilayer was induced by all of the gramicidin conformations.  相似文献   

11.
The orientation and dynamics of an 18-residue antimicrobial peptide, ovispirin, has been investigated using solid-state NMR spectroscopy. Ovispirin is a cathelicidin-like model peptide (NH(2)-KNLRRIIRKIIHIIKKYG-COOH) with potent, broad-spectrum bactericidal activity. (15)N NMR spectra of oriented ovispirin reconstituted into synthetic phospholipids show that the helical peptide is predominantly oriented in the plane of the lipid bilayer, except for a small portion of the helix, possibly at the C-terminus, which deviates from the surface orientation. This suggests differential insertion of the peptide backbone into the lipid bilayer. (15)N spectra of both oriented and unoriented peptides show a reduced (15)N chemical shift anisotropy at room temperature compared with that of rigid proteins, indicating that the peptide undergoes uniaxial rotational diffusion around the bilayer normal with correlation times shorter than 10(-4) s. This motion is frozen below the gel-to-liquid crystalline transition temperature of the lipids. Ovispirin interacts strongly with the lipid bilayer, as manifested by the significantly reduced (2)H quadrupolar splittings of perdeuterated palmitoyloleoylphosphatidylcholine acyl chains upon peptide binding. Therefore, ovispirin is a curved helix residing in the membrane-water interface that executes rapid uniaxial rotation. These structural and dynamic features are important for understanding the antimicrobial function of this peptide.  相似文献   

12.
Polar residues play important roles in the association of transmembrane helices and the stabilities of membrane proteins. Although a single Ser residue in a transmembrane helix is unable to mediate a strong association of the helices, the cooperative interactions of two or more appropriately placed serine hydroxyl groups per helix has been hypothesized to allow formation of a "serine zipper" that can stabilize transmembrane helix association. In particular, a heptad repeat Sera Xxx Xxx Leud Xxx Xxx Xxx (Xxx is a hydrophobic amino acid) appears in both antiparallel helical pairs of polytopic membrane proteins as well as the parallel helical dimerization motif found in the murine erythropoietin receptor. To examine the intrinsic conformational preferences of this motif independent of its context within a larger protein, we synthesized a peptide containing three copies of a SeraLeud heptad motif. Computational results are consistent with the designed peptide adopting either a parallel or antiparallel structure, and conformational search calculations yield the parallel dimer as the lowest energy configuration, which is also significantly more stable than the parallel trimer. Analytical ultracentrifugation indicated that the peptide exists in a monomer-dimer equilibrium in dodecylphosphocholine micelles. Thiol disulfide interchange studies showed a preference for forming parallel dimers in micelles. In phospholipid vesicles, only the parallel dimer was formed. The stability of the SerZip peptide was studied in vesicles prepared from phosphatidylcholine (PC) lipids of different chain length: POPC (C16:0C18:1 PC) and DLPC (C12:0PC). The stability was greater in POPC, which has a good match between the length of the hydrophobic region of the peptide and the bilayer length. Finally, mutation to Ala of the Ser residues in the SerZip motif gave rise to a relatively small decrease in the stability of the dimer, indicating that packing interactions rather than hydrogen-bonding provided the primary driving force for association.  相似文献   

13.
Experimental studies of a number of antimicrobial peptides are sufficiently detailed to allow computer simulations to make a significant contribution to understanding their mechanisms of action at an atomic level. In this review we focus on simulation studies of alamethicin, melittin, dermaseptin and related antimicrobial, membrane-active peptides. All of these peptides form amphipathic alpha-helices. Simulations allow us to explore the interactions of such peptides with lipid bilayers, and to understand the effects of such interactions on the conformational dynamics of the peptides. Mean field methods employ an empirical energy function, such as a simple hydrophobicity potential, to provide an approximation to the membrane. Mean field approaches allow us to predict the optimal orientation of a peptide helix relative to a bilayer. Molecular dynamics simulations that include an atomistic model of the bilayer and surrounding solvent provide a more detailed insight into peptide-bilayer interactions. In the case of alamethicin, all-atom simulations have allowed us to explore several steps along the route from binding to the membrane surface to formation of transbilayer ion channels. For those antimicrobial peptides such as dermaseptin which prefer to remain at the surface of a bilayer, molecular dynamics simulations allow us to explore the favourable interactions between the peptide helix sidechains and the phospholipid headgroups.  相似文献   

14.
H Vogel 《Biochemistry》1987,26(14):4562-4572
The secondary structure of alamethicin in lipid membranes below and above the lipid phase transition temperature Tt is determined by Raman spectroscopy and circular dichroism (CD) measurements. In both cases structural data are obtained by fitting the experimental spectra by a superposition of the spectra of 15 reference proteins of known three-dimensional structure. According to the Raman experiments, in a lipid bilayer above Tt alamethicin is helical from residue 1 to 12, whereas below Tt the helix extends from residue 1 to 16. The remaining C-terminal part is nonhelical up to the end residue 20 both above and below Tt. A considerable lower helix content is derived from CD, namely, 38% and 46% above and below Tt, respectively, in agreement with several reported values for CD in the literature. It is shown that the commonly used set of CD spectra of water-soluble reference proteins is unsuitable to describe the CD spectra of alamethicin correctly. Therefore the secondary structure of alamethicin as derived from CD measurements is at the present state of analysis unreliable. In contrast to the case of alamethicin, the CD spectra of melittin in lipid membranes are correctly described by the reference protein spectra. The helix content of melittin is determined thereby to be 72% in lipid membranes above Tt and 75% below Tt. The data are in accord with a structure where the hydrophobic part of melittin adopts a bent helix as determined recently by Raman spectroscopy [Vogel, H., & J?hnig, F. (1986) Biophys. J. 50, 573]. The orientational order parameters of the helical parts of alamethicin and of melittin in a lipid membrane are deduced from the difference between a corresponding CD spectrum of a polypeptide in planar multibilayers and that in lipid vesicles. The presented method for determining helix order parameters is new and may be generally applicable to other membrane proteins. The orientation of the helical part of both polypeptides depends on the physical state of the lipid bilayer at maximal membrane hydration and in the ordered lipid state furthermore on the degree of membrane hydration. Under conditions where alamethicin and melittin are incorporated in an aggregated form in a fluid lipid membrane at maximal water content the helical segments are oriented preferentially parallel to the membrane normal. Cooling such lipid membranes to a temperature below Tt changes the orientation of the helical part of alamethicin as well as melittin toward the membrane plane.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Two major types of helical structures have been identified in lipid-associating proteins, being either amphipathic or transmembrane domains. A conformational analysis was carried out to characterize some of the properties of these helices. These calculations were performed both on isolated helices and in a lipid environment. According to the results of this analysis, the orientation of the line joining the hydrophobic and hydrophilic centers of the helix seems to determine the orientation of the helix at the lipid/water interface. The calculation of this parameter should be useful to discriminate between an amphipathic helix, parallel to the interface and a transmembrane helix orientated perpendicularly. The membrane-spanning helices are completely immersed in the phospholipid bilayer and their length corresponds to about the thickness of the hydrophobic core of the DPPC bilayer. The energy of interaction, expressed per phospholipid is significantly higher for the transmembrane compared to the amphipathic helices. For the membrane-spanning helices the mean energy of interaction is higher than the interaction energy between two phospholipids, while it is lower for most amphipathic helices. This might account for the stability of these protein-anchoring domains. This computer modeling approach should usefully complement the statistical analysis carried out on these helices, based on their hydrophobicity and hydrophobic moment. It represents a more refined analysis of the domains identified by the prediction techniques and stress the functional character of lipid-associating domains in membrane proteins as well as in soluble plasma lipoproteins.  相似文献   

16.
31P and 15N solid-state NMR with the magic angle-oriented sample spinning (MAOSS) strategy was used to investigate the effect of two model peptides on phospholipid bilayers mimicking biological membrane. One of the peptides, alamethicin, used as a reference of transmembrane alignment, has been shown to disrupt the lipid bilayer organisation, affecting the DMPC packaging. On the other hand, a α-helix alanine-rich peptide, K3A18K3, with a 15N labelled alanine, did not present any effect in the DMPC bilayer organisation. The mean orientation of this peptide in the bilayer gave a transmembrane alignment of about 80%.  相似文献   

17.
The energetic cost of burying charged groups in the hydrophobic core of lipid bilayers has been controversial, with simulations giving higher estimates than certain experiments. Implicit membrane approaches are usually deemed too simplistic for this problem. Here we challenge this view. The free energy of transfer of amino acid side chains from water to the membrane center predicted by IMM1 is reasonably close to all-atom free energy calculations. The shape of the free energy profile, however, for the charged side chains needs to be modified to reflect the all-atom simulation findings (IMM1-LF). Membrane thinning is treated by combining simulations at different membrane widths with an estimate of membrane deformation free energy from elasticity theory. This approach is first tested on the voltage sensor and the isolated S4 helix of potassium channels. The voltage sensor is stably inserted in a transmembrane orientation for both the original and the modified model. The transmembrane orientation of the isolated S4 helix is unstable in the original model, but a stable local minimum in IMM1-LF, slightly higher in energy than the interfacial orientation. Peptide translocation is addressed by mapping the effective energy of the peptide as a function of vertical position and tilt angle, which allows identification of minimum energy pathways and transition states. The barriers computed for the S4 helix and other experimentally studied peptides are low enough for an observable rate. Thus, computational results and experimental studies on the membrane burial of peptide charged groups appear to be consistent. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.  相似文献   

18.
Nanosecond molecular dynamics simulations in a fully solvated phospholipid bilayer have been performed on single transmembrane alpha-helices from three putative ion channel proteins encoded by viruses: NB (from influenza B), CM2 (from influenza C), and Vpu (from HIV-1). alpha-Helix stability is maintained within a core region of ca. 28 residues for each protein. Helix perturbations are due either to unfavorable interactions of hydrophobic residues with the lipid headgroups or to the need of the termini of short helices to extend into the surrounding interfacial environment in order to form H-bonds. The requirement of both ends of a helix to form favorable interactions with lipid headgroups and/or water may also lead to tilting and/or kinking of a transmembrane alpha-helix. Residues that are generally viewed as poor helix formers in aqueous solution (e.g., Gly, Ile, Val) do not destabilize helices, if located within a helix that spans a lipid bilayer. However, helix/bilayer mismatch such that a helix ends abruptly within the bilayer core destabilizes the end of the helix, especially in the presence of Gly and Ala residues. Hydrogen bonding of polar side-chains with the peptide backbone and with one another occurs when such residues are present within the bilayer core, thus minimizing the energetic cost of burying such side-chains.  相似文献   

19.
The structural properties of the endogenous opioid peptide dynorphin A(1-17) (DynA), a potential analgesic, were studied with molecular dynamics simulations in dimyristoylphosphatidylcholine bilayers. Starting with the known NMR structure of the peptide in dodecylphosphocholine micelles, the N-terminal helical segment of DynA (encompassing residues 1-10) was initially inserted in the bilayer in a perpendicular orientation with respect to the membrane plane. Parallel simulations were carried out from two starting structures, systems A and B, that differ by 4 A in the vertical positioning of the peptide helix. The complex consisted of approximately 26,400 atoms (dynorphin + 86 lipids + approximately 5300 waters). After >2 ns of simulation, which included >1 ns of equilibration, the orientation of the helical segment of DynA had undergone a transition from parallel to tilted with respect to the bilayer normal in both the A and B systems. When the helix axis achieved a approximately 50 degrees angle with the bilayer normal, it remained stable for the next 1 ns of simulation. The two simulations with different starting points converged to the same final structure, with the helix inserted in the bilayer throughout the simulations. Analysis shows that the tilted orientation adopted by the N-terminal helix is due to specific interactions of residues in the DynA sequence with phospholipid headgroups, water, and the hydrocarbon chains. Key elements are the "snorkel model"-type interactions of arginine side chains, the stabilization of the N-terminal hydrophobic sequence in the lipid environment, and the specific interactions of the first residue, Tyr. Water penetration within the bilayer is facilitated by the immersed DynA, but it is not uniform around the surface of the helix. Many water molecules surround the arginine side chains, while water penetration near the helical surface formed by hydrophobic residues is negligible. A mechanism of receptor interaction is proposed for DynA, involving the tilted orientation observed from these simulations of the peptide in the lipid bilayer.  相似文献   

20.
Valproic acid (VPA) is a short, branched fatty acid with broad-spectrum anticonvulsant activity. It has been suggested that VPA acts directly on the plasma membrane. We calculated the free energy of interaction of VPA with a model lipid bilayer using simulated annealing and the continuum solvent model. Our calculations indicate that VPA is likely to partition into the bilayer both in its neutral and charged forms, as expected from such an amphipathic molecule. The calculations also show that VPA may migrate (flip-flop) across the membrane; according to our (theoretical) study, the most likely flip-flop path at neutral pH involves protonation of VPA pending its insertion into the lipid bilayer and deprotonation upon departure from the other side of the bilayer. Recently, the flip-flop of long fatty acids across lipid bilayers was studied using fluorescence and NMR spectroscopies. However, the measured value of the flip-flop rate appears to depend on the method used in these studies. Our calculated value of the flip-flop rate constant, 20/s, agrees with some of these studies. The limitations of the model and the implications of the study for VPA and other fatty acids are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号