首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Extracts of human spleen contain two immunologically distinguishable forms of glucocerebrosidase: form I is precipitable by polyclonal or monoclonal anti-(placental glucocerebrosidase) antibodies, whereas form II is not [Aerts, J. M. F. G., Donker-Koopman, W. E., Van der Vliet, M. F. K., Jonsson, L. M. V., Ginns, E. I., Murray, G. J., Barranger, J. A., Tager, J. M. & Schram, A. W. (1985) Eur. J. Biochem. 150, 565-574]. The proportion of form II glucocerebrosidase was high in extracts of spleen, liver and kidney and low in extracts of brain, placenta and fibroblasts. Furthermore, the proportion of form II enzyme was higher in a detergent-free aqueous extract of spleen than in a Triton X-100 extract of total spleen or splenic membranes. When form II glucocerebrosidase in a splenic extract was separated from form I enzyme by immunoaffinity chromatography and stored at 4 degrees C, a gradual conversion to form I enzyme occurred. The conversion was almost immediate if 30% (v/v) ethylene glycol was present. In the denatured state both forms of glucocerebrosidase reacted with anti-(placental glucocerebrosidase) antibodies. Form I glucocerebrosidase was stimulated by sodium taurocholate or sphingolipid-activator protein 2 (SAP-2), whereas form II enzyme exhibited maximal activity in the absence of the effectors. The pH activity profile of form II glucocerebrosidase was almost identical to that of form I enzyme in the presence of SAP-2. In the native state, form I glucocerebrosidase had a molecular mass of 60 kDa whereas that of form II glucocerebrosidase was about 200 kDa. After gel-permeation high-performance liquid chromatography of splenic extracts, the fractions with form II glucocerebrosidase contained material cross-reacting with both anti-(placental glucocerebrosidase) and anti-(SAP-2) antibodies. Preincubation of form I glucocerebrosidase with SAP-2 at pH 4.5 led to masking of the epitope on glucocerebrosidase reacting with monoclonal anti-(placental glucocerebrosidase) antibody 2C7. Furthermore, preincubation of form I glucocerebrosidase with monoclonal antibody 2C7 prevented activation of the enzyme by SAP-2. We propose that form I glucocerebrosidase is a monomeric form of the enzyme, whereas form II glucocerebrosidase is a high-Mr complex of the enzyme in association with sphingolipid-activator protein 2.  相似文献   

2.
N A Lynch  H Jiang    D T Gibson 《Applied microbiology》1996,62(6):2133-2137
A monoclonal antibody designated 302 beta that is specific for the beta subunit of the oxygenase component (ISPTOL) of toluene dioxygenase from Pseudomonas putida F1 was used to prepare an immunoaffinity column. ISPTOL in cell extracts of Escherichia coli JM109(pDTG611) bound to the column, and an enzyme-linked immunosorbent elution-screening assay with different combinations of polyols and kosmotropic anions was used to determine the conditions necessary for recovery of active enzyme. Elution from an 8-ml antibody column with 50 mM 2-(N-morpholino)ethanesulfonate buffer (pH 6.8) containing 50% ethylene glycol, 1.0 M ammonium sulfate, 1.0 mM dithiothreitol, and 0.2 mM ferrous ammonium sulfate gave approximately 2 mg of ISPTOL with a specific activity that was more than 300 times the specific activity previously obtained.  相似文献   

3.
beta-Glucocerebrosidase, partially purified by the method of F. S. Furbish et al. (1977, Proc. Natl. Acad. Sci. USA 74, 3560-3563), was shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to contain, in addition to the desired enzyme, variable amounts of a very hydrophobic contaminant (apparent Mr 45,000). Purification of the enzyme was accomplished by gel-permeation HPLC on a TSK 3000 SW column (0.7 X 60 cm). Adsorptive losses of protein on the column were minimized by using buffers containing up to 50% ethylene glycol. We have examined the effects of varying the ethylene glycol concentration on the elution times and recoveries of the two major proteins in this preparation. The high reproducibility of the individual chromatograms permitted the use of an automatic sampler and fraction collector to perform multiple, continuous runs for the purification of milligram quantities of enzyme. Multiple runs of a preparative-scale column, TSK G3000 SWG (2.15 X 60 cm), permitted gram-scale purification of beta-glucocerebrosidase without loss in efficiency of separation. Recovery of enzyme activity is greater than 94% with less than 1% contamination by other proteins. Reaction of enzyme prepared in this fashion with rabbit polyclonal antiserum or mouse monoclonal anti-beta-glucocerebrosidase shows the enzyme to be pure and not immunologically related to the 45,000 Mr contaminant. The specific activity of enzyme prepared by this means is 1.6 X 10(6) nmol/h/mg protein. Inclusion of ethylene glycol in buffers was shown to overcome hydrophobic protein interactions with TSK 3000 SW column matrices for both the soluble human lysosomal enzyme alpha-galactosidase A and the plant toxin ricin.  相似文献   

4.
Human serum butyrylcholinesterase (Hu BChE) is the most viable candidate for the prophylactic treatment of organophosphate poisoning. A dose of 200 mg/70 kg is predicted to protect humans against 2× LD50 of soman. Therefore, the aim of this study was to develop procedures for the purification of gram quantities of this enzyme from outdated human plasma or Cohn Fraction IV-4. The purification of Hu BChE was accomplished by batch adsorption on procainamide-Sepharose-CL-4B affinity gel followed by ion-exchange chromatography on a DEAE-Sepharose column. For the purification of enzyme from Cohn Fraction IV-4, it was resuspended in 25 mM sodium phosphate buffer, pH 8.0, and fat was removed by decantation, prior to batch adsorption on procainamide-Sepharose gel. In both cases, the procainamide gel was thoroughly washed with 25 mM sodium phosphate buffer, pH 8.0, containing 0.05 M NaCl, and the enzyme was eluted with the same buffer containing 0.1 M procainamide. The enzyme was dialyzed and the pH was adjusted to 4.0 before loading on the DEAE column equilibrated in sodium acetate buffer, pH 4.0. The column was thoroughly washed with 25 mM sodium phosphate buffer, pH 8.0 containing 0.05 M NaCl before elution with a gradient of 0.05–0.2 M NaCl in the same buffer. The purity of the enzyme following these steps ranged from 20% to 40%. The purity of the enzyme increased to >90% by chromatography on an analytical procainamide affinity column. Results show that Cohn Fraction IV-4 is a much better source than plasma for the large-scale isolation of purified Hu BChE.  相似文献   

5.
The lysosomal enzyme alpha-galactosidase A (alpha-Gal A) metabolizes neutral glycosphingolipids that possess alpha-galactoside residues at the non-reducing terminus, and inherited defects in the activity of alpha-Gal A lead to Fabry disease. We describe here an efficient and rapid purification procedure for recombinant alpha-Gal A by sequential Concanavalin A (Con A)-Sepharose and immobilized thio-alpha-galactoside (thio-Gal) agarose column chromatography. Optimal elution conditions for both columns were obtained using overexpressed human alpha-Gal A. We recommend the use of a mixture of 0.9 M methyl alpha-mannoside and 0.9 M methyl alpha-glucoside in 0.1 M acetate buffer (pH 6.0) with 0.1 M NaCl for the maximum recovery of glycoproteins with multiple high-mannose type sugar chains from Con A column chromatography, and that the Con A column should not be reused for the purification of glycoproteins that are used for structural studies. Binding of the enzyme to the thio-Gal column requires acidic condition at pH 4.8. A galactose-containing buffer (25 mM citrate-phosphate buffer, pH 5.5, with 0.1 M galactose, and 0.1 M NaCl) was used to elute alpha-Gal A. This procedure is especially useful for the purification of mutant forms of alpha-Gal A, which are not stable under conventional purification techniques. A protocol that purifies an intracellular mutant alpha-Gal A (M279I) expressed in COS-7 cells within 6h at 62% overall yield is presented.  相似文献   

6.
The study of the acidic lipid requirement of human spleen glucocerebrosidase was extended to include two new series of acidic lipids, namely, monoacylglycol sulfates and diacylglycerol sulfates. Lysosomal glucocerebrosidase was extracted with sodium cholate and 1-butanol to render its beta-glucosidase activity dependent upon exogenous lipids. Maximum reactivation of control glucocerebrosidase was obtained with nonanoylglycol sulfate (NGS) and diheptanoylglycerol sulfate (DHGS). However, the effects of these lipids were markedly dependent on the nature of buffer used in the assay medium; specifically, 0.2 M sodium citrate-phosphate (pH 5.5) was much more effective than 0.2 M sodium acetate (pH 5.5) in permitting these lipids to reactivate glucocerebrosidase. In contrast, the marked activation of glucocerebrosidase by phosphatidylserine and galactocerebroside 3-sulfate (sulfatide) that was achievable in the sodium acetate buffer was totally inhibited by citrate or phosphate ions. The effects of NGS and DHGS on the kinetic parameters of control glucocerebrosidase were to lower the Km for the substrate, 4-methylumbelliferyl-beta-D-glucoside from 5.5 mM to approximately 2 mM (in sodium citrate-phosphate buffer) and markedly increase the Vmax. Furthermore, with DHGS, significant activation was achieved at concentrations below the lipid's critical micellar concentration. None of the monoacylglycol- or diacylglycerol sulfates were capable of stimulating mutant glucocerebrosidases from either type 1 (Ashkenazi-Jewish) or type 2 Gaucher's disease patients. Like control glucocerebrosidase, the type 1 glucocerebrosidase was unresponsive to phosphatidylserine and sulfatide when the beta-glucosidase assay was conducted in 0.2 M sodium citrate-phosphate buffer. Based on the differential action of these lipid activators in the two buffers and their effects on the mutant enzymes, we propose that, with regard to the lipid requirement of glucocerebrosidase, there are two classes of acidic lipids--one comprised of phosphatidylserine and sulfatide and the other comprised of the likes of NGS, DHGS, or sodium taurodeoxycholate. It appears that control glucocerebrosidase and the mutant enzyme of the patient with type 1 Gaucher's disease is reconstitutable with the first class of lipids whereas the glucocerebrosidase of the type 2 patient is not. The observations in this report are interpreted in terms of a model which postulates that normal glucocerebrosidase possesses at least two distinct lipid binding domains.  相似文献   

7.
Studies on the partition and purification of penicillin acylase from Escherichia coli osmotic shock extract were performed in poly(ethylene glycol)–sodium citrate systems. Partition coefficient behavior of the enzyme and total protein are similar to those described in other reports, increasing with pH and tie line length and decreasing with PEG molecular weight. However, some selectivity could be attained with PEG 1000 systems and long tie line at pH 6.9. Under these conditions 2.6-fold purification with 83% yield were achieved. Influence of pH on partition shows that is the composition of the system and not the net charge of the enzyme that determines the behaviour in these conditions. Addition of NaCl to PEG 3350 systems significantly increases the partition of the enzyme. Although protein partition also increased, purification conditions were possible with 1.5 M NaCl where 5.7-fold purification and 85% yield was obtained. This was possible due to the higher hydrophobicity of the enzyme compared to that of most contaminants proteins.  相似文献   

8.
9.
Chitosan beads were modified with glutaraldehyde and modified chitosan was investigated as matrix for hydrophobic interaction chromatography. The influence of temperature, type of salt and its ionic strength on the adsorption of -galactosidase was studied. -Galactosidase was found to bind in presence of high concentration of ammonium sulphate (3 M, w/v) and 90% of the bound enzyme was eluted with decreasing salt concentration in presence of 10% ethylene glycol. Attempt was made to purify -galactosidase from modified chitosan, -galactosidase showed 1.7-fold purification with 43.96% recovery of enzyme activity. The SDS–PAGE analysis of enzyme showed considerable purification and its molecular weight was found to be 63–64 kDa. Unlike other chromatographic matrices, the prepared chitosan beads were used five times. The results showed that purification and recovery of the enzyme did not change even when column size was increased.  相似文献   

10.
The gene of the sodium-dependent citrate transport system from Klebsiella pneumoniae (citS) is located on plasmid pES3 (Schwarz, E., and Oesterhelt, D. (1985) EMBO J. 4, 1599-1603) and encodes a 446-amino acid protein. Transport of citrate via this citrate transport protein (CitS) is dependent on the presence of sodium ions and is inhibited by magnesium ions. The delta pH (pH gradient across the membrane) is the major driving force for uptake. It is postulated that, in analogy with the proton-dependent citrate carrier (CitH) of K. pneumoniae (van der Rest, M. E., Abee, T., Molenaar, D., and Konings, W. N. (1990) Eur. J. Biochem. 195, 71-77), only one of the protonated species of citrate is recognized by CitS and that citrate is translocated across the membrane in symport with protons and sodium ions. The hydrophobicity profile of CitS suggests that the protein is very hydrophobic and contains 12 membrane-spanning segments. These segments are not centered around a hydrophilic core as has been suggested for other transport proteins, but the protein is asymmetrical with seven transmembrane segments in front of a large hydrophilic loop and five after this loop. The amino acid sequence is highly similar to a citrate transport system of Lactococcus lactis subsp. lactis var. diacetylactis (CitP) (David, S., van der Rest, M. E., Driessen, A. J. M., Simons, G., and de Vos, W. M. (1990) J. Bacteriol. 172, 5789-5794) and less similar to CitH of K. pneumoniae. We conclude that the citS gene of K. pneumoniae encodes a sodium-dependent citrate transport system that belongs to a novel subclass of transport proteins.  相似文献   

11.
Glucocerebrosidase was isolated from bovine brain by cholate extraction, ammonium sulfate fractionation, acid precipitation at pH 5.35, and hydrophobic chromatography. The purification is about 2400-fold with a specific activity of about 286,000 nmole/hr/mg protein. Molecular weight as determined by chromatography on Bio-Gel P-200 was 138,000. On SDS-polyacrylamide gel electrophoresis the enzyme protein resolved into two bands with apparent molecular weights of 63,000 and 56,000. These bands are cross-reactive to monospecific polyclonal antibody to homogeneous human placental glucocerebrosidase. The enzyme was found to be a complex glycoprotein based on its lectin binding specificity. Brain enzyme was found to be similar to placental glucocerebrosidase in its pH optima, heat stability at 52 degrees C, and substrate affinity. Enzyme kinetics were measured in the presence of conduritol-beta-epoxide, an irreversible inhibitor, and gluconolactone, a competitive inhibitor.  相似文献   

12.
Active eukaryotic RNA polymerase II (RNAP II) was purified by immunoaffinity chromatography, using a monoclonal antibody (mAb) that reacts with the highly conserved heptapeptide repeat of the largest subunit. This mAb (designated SWG16) was conjugated to CNBr-activated Sepharose and used to purify RNAP II from wheat germ and calf thymus. The subunit composition of the immunoaffinity-purified enzyme was essentially the same as RNAP II purified by conventional chromatography except that it contained only the form with the unproteolyzed largest subunit. Active enzyme could be eluted from the SWG16-Sepharose, at pH 7.9, with combinations of low molecular weight polyols and nonchaotropic salts. The superior eluting procedure used combinations of ethylene glycol (30-40%) and ammonium sulfate (0.5-0.75 M). Active enzyme also could be eluted with a synthetic peptide containing four repeats of the heptapeptide; however, the peptide was not as effective as the polyol and salt combinations for eluting the enzyme. This mAb should be useful for purifying RNAP II from many eukaryotic species. Because the elution of enzyme from the immunoadsorbent seems to be dependent upon the presence of a polyol, this antibody is referred to as a "polyol-responsive mAb." A procedure that helps to identify a polyol-responsive mAb and to optimize the eluting conditions is described. Polyol-responsive mAbs might have broad applicability to the purification of many labile enzymes by immunoaffinity chromatography.  相似文献   

13.
The Cu,Zn superoxide dismutase from yeast was crystallized in the orthorhombic space group P21212 with unit cell dimension a = 105.1 A,b = 142.2 A, c = 62.1 A. The crystals grow in 25 mM citrate, 10 mM phosphate buffer pH 6.5, and 6% (W/V) polyethylene glycol, with a Vm of 3,4 A3/dalton, for two dimers/asymmetric unit. The crystals were unstable in the mother liquor, but were stabilized by transfer to a 35% polyethylene glycol solution. This crystalline form diffracts at high resolution and is suitable for determination of the atomic structure. The three dimensional structure of the yeast enzyme could be model-built by computer graphics techniques using the bovine enzyme atomic coordinates as template. The proposed model requires removal of some salt bridges and non equivalence of the metal-binding sites in the subunits, in line with reported functional properties of the yeast enzyme.  相似文献   

14.
The potent inhibition of herpes simplex type 1 (HSV-1) DNA polymerase by acyclovir triphosphate has previously been shown to be due to the formation of a dead-end complex upon binding of the next 2'-deoxynucleoside 5'-triphosphate encoded by the template after incorporation of acyclovir monophosphate into the 3'-end of the primer (Reardon, J. E., and Spector, T. (1989) J. Biol. Chem. 264, 7405-7411). This mechanism of inhibition of HSV-1 DNA polymerase has been used here to design an affinity column for the enzyme. A DNA hook template-primer containing an acyclovir monophosphate residue on the 3'-primer terminus has been synthesized and attached to a resin support. In the absence of added nucleotides, the column behaves as a simple DNA-agarose column, and HSV-1 DNA polymerase can be chromatographed using a salt gradient. The presence of the next required nucleotide encoded by the template (dGTP) increases the affinity of HSV-1 DNA polymerase for the acyclovir monophosphate terminal primer-template attached to the resin, and the enzyme is retained even in the presence of 1 M salt. The enzyme can be eluted from the column with a salt gradient after removal of the nucleotide from the buffer. Traditionally, the affinity purification of an enzyme relies on elution by a salt gradient, pH gradient, or more selectively by addition of a competing ligand (substrate/inhibitor) to the elution buffer. In the present example, elution of HSV-1 polymerase is facilitated by removal of the substrate from the buffer. This represents an example of mechanism-based affinity chromatography.  相似文献   

15.
J L Gabriel  G W Plaut 《Biochemistry》1984,23(12):2773-2778
The activity of NAD-dependent isocitrate dehydrogenase from bovine heart was inhibited by NADH (apparent Ki about 4.3 microM) and NADPH (Ki about 9.8 microM) at subsaturating substrate concentrations at pH 7.4. The inhibition by NADH or NADPH was reversed competitively by magnesium isocitrate in the presence of ADP, but not without ADP. Reversal of inhibition by NADH or NADPH with respect to NAD+ was competitive or of the linear mixed type depending on whether ADP was absent or present. ADP3- (0.2 mM) increased the Ki(app) for NADPH from 9.8 to 27.1 microM; further addition of Ca2+ (0.2 mM) raised the Ki(app) to 127 microM. For the modification of NADPH inhibition by ADP, S0.5 for Ca2+ was approximately 48 microM. This compares to the Km for Ca2+ of 0.3-1 microM for the activation of the enzyme without NADPH [Denton, R. M., Richards, D. A., & Chin, J. G. (1978) Biochem. J. 176, 899-906; Aogaichi, T., Evans, J., Gabriel, J., & Plaut, G. W. E. (1980) Arch. Biochem. Biophys. 204, 350-360]. ADP did not affect the Ki for NADH. Magnesium citrate, which was about 100-fold more effective as a positive modifier of the enzyme with ADP than without ADP [Gabriel, J. L., & Plaut, G. W. E. (1983) Fed. Proc., Fed. Am. Soc. Exp. Biol. 42, 2082], reversed competitively the inhibition by NADPH in the presence of ADP, but not without ADP. Magnesium citrate did not reverse NADH inhibition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
An affinity chromatography column packed with nonporous agarose beads derivatized with human growth hormone via carbonyldiimidazol was used for the purification of antibodies against human growth hormone from antiserum. Desorption with 1 M sodium chloride in 60% ethylene glycol at pH 9.8 gave 100% total recovery of the antibodies, as measured by radioimmunoassay. The adsorption/desorption process is discussed in terms of hydrophobic and electrostatic interaction (these interactions may be involved in the bond between antibody and antigen in a cooperative fashion). The binding capacity of the column was estimated at about 50 micrograms of antibodies per gram sedimented agarose beads.  相似文献   

17.
A method is described for a rapid two-step purification of the membrane receptor for epidermal growth factor (EGF) from cultured human A-431 cells. After solubilization of the cells with Triton X-100, the receptor is immobilized on an immunoaffinity column containing a monoclonal antibody directed against the receptor. In the second step of purification, the receptor, eluted from the antibody column, is adsorbed and specifically eluted from a lectin-agarose column. The molecular species obtained is mainly the 170,000-dalton EGF receptor polypeptide. The activity of the pure receptor depends on the conditions used for the desorption from the immunoaffinity beads. High-yield elution is obtained with acidic buffer and the receptor so purified specifically binds EGF, but is devoid of the kinase activity. When the elution is done with alkaline buffers or with buffer containing urea, a fully active receptor kinase is purified (yield of 10%). The pure receptor binds 125I-EGF with a Kd of 4 X 10(-8) M and retains EGF-sensitive protein kinase activity which phosphorylates tyrosine residues on the receptor itself. An additional protocol is described for large-scale purification (yield of 55%) of EGF receptor for the analysis of its primary structure. In this procedure, the EGF receptor is first purified by immunoaffinity chromatography which is followed by preparative gel electrophoresis of the 32P internally labeled receptor to remove minor protein contaminants.  相似文献   

18.
12 S ribonucleoprotein (RNP) particles were separated from a 45 S RNP complex (Bachmann, M., Zahn, R. K. and Müller, W. E. G. (1983) J. Biol. Chem. 258, 7033-7040) isolated from calf thymus and L5178y cells. The particles were determined to be associated with an acidic endoribonuclease (pI 4.1; pH optimum 6.2). the enzyme requires Mg2+ and is sensitively inhibited by higher NaCl concentrations. The nuclease specifically degrades poly(U) and poly(C) in an endonucleolytic manner; the end-products are 3'-UMP (85%) and 2',3'-cyclic UMP (12%). Poly(A) strongly inhibits the pI 4.1 endoribonuclease activity. The Michaelis constant (for poly(U)) was determined as 82 microM and the maximal reaction velocity was 0.54 mumol/microgram per h. The endoribonuclease is distinguished from the known pyrimidine-specific ribonucleases (pancreatic ribonuclease and endoribonuclease VII) by further criteria, e.g., resistance to thiol reagents, inhibition by EDTA, Mg2+ requirement, pI and pH optimum. Using the techniques of counterimmunoelectrophoresis and immunoaffinity column chromatography it was shown that the pI 4.1 endoribonuclease-associated 12 S RNP particles display antigenicity to anti-Sm and anti-(U1)-RNP antibodies. An RNA component, isolated from the 12 S-45 S hypercomplex, was identified as U1-snRNA.  相似文献   

19.
T T Allgyer  M A Wells 《Biochemistry》1979,18(24):5348-5353
Phospholipase D has been purified 680-fold from an acetone powder of savoy cabbage in an overall yield of 30%. The purification involves solubilization of the acetone powder in a Ca2+-containing buffer and subsequent ammonium sulfate fractionation. Gel filtration on Sephadex G-200 and hydrophobic affinity chromatography using a gamma-aminopropane-agarose gel complete the purification. The two chromatographic steps were conducted in buffers containing 50% ethylene glycol, which was necessary in order to maintain stability of the enzyme. Purity was established on the basis of gel electrophoresis and ultracentrifugation. A preliminary kinetic characterization of the enzyme was carried out by using lecithins with short-chain fatty acids below the critical micelle concentration. A complex series of results were obtained which demonstrated the following. (1) The enzyme is quite sensitive to ionic strength, being inhibited at high ionic strength. (2) The pH optimum depends on the concentration of Ca2+ used in the assay. At 0.5 mM Ca2+ the pH optimum is 7.25, but it is 6.0 at 50 mM Ca2+. (3) The effect of substrate concentration at a given pH and ionic strength did not show simple hyperbolic kinetics but rather regions of parabolic and hyperbolic kinetics.  相似文献   

20.
The technique of affinity chromatography has been used in the partial purification of complementable fractions and complemented enzyme of β-galactosidase from Escherichia coli mutant M15. The crude extract of mutant ML5 was incubated with fragment CM-B. The complemented enzyme and complementable fractions were passed through a small column of p-amino-phenyl-β-D-thiogalactoside to which inhibitors had been covalently attached. A high percentage of the nonspecific protein passed directly through the affinity column while the specific enzymatic protein remained bound to the gel. Phosphate buffer with NaCl was used to elute the complementable fractions from the column. Sodium borate buffer was used to elute the bound complemented enzyme from the affinity support. The results of this study show that 100% of the complemented enzyme was bound to the column. The partially purified enzyme had the same position in disc gel electrophoresis as β-galactosidase from E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号