首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
We have investigated nine children with infantile onset of mitochondrial myopathy and two adults with myoclonus epilepsy and ragged-red fibers (MERRF) and chronic progressive external ophthalmoplegia (CPEO), respectively. These patients lacked any of the previously known pathogenic tRNA mutations. Southern blot analysis of muscle mtDNA revealed no deletions. The tRNA genes of muscle mtDNA were sequenced. Restriction enxyme analysis of PCR fragments was performed to verify the presence of the mutations identified by automatic sequencing. Several tRNA mutations were found, but they were all homoplasmic. Furthermore, the mutations were either present in controls or did not change nucleotides conserved between species. This strongly suggests that none of the tRNA mutations identified in the 11 patients with mitochondrial encephalomyopathy was pathogenic. It can thus be concluded that mitochondrial tRNA mutations and mtDNA deletions probably are an infrequent cause of mitochondrial disorders in infants. Patients with MERRF and CPEO may lack both pathogenic point mutations of tRNA genes and deletions of mtDNA.  相似文献   

4.
We have sequenced the tRNA genes of mtDNA from patients with chronic progressive external ophthalmoplegia (CPEO) without detectable mtDNA deletions. Four point mutations were identified, located within highly conserved regions of mitochondrial tRNA genes, namely tRNA(Leu)(UAG), tRNA(Ser)(GCU), tRNA(Gly) and tRNA(Lys). One of these mutations (tRNA(Leu)(UAG)) was found in four patients with different forms of mitochondrial myopathy. An accumulation of three different tRNA point mutations (tRNA(Leu)(UAG)), tRNA(Ser)(GCU) and tRNA(Gly) was observed in a single patient, suggesting that mitochondrial tRNA genes represent hotspots for point mutations causing neuromuscular diseases.  相似文献   

5.
We have sequenced the mitochondrial DNA (mtDNA) of Hyaloraphidium curvatum, an organism previously classified as a colorless green alga but now recognized as a lower fungus based on molecular data. The 29.97-kbp mitochondrial chromosome is maintained as a monomeric, linear molecule with identical, inverted repeats (1.43 kbp) at both ends, a rare genome architecture in mitochondria. The genome encodes only 14 known mitochondrial proteins, 7 tRNAs, the large subunit rRNA and small subunit rRNA (SSU rRNA), and 3 ORFs. The SSU rRNA is encoded in two gene pieces that are located 8 kbp apart on the mtDNA. Scrambled and fragmented mitochondrial rRNAs are well known from green algae and alveolate protists but are unprecedented in fungi. Protein genes code for apocytochrome b; cytochrome oxidase 1, 2, and 3, NADH dehydrogenase 1, 2, 3, 4, 4L, 5, and 6, and ATP synthase 6, 8, and 9 subunits, and several of these genes are organized in operon-like clusters. The set of seven mitochondrially encoded tRNAs is insufficient to recognize all codons that occur in the mitochondrial protein genes. When taking into account the pronounced codon bias, at least 16 nuclear-encoded tRNAs are assumed to be imported into the mitochondria. Three of the seven predicted mitochondria-encoded tRNA sequences carry mispairings in the first three positions of the acceptor stem. This strongly suggests that these tRNAs are edited by a mechanism similar to the one seen in the fungus Spizellomyces punctatus and the rhizopod amoeba Acanthamoeba castellanii. Our phylogenetic analysis confirms with overwhelming support that H. curvatum is a member of the chytridiomycete fungi, specifically related to the Monoblepharidales.  相似文献   

6.
Mitochondrial DNA sequences are often used to construct molecular phylogenetic trees among closely related animals. In order to examine the usefulness of mtDNA sequences for deep-branch phylogenetics, genes in previously reported mtDNA sequences were analyzed among several animals that diverged 20–600 million years ago. Unambiguous alignment was achieved for stem-forming regions of mitochondrial tRNA genes by virtue of their conservative secondary structures. Sequences derived from stem parts of the mitochondrial tRNA genes appeared to accumulate much variation linearly for a long period of time: nearly 100 Myr for transition differences and more than 350 Myr for transversion differences. This characteristic could be attributed, in part, to the structural variability of mitochondrial tRNAs, which have fewer restrictions on their tertiary structure than do nonmitochondrial tRNAs. The tRNA sequence data served to reconstruct a well-established phylogeny of the animals with 100% bootstrap probabilities by both maximum parsimony and neighbor joining methods. By contrast, mitochondrial protein genes coding for cytochrome b and cytochrome oxidase subunit I did not reconstruct the established phylogeny or did so only weakly, although a variety of fractions of the protein gene sequences were subjected to tree-building. This discouraging phylogenetic performance of mitochondrial protein genes, especially with respect to branches originating over 300 Myr ago, was not simply due to high randomness in the data. It may have been due to the relative susceptibility of the protein genes to natural selection as compared with the stem parts of mitochondrial tRNA genes. On the basis of these results, it is proposed that mitochondrial tRNA genes may be useful in resolving deep branches in animal phylogenies with divergences that occurred some hundreds of Myr ago. For this purpose, we designed a set of primers with which mtDNA fragments encompassing clustered tRNA genes were successfully amplified from various vertebrates by the polymerase chain reaction.Abbreviations AA stem amino acid-acceptor stem - AC stem anticodon stem - COI cytochrome oxidase subunit I - cytb cytochrome b - D stem dihydrouridine stem - MP maximum parsimony - mtDNA mitochondrial DNA - Myr million years - NJ neighbor joining - PCR polymerase chain reaction - Ti transition - T stem tC stem - Tv transversion Correspondence to: Y. Kumazawa  相似文献   

7.
In most eukaryotes, transfer RNAs (tRNAs) are one of the very few classes of genes remaining in the mitochondrial genome, but some mitochondria have lost these vestiges of their prokaryotic ancestry. Sequencing of mitogenomes from the flowering plant genus Silene previously revealed a large range in tRNA gene content, suggesting rapid and ongoing gene loss/replacement. Here, we use this system to test longstanding hypotheses about how mitochondrial tRNA genes are replaced by importing nuclear-encoded tRNAs. We traced the evolutionary history of these gene loss events by sequencing mitochondrial genomes from key outgroups (Agrostemma githago and Silene [=Lychnis] chalcedonica). We then performed the first global sequencing of purified plant mitochondrial tRNA populations to characterize the expression of mitochondrial-encoded tRNAs and the identity of imported nuclear-encoded tRNAs. We also confirmed the utility of high-throughput sequencing methods for the detection of tRNA import by sequencing mitochondrial tRNA populations in a species (Solanum tuberosum) with known tRNA trafficking patterns. Mitochondrial tRNA sequencing in Silene revealed substantial shifts in the abundance of some nuclear-encoded tRNAs in conjunction with their recent history of mt-tRNA gene loss and surprising cases where tRNAs with anticodons still encoded in the mitochondrial genome also appeared to be imported. These data suggest that nuclear-encoded counterparts are likely replacing mitochondrial tRNAs even in systems with recent mitochondrial tRNA gene loss, and the redundant import of a nuclear-encoded tRNA may provide a mechanism for functional replacement between translation systems separated by billions of years of evolutionary divergence.  相似文献   

8.
Peptide elongation proceeds by tRNA anticodons recognizing mRNA codons coding for the tRNA's cognate amino acid. Putatively, tRNAs possess three anticodons because tRNA side and anticodon-arms form similar stem-loop structures. Two lines of evidence indicate that mammal mitochondrial tRNA sidearms function as anticodons: numbers of TΨC-arm ‘anticodons’ matching specific cognates coevolve with that cognate's usage in mitochondrial genomes; and predicted ‘tetragene’ numbers, genes coded by quadruplet codons (tetracodons), coevolve with numbers of expanded anticodons in D-arms, as previously observed between tetragenes and antisense tRNA expanded anticodons. Sidearms with long stems and high GC contents contribute most to tRNA sidearm-tetragene coevolution. Results are compatible with two hypothetical mechanisms for translation by side-arms: crossovers exchange anticodon- and side-arms; tRNA sidearms are excised, aminoacylated and function as isolated stem-loop hairpins (more probable for long, respectively stable branches). Isolated sidearms would resemble recently described armless ‘minimal’ tRNAs. Isolated hairpins might most parsimoniously explain observed patterns. tRNA genes templating for three, rather than one functional tRNA, compress minimal genome size. Results suggest fused tRNA halves form(ed) modern tRNAs, isolated tRNA subparts occasionally translate proteins. Results confirm translational activity by antisense tRNAs, whose anticodons also coevolve with codon usages. Accounting for antisense anticodons improves results for sidearm anticodons.  相似文献   

9.
10.
Two methionine tRNAs from yeast mitochondria have been purified. The mitochondrial initiator tRNA has been identified by formylation using a mitochondrial enzyme extract. E. coli transformylase however, does not formylate the yeast mitochondrial initiator tRNA. The sequence was determined using both 32P-in vivo labeled and 32P-end labeled mt tRNAf(Met). This tRNA, unlike N. crassa mitochondrial tRNAf(Met), has two structural features typical of procaryotic initiator tRNAs: (i) it lacks a Watson-Crick base-pair at the end of the acceptor stem and (ii) has a T-psi-C-A sequence in loop IV. However, both yeast and N. crassa mitochondrial initiator tRNAs have a U11:A24 base-pair in the D-stem unlike procaryotic initiator tRNAs which have A11:U24. Interestingly, both mitochondrial initiator tRNAs, as well as bean chloroplast tRNAf(Met), have only two G:C pairs next to the anticodon loop, unlike any other initiator tRNA whatever its origin. In terms of overall sequence homology, yeast mitochondrial tRNA(Met)f differs from both procaryotic or eucaryotic initiator tRNAs, showing the highest homology with N. crassa mitochondrial initiator tRNA.  相似文献   

11.
Recent analyses have shown that nonsynonymous variation in human mitochondrial DNA (mtDNA) contains nonneutral variants, suggesting the presence of mildly deleterious mutations. Many of the disease-causing mutations in mtDNA occur in the genes encoding the tRNAs. Nucleotide sequence variation in these genes has not been studied in human populations, nor have the structural consequences of nucleotide substitutions in tRNA molecules been examined. We therefore determined the nucleotide sequences of the 22 tRNA genes in the mtDNA of 477 Finns and, also, obtained 435 European sequences from the MitoKor database. No differences in population polymorphism indices were found between the two data sets. We assessed selective constraints against various tRNA domains by comparing allele frequencies between these domains and the synonymous and nonsynonymous sites, respectively. All tRNA domains except the variable loop were more conserved than synonymous sites, and T stem and D stem were more conserved than the respective loops. We also analyzed the energetic consequences of the 96 polymorphisms recovered in the two data sets or in the Mitomap database. The minimum free energy (ΔG) was calculated using the free energy rules as implemented in mfold version 3.1. The ΔG’s were normally distributed among the 22 wild-type tRNA genes, whereas the 96 polymorphic tRNAs departed significantly from a normal distribution. The largest differences in ΔG between the wild-type and the polymorphic tRNAs in the Finnish population tended to be in the polymorphisms that were present at low frequencies. Allele frequency distributions and minimum free energy calculations both suggested that some polymorphisms in tRNA genes are nonneutral.Reviewing Editor: Dr. Rüdiger Cerff  相似文献   

12.
Fractionation (by two-dimensional polyacrylamide gel electrophoresis) of total tRNA from wheat chloroplasts yields about 33 RNA spots. Of these, 30 have been identified by aminoacylation as containing tRNAs specific for 17 amino acids. Hybridization of labeled individual tRNAs to cloned chloroplast DNA fragments has revealed the location of at least nine pairs of tRNA genes in the segments of the inverted repeat, at least twelve tRNA genes in the large single copy region and one tRNA gene in the small single copy region. A comparison of this wheat chloroplast tRNA gene map to that of maize and of other higher plants suggests that gene rearrangements have occurred during evolution, even within cereal chloroplast DNA. These rearrangements have taken place within the inverted repeat, within the large single copy region and between the inverted repeat and the large single copy region.  相似文献   

13.
The TRM5 gene encodes a tRNA (guanine-N1-)-methyltransferase (Trm5p) that methylates guanosine at position 37 (m(1)G37) in cytoplasmic tRNAs in Saccharomyces cerevisiae. Here we show that Trm5p is also responsible for m(1)G37 methylation of mitochondrial tRNAs. The TRM5 open reading frame encodes 499 amino acids containing four potential initiator codons within the first 48 codons. Full-length Trm5p, purified as a fusion protein with maltose-binding protein, exhibited robust methyltransferase activity with tRNA isolated from a Delta trm5 mutant strain, as well as with a synthetic mitochondrial initiator tRNA (tRNA(Met)(f)). Primer extension demonstrated that the site of methylation was guanosine 37 in both mitochondrial tRNA(Met)(f) and tRNA(Phe). High pressure liquid chromatography analysis showed the methylated product to be m(1)G. Subcellular fractionation and immunoblotting of a strain expressing a green fluorescent protein-tagged version of the TRM5 gene revealed that the enzyme was localized to both cytoplasm and mitochondria. The slightly larger mitochondrial form was protected from protease digestion, indicating a matrix localization. Analysis of N-terminal truncation mutants revealed that a Trm5p active in the cytoplasm could be obtained with a construct lacking amino acids 1-33 (Delta1-33), whereas production of a Trm5p active in the mitochondria required these first 33 amino acids. Yeast expressing the Delta1-33 construct exhibited a significantly lower rate of oxygen consumption, indicating that efficiency or accuracy of mitochondrial protein synthesis is decreased in cells lacking m(1)G37 methylation of mitochondrial tRNAs. These data suggest that this tRNA modification plays an important role in reading frame maintenance in mitochondrial protein synthesis.  相似文献   

14.
Some rRNA operons in E. coli have tRNA genes at their distal ends.   总被引:25,自引:0,他引:25  
We have previously isolated seven rRNA operons on plasmids or lambda transducing phages and identified various tRNAs encoded by these operons. Each of the seven operons has one of two different spacer tRNA gene arrangements between the genes for 16S and 23S rRNA: either tRNAGlu2 or both tRNAIle1 and tRNAAla1B genes. In addition, various tRNA genes are located at or near the distal ends of rRNA operons. In particular, genes for tRNATrp and tRNAAsp1 are located at the distal end of rrnC at 83 min on the E. coli chromosome. Experiments with various hybrid plasmids, some of which lack the rRNA promoter, have now demonstrated that this promoter is necessary for expression of the distal tRNA genes. Rifampicin run-out experiments have also provided evidence that the tRNATrp gene is located farther from its promoter than the spacer tRNA gene or the 5S RNA gene. These results confirm the localization of genes for tRNATrp and tRNAAsp1 at the distal end of rrnC and strongly suggest that they are co-transcribed with the genes for 16S, tRNAGlu2, 23S and 5S RNA. Other such distal tRNAs have been identified, and it is suggested that they too are part of rRNA operons.  相似文献   

15.
We have identified genes encoding a "native" tRNA(Asp) (trnD-GTC) and a "chloroplast-like" tRNA(Asn) (trnN-GTT) on opposite strands and 633 bp apart within a sequenced 1640 bp RsaI restriction fragment of wheat mtDNA. The trnD gene has been found previously at a different location in wheat mtDNA (P.B.M. Joyce et al. (1988) Piant Mol. Biol. 11, 833-843); the duplicate copies of this gene are identical within the coding and immediate flanking regions (9 bp downstream and at least 68 bp upstream), after which obvious sequence similarity abruptly disappears. The trnN gene is identical to its homolog in maize ctDNA; continuation of sequence similarity beyond the coding region suggests that this gene originated as promiscuous ctDNA that is now part of the wheat mitochondrial genome. In the course of this work, we have encountered some unexpected similarities between tRNA gene regions from wheat mitochondria and other sources. Detailed analysis of these similarities leads us to suggest that trnN genes reportedly from petunia nuclear DNA (N. Bawnik et al. (1983) Nucleic Acids Res. 11, 1117-1122) and lupine mtDNA (B. Karpińska and H. Augustyniak (1988) Nucleic Acids Res. 16, 6239) are, in fact, from petunia mtDNA and lupine ctDNA, respectively, whereas a putative wheat nuclear tRNA(Ser) (trnS-TGA) gene (Z. Szwekowska-Kulińska et al. (1989) Gene 77, 163-167) is actually from wheat mtDNA. In these instances, it seems probable that the DNA samples used for cloning contained trace amounts of DNA from another sub-cellular compartment, leading to the inadvertent selection of spurious clones.  相似文献   

16.
Over 450 transfer RNA (tRNA) genes have been annotated in the human genome. Reliable quantitation of tRNA levels in human samples using microarray methods presents a technical challenge. We have developed a microarray method to quantify tRNAs based on a fluorescent dye-labeling technique. The first-generation tRNA microarray consists of 42 probes for nuclear encoded tRNAs and 21 probes for mitochondrial encoded tRNAs. These probes cover tRNAs for all 20 amino acids and 11 isoacceptor families. Using this array, we report that the amounts of tRNA within the total cellular RNA vary widely among eight different human tissues. The brain expresses higher overall levels of nuclear encoded tRNAs than every tissue examined but one and higher levels of mitochondrial encoded tRNAs than every tissue examined. We found tissue-specific differences in the expression of individual tRNA species, and tRNAs decoding amino acids with similar chemical properties exhibited coordinated expression in distinct tissue types. Relative tRNA abundance exhibits a statistically significant correlation to the codon usage of a collection of highly expressed, tissue-specific genes in a subset of tissues or tRNA isoacceptors. Our findings demonstrate the existence of tissue-specific expression of tRNA species that strongly implicates a role for tRNA heterogeneity in regulating translation and possibly additional processes in vertebrate organisms.  相似文献   

17.
The genetic code describes translational assignments between codons and amino acids. tRNAs and aminoacyl-tRNA synthetases (aaRSs) are those molecules by means of which these assignments are established. Any aaRS recognizes its tRNAs according to some of their nucleotides called identity elements (IEs). Let a 1Mut-similarity Sim (1Mut) be the average similarity between such tRNA genes whose codons differ by one point mutation. We showed that: (1) a global maximum of Sim (1Mut) is reached at the standard genetic code 27 times for 4 sets of IEs of tRNA genes of eukaryotic species, while it is so only 5 times for similarities Sim (C&R) between all tRNA genes whose codons lie in the same column or row of the code. Therefore, point mutations of anticodons were tested by nature to recruit tRNAs from one isoaccepting group to another, (2) because plain similarities Sim (all) between tRNA genes of species within any of the three domains of life are higher than between tRNA genes of species belonging to different domains, tRNA genes retained information about early evolution of cells, (3) we searched the order of tRNAs in which they were most probably assigned to their codons and amino acids. The beginning Ala, (Val), Pro, Ile, Lys, Arg, Trp, Met, Asp, Cys, (Ser) of our resulting chronology lies under a plateau on a graph of Sim (1Mut,IE)(univ.ancestors) plotted over this chronology for a set S(IE) of all IEs of tRNA genes, whose universal ancestors were separately computed for each codon. This plateau has remained preserved along the whole line of evolution of the code and is consistent with observations of Ribas de Pouplana and Schimmel [2001. Aminoacy1-tRNA synthetases: potential markers of genetic code development. Trends Biochem. Sci. 26, 591-598] that specific pairs of aaRSs-one from each of their two classes-can be docked simultaneously onto the acceptor stem of tRNA and hence an interaction existed between their ancestors using a reduced code, (4) sharpness of a local maximum of Sim (1Mut) at the standard code is almost 100% along our chronologies.  相似文献   

18.
Two cytoplasmic "petite" (rho-) clones of Saccharomyces cerevisiae have been selected for the retention of the aspartic acid tRNA gene. The two clones, designated DS200/A102 and DS200/A5, have tandemly repeated segments of mitochondrial DNA (mtDNA) with unit lengths of 1,000 and 6,400 base pairs, respectively. The DS200/A102 genome has a single tRNA gene with a 3'-CUG-5' anticodon capable of recognizing the 5'-GAC-3' and 5'-GAU-3' codons for aspartic acid. The mtDNA segment of DS200/A102 has been determined to represent the wild type sequence from 5.3 to 6.8 map units. The genome of DS200/A5 is more complex encompassing the region of wild type mtDNA from 3.5 to 12.7 units. A continuous sequence has been obtained from 3.5 to 8.6 units. In addition to the aspartic acid tRNA, this region codes for the tRNAUGCAla,tRNAUCUArg, tRNAACGArg, tRNAGCUSer,tRNAUCCGly and tRNAUUULys. The DNA sequence of the DS200/A5 genome has allowed us to deduce the secondary structures of the seven tRNAs and to assign precise map positions for their genes. All the tRNAs except tRNA GUCAsp exhibit most of the invariant features of prokaryotic and eukaryotic tRNAs. The aspartic acid tRNA has unusual D and T psi C loops. The structure of this tRNA is similar to the mitochondrial initiator tRNA of Neurospora crassa (Heckman, J.E., Hecker, L.I., Shwartzbach, S.D., Barnett, W.E., Baumstark, B., and RajBhandary, U.L. Cell 13, 83-95).  相似文献   

19.
Genes for tRNAgly and tRNAserUCN have been identified within sequences of mtDNA of Drosophila yakuba. The tRNAgly gene lies between the genes for cytochrome c oxidase subunit III and URF3, and all three of these genes are contained in the same strand of the mtDNA molecule. The tRNAserUCN gene is adjacent to the URF1 gene. These genes are contained in opposite strands of the mtDNA molecule and their 3' ends overlap. The structures of the tRNAgly and tRNAserUCN genes, and of the four tRNA genes of D. yakuba mtDNA reported earlier (tRNAile, tRNAgln, tRNAf-met and tRNAval) are compared to each other, to non-organelle tRNAs, and to corresponding mammalian mitochondrial tRNA genes. Within 19 nucleotides upstream from the 5' terminal nucleotide of each of the Drosophila mitochondrial tRNAgly, tRNAserUCN, tRNAile, tRNAgln and tRNAf-met genes occurs the sequence 5'TTTATTAT, or a sequence differing from it by one nucleotide substitution. Upstream from this octanucleotide sequence, and separated from it by 3, 4 and 11 nucleotides, respectively, in the 5' flanking regions of the tRNAile, tRNAserUCN and tRNAgly genes occurs the sequence 5'GATGAG.  相似文献   

20.
We have obtained collections of recombinant Escherichia coli plasmids containing restriction fragments of Neurospora crassa mitochondrial DNA cloned into pBR322. By hybridization of 32P end-labeled total mitochondrial tRNAs and seven different purified tRNAs to restriction digests of mitochondrial DNA and of recombinant plasmids carrying specific restriction fragments, we have located the tRNA genes on the mitochondrial DNA. We have found that the mitochondrial tRNA genes are present in two major clusters, one between the two ribosomal RNA genes and the second closely following the large rRNA gene. Only one of the two DNA strands within these clusters codes for tRNAs. All of the genes for the seven specific purified tRNAs examined--those for alanine, formylmethionine, leucine 1, leucine 2, threonine, tyrosine, and valine--lie within these clusters. Interestingly, the formylmethionine tRNA hybridizes to two loci within one of these gene clusters. We have obtained a fairly detailed restriction map of part of this cluster and have shown that the two "putative" genes for formylmethionine tRNA are not arranged in tandem but are separated by more than 900 base pairs and by at least two other tRNA genes, those for alanine and for leucine 1 tRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号