首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Binding of human lipoproteins to cultured mouse Ob17 preadipose and adipose cells was studied, using labeled VLDL, LDL and apoprotein E-free HDL. In each case, saturation curves were obtained, yielding linear Scatchard plots. The Kd values were found to be respectively 6.4, 31 and 24 micrograms/ml for VLDL, LDL and apoprotein E-free HDL, whereas the maximal numbers of binding sites per cell were 4.2 X 10(4), 1.5 X 10(4) and 2.5 X 10(5). The binding of 125I-LDL was competitively inhibited by LDL greater than VLDL greater than total HDL; human LDL and mouse LDL were equipotent in competition assays. Methylated LDL and apoprotein E-free HDL were not competitors. In contrast, the binding of 125I-apoprotein E-free HDL was competitively inhibited by apoprotein E-free HDL greater than total HDL and the binding of 125I-HDL3 by mouse HDL. Thus, mouse adipose cells possess distinct apoprotein B, E and apoprotein E-free HDL binding sites which can recognize heterologous or homologous lipoproteins. The cell surface receptor of LDL in mouse preadipose cells shows similarities with that described for human fibroblasts, since: (1) the LDL binding initiated the process of internalization and degradation of the apoprotein B and apoprotein E-containing lipoproteins; (2) receptor-mediated uptake of cholesterol LDL led to a parallel but incomplete decrease in the [14C]acetate incorporation into cholesterol and in the activity of HMG-CoA reductase. Growing (undifferentiated) or growth-arrested cells (differentiated or not) showed no significant changes in the Kd values for lipoprotein binding. In contrast, the maximal number of binding sites correlated with the proliferative state of the cells and was independent of cell differentiation. The results are discussed with respect to cholesterol accumulation in adipose cells.  相似文献   

2.
The role of a high-affinity receptor site for high-density lipoproteins (HDL) has been investigated in parental Ob1771 adipose cells and their transformed counterparts after transfer of the complete early region of polyoma virus (Ob17PY cells). Binding of ApoAI, ApoAII and HDL3 occurs in Ob1771 cells and derived membranes, whereas no binding is observed in Ob17PY cells and derived membranes. After thymidine block, growth-arrested Ob17PY cells become able to bind ApoAI, ApoAII and HDL3; this recovery is prevented in actinomycin D- or cycloheximide-treated cells. In contrast to ApoAI, ApoAII or HDL3 binding, both growing and growth-arrested Ob17PY cells do show receptor activities for low density lipoproteins and transferrin, respectively, which are similar in affinity and maximal capacity. Following cholesterol accumulation which takes place in the presence of LDL cholesterol, subsequent exposure to HDL3 or ApoAI promotes cholesterol efflux from Ob1771 cells and growth-arrested Ob17PY cells but not from growing Ob17PY cells. These results show that the presence of a high-affinity receptor site for HDL in intact adipose cells is required for the promotion of reverse cholesterol transport.  相似文献   

3.
Rat plasma low- and high-density lipoproteins were labeled with [3H]cholesteryl linoleyl ether and isolated by rate-zonal ultracentrifugation into apolipoprotein B-containing LDL, apolipoprotein E-containing HDL1 and apolipoprotein E-poor HDL2. These fractions were incubated with cultured rat hepatocytes and comparable amounts of all lipoproteins were taken up by the cells. Rat HDL was isolated at d 1.085-1.21 g/ml and apolipoprotein E-free HDL was prepared by heparin Sepharose chromatography. The original HDL and the apolipoprotein E-free HDL were labeled with 125I or with [3H]cholesteryl linoleyl ether and incubated with rat hepatocytes or adrenal cells in culture. The uptake of apolipoprotein E-free [3H]cholesterol linoleyl ether HDL by the cultured hepatocytes was 20-40% more than that of the original HDL. Comparison of uptake of cholesteryl ester moiety (represented by uptake of [3H]cholesteryl linoleyl ether) and of protein moiety (represented by metabolism of 125I-labeled protein) was carried out using both original and apolipoprotein E-free HDL. In experiments in which low concentrations of HDL were used, the ratio of 3H/125I exceeded 1.0. In cultured adrenal cells, the uptake of [3H]cholesteryl linoleyl ether-labeled HDL was stimulated 3-6-fold by 1 X 10(-7) M ACTH, while the uptake of 125I-labeled HDL increased about 2-fold. The ratio of 3H/125I representing cellular uptake was 2-3 and increased to 5 in ACTH-treated cells. The present results indicate that in cultured rat hepatocytes the uptake of homologous HDL does not depend on the presence of apolipoprotein E. Evidence was also presented for an uptake of cholesteryl ester independent of protein uptake in cultured rat adrenal cells and to a lesser extent in rat hepatocytes.  相似文献   

4.
The interaction of human serum high density lipoproteins (HDL) with mouse peritoneal macrophages and human blood monocytes was studied. Saturation curves for binding of apolipoprotein E-free [125I]HDL3 showed at least two components: non-specific binding and specific binding that saturated at approximately 40 micrograms HDL protein/ml. Scatchard analysis of specific binding of apo E-free [125I]-HDL3 to cultured macrophages yielded linear plots indicative of a single class of specific binding sites. Pretreatment of [125I]HDL3 with various apolipoprotein antibodies (anti apo A-I, anti apo A-II, anti apo C-II, anti apo C-III and anti apo E) and preincubation of the cells with anti-idiotype antibodies against apo A-I and apo A-II prior to the HDL binding studies revealed apolipoprotein A-I as the ligand involved in specific binding of HDL. Cellular cholesterol accumulation via incubation with acetylated LDL led to an increase in HDL binding sites as well as an increase in the activity of the cytoplasmic cholesterol esterifying enzyme acyl-CoA:cholesterol acyltransferase (ACAT). Incubation of the cholesterol-loaded cells in the presence of various ACAT inhibitors (Sandoz 58.035, Octimibate-Nattermann, progesterone) revealed a time- and dose-dependent amplification in HDL binding and HDL-mediated cholesterol efflux. It is concluded that the homeostasis of cellular cholesterol in macrophages is regulated in part by the number of HDL binding sites and that ACAT inhibitors enhance HDL-mediated cholesterol efflux from peripheral cells.  相似文献   

5.
The catabolism of human HDL was studied in human hepatoma cell line HepG2. The binding of 125I-labeled HDL at 4 degrees C was time-dependent and reached completion within 2 h. The observed rates of binding of 125I-labeled HDL at 4 degrees C and uptake and degradation at 37 degrees C indicated the presence of both high-affinity and low-affinity binding sites for this lipoprotein density class. The specific binding of 125I-labeled HDL accounted for 55% of the total binding capacity. The lysosomal degradation of 125I-labeled HDL was inhibited 25 and 60% by chloroquine at 50 and 100 microM, respectively. Depolymerization of microtubules by colchicine (1 microM) inhibited the degradation of 125I-labeled HDL by 36%. Incubation of cells with HDL caused no significant change in the cellular cholesterol content or in the de novo sterol synthesis and cholesterol esterification. Binding and degradation of 125I-labeled HDL was not affected by prior incubation of cells with HDL. When added at the same protein concentration, unlabeled VLDL, LDL and HDL had similar inhibitory effects on the degradation of 125I-labeled HDL, irrespective of a short or prolonged incubation time. Reductive methylation of unlabeled HDL had no significant effect on its capacity to inhibit the 125I-labeled HDL degradation. The competition study indicated no correlation between the concentrations of apolipoproteins A-I, A-II, B, C-II, C-III, E and F in VLDL, LDL and HDL and the inhibitory effect of these lipoprotein density classes on the degradation of 125I-labeled HDL. There was, however, some association between the inhibitory effect and the levels of apolipoprotein D and C-I.  相似文献   

6.
Primary cultures of rabbit hepatocytes which were preincubated for 20 h in a medium containing lipoprotein-deficient serum subsequently bound, internalized and degraded 125I-labeled high-density lipoproteins2 (HDL2). The rate of degradation of HDL2 was constant in incubations from 3 to 25 h. As the concentration of HDL2 in the incubation medium was increased, binding reached saturation. At 37 degrees C, half-maximal binding (Km) was achieved at a concentration of 7.3 micrograms of HDL2 protein/ml (4.06 X 10(-8)M) and the maximum amount bound was 476 ng of HDL2 protein/mg of cell protein. At 4 degrees C, HDL2 had a Km of 18.6 micrograms protein/ml (1.03 X 10(-7)M). Unlabeled low-density lipoproteins (LDL) inhibited only at low concentrations of 125I-labeled HDL2. Quantification of 125I-labeled HDL2 binding to a specific receptor (based on incubation of cells at 4 degrees C with and without a 50-fold excess of unlabeled HDL) yielded a dissociation constant of 1.45 X 10(-7)M. Excess HDL2 inhibited the binding of both 125I-labeled HDL2 and 125I-labeled HDL3, but excess HDL3 did not affect the binding of 125I-labeled HDL3. Preincubation of hepatocytes in the presence of HDL resulted in only a 40% reduction in specific HDL2 receptors, whereas preincubation with LDL largely suppressed LDL receptors. HDL2 and LDL from control and hypercholesterolemic rabbits inhibited the degradation of 125I-labeled HDL2, but HDL3 did not. Treatment of HDL2 and LDL with cyclohexanedione eliminated their capacity to inhibit 125I-labeled HDL2 degradation, suggesting that apolipoprotein E plays a critical role in triggering the degradative process. The effect of incubation with HDL on subsequent 125I-labeled LDL binding was time-dependent: a 20 h preincubation with HDL reduced the amount of 125I-labeled LDL binding by 40%; there was a similar effect on LDL bound in 6 h but not on LDL bound in 3 h. The binding of 125I-labeled LDL to isolated liver cellular membranes demonstrated saturation kinetics at 4 degrees C and was inhibited by EDTA or excess LDL. The binding of 125I-labeled HDL2 was much lower than that of 125I-labeled LDL and was less inhibited by unlabeled lipoproteins. The binding of 125I-labeled HDL3 was not inhibited by any unlabeled lipoproteins. EDTA did not affect the binding of either HDL2 or HDL3 to isolated liver membranes. Hepatocytes incubated with [2-14C]acetate in the absence of lipoproteins incorporated more label into cellular cholesterol, nonsaponifiable lipids and total cellular lipid than hepatocytes incubated with [2-14C]acetate in the presence of any lipoprotein fraction. However, the level of 14C-labeled lipids released into the medium was higher in the presence of medium lipoproteins, indicating that the effect of those lipoproteins was on the rate of release of cellular lipids rather than on the rate of synthesis.  相似文献   

7.
The regulation of the hepatic catabolism of normal human very-low-density lipoproteins (VLDL) was studied in human-derived hepatoma cell line HepG2. Concentration-dependent binding, uptake and degradation of 125I-labeled VLDL demonstrated that the hepatic removal of these particles proceeds through both the saturable and non-saturable processes. In the presence of excess unlabeled VLDL, the specific binding of 125-labeled VLDL accounted for 72% of the total binding. The preincubation of cells with unlabeled VLDL had little effect on the expression of receptors, but reductive methylation of VLDL particles reduced their binding capacity. Chloroquine and colchicine inhibited the degradation of 125I-labeled VLDL and increased their accumulation in the cell, indicating the involvement of lysosomes and microtubuli in this process. Receptor-mediated degradation was associated with a slight (13%) reduction in de novo sterol synthesis and had no significant effect on the cellular cholesterol esterification. Competition studies demonstrated the ability of unlabeled VLDL, low-density lipoproteins (LDL) and high-density lipoproteins (HDL) to effectively compete with 125I-labeled VLDL for binding to cells. No correlation was observed between the concentrations of apolipoproteins A-I, A-II, C-I, C-II and C-III of unlabeled lipoproteins and their inhibitory effect on 125I-labeled VLDL binding. When unlabeled VLDL, LDL and HDL were added at equal contents of either apolipoprotein B or apolipoprotein E, their inhibitory effect on the binding and uptake of 125I-labeled VLDL only correlated with apolipoprotein E. Under similar conditions, the ability of unlabeled VLDL, LDL and HDL to compete with 125I-labeled LDL for binding was a direct function of only their apolipoprotein B. These results demonstrate that in HepG2 cells, apolipoprotein E is the main recognition signal for receptor-mediated binding and degradation of VLDL particles, while apolipoprotein B functions as the sole recognition signal for the catabolism of LDL. Furthermore, the lack of any substantial regulation of beta-hydroxy-beta-methylglutaryl-CoA reductase and acyl-CoA:cholesterol acyltransferase activities subsequent to VLDL degradation, in contrast to that observed for LDL catabolism, suggests that, in HepG2 cells, the receptor-mediated removal of VLDL proceeds through processes independent of those involved in LDL catabolism.  相似文献   

8.
Apolipoprotein E-free high density lipoproteins (HDL) bind to various cells and cell membrane preparations, with properties typical of ligand-receptor interactions. In order to further characterize the binding sites and to investigate the functional role of binding, a chemically modified HDL without the specific binding properties would be highly desirable. We have reacted human HDL3 with tetranitromethane, a relatively specific nitrating reagent for tyrosine residues, in 50 mM Tris HCL buffer, pH 8.0, and at a reagent concentration 10 times the molar excess of tyrosine residues. The resulting nitrated HDL3 completely lost its ability to bind to high affinity saturable binding sites of rat liver plasma membranes, as determined by competitive binding with 125I-labeled HDL3, and also by direct binding assays using 125I-labeled nitrated HDL3. Although nitrated HDL3 did not bind to the high affinity saturable binding sites, it bound to the membranes, but the binding was not saturable, and was not competed for by unlabeled nitrated HDL3. On agarose gel electrophoresis, pH 8.6, the nitrated HDL3 moved ahead of the control HDL3, indicating an increase in negative charges in the molecule. No difference in size was noted in the nitrated HDL3 when analyzed either by negative stain electron microscopy or by gel filtration chromatography. Spectroscopic analysis of the nitrated HDL3 at pH 8.0 revealed a prominent absorption with maximum at around 360 nm, but none in the region expected for nitrotyrosine residues. At pH 10.0, however, the nitrated HDL3 showed an absorption band with a maximum at around 440 nm, possibly related to nitrotyrosine residues. Nitrotyrosine was detected in the nitrated HDL3 on amino acid analysis. Comparison of the amino acid analysis of the nitrated HDL3 and control HDL3 showed no difference in composition of any of the amino acids except tyrosine; tyrosine content was reduced more than 90% in the nitrated HDL3. SDS-polyacrylamide gel electrophoresis analysis of apoproteins of nitrated HDL3 revealed changes in apolipoprotein profile. Bands corresponding to the apolipoproteins of the starting HDL3 almost disappeared and a series of new bands appeared at the high molecular weight region of the gel, indicating extensive cross-linking of apolipoproteins during the reaction. In addition, a substantial amount of phospholipids and cholesteryl esters, but not unesterified cholesterol, was found covalently linked, possibly through the unsaturated centers of the fatty acid chains, to apolipoproteins.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Human high density lipoprotein (HDL3) binding to rat liver plasma membranes   总被引:3,自引:0,他引:3  
The binding of human 125I-labeled HDL3 to purified rat liver plasma membranes was studied. 125I-labeled HDL3 bound to the membranes with a dissociation constant of 10.5 micrograms protein/ml and a maximum binding of 3.45 micrograms protein/mg membrane protein. The 125I-labeled HDL3-binding activity was primarily associated with the plasma membrane fraction of the rat liver membranes. The amount of 125I-labeled HDL3 bound to the membranes was dependent on the temperature of incubation. The binding of 125I-labeled HDL3 to the rat liver plasma membranes was competitively inhibited by unlabeled human HDL3, rat HDL, HDL from nephrotic rats enriched in apolipoprotein A-I and phosphatidylcholine complexes of human apolipoprotein A-I, but not by human or rat LDL, free human apolipoprotein A-I or phosphatidylcholine vesicles. Human 125I-labeled apolipoprotein A-I complexed with egg phosphatidylcholine bound to rat liver plasma membranes with high affinity and saturability, and the binding constants were similar to those of human 125I-labeled HDL3. The 125I-labeled HDL3-binding activity of the membranes was not sensitive to pronase or phospholipase A2; however, prior treatment of the membranes with phospholipase A2 followed by pronase digestion resulted in loss of the binding activity. Heating the membranes at 100 degrees C for 30 min also resulted in an almost complete loss of the 125I-labeled HDL3-binding activity.  相似文献   

10.
Further studies have been made of the effects of high density lipoprotein (HDL) on the surface binding, internalization and degradation of 125I-labeled low density lipoprotein (125I-labeled LDL) by cultured normal human fibroblasts. In agreement with earlier studies, during short incubations HDL inhibited the surface binding of 125I-labeled LDL. In contrast, following prolonged incubations 125I-labeled LDL binding was consistently greater in the presence of HDL. The increment in 125I-labeled LDL binding induced by HDL was: (a) associated with a decrease in cell cholesterol content; (b) inhibited by the addition of cholesterol or cycloheximide to the incubation medium; and (c) accompanied by similar increments in 125I-labeled LDL internalization and degradation. It is concluded that HDL induces the synthesis of high affinity LDL receptors in human fibroblasts by promoting the efflux of cholesterol from the cells.  相似文献   

11.
The mechanism of hepatic catabolism of human low density lipoproteins (LDL) by human-derived hepatoma cell line HepG2 was studied. The binding of 125I-labeled LDL to HepG2 cells at 4 degrees C was time dependent and inhibited by excess unlabeled LDL. The specific binding was predominant at low concentrations of 125I-labeled LDL (less than 50 micrograms protein/ml), whereas the nonsaturable binding prevailed at higher concentrations of substrate. The cellular uptake and degradation of 125I-labeled LDL were curvilinear functions of substrate concentration. Preincubation of HepG2 cells with unlabeled LDL caused a 56% inhibition in the degradation of 125I-labeled LDL. Reductive methylation of unlabeled LDL abolished its ability to compete with 125I-labeled LDL for uptake and degradation. Chloroquine (50 microM) and colchicine (1 microM) inhibited the degradation of 125I-labeled LDL by 64% and 30%, respectively. The LDL catabolism by HepG2 cells suppressed de novo synthesis of cholesterol and enhanced cholesterol esterification; this stimulation was abolished by chloroquine. When tested at a similar content of apolipoprotein B, very low density lipoproteins (VLDL), LDL and high density lipoproteins (HDL) inhibited the catabolism of 125I-labeled LDL to the same degree, indicating that in HepG2 cells normal LDL are most probably recognized by the receptor via apolipoprotein B. The current study thus demonstrates that the catabolism of human LDL by HepG2 cells proceeds in part through a receptor-mediated mechanism.  相似文献   

12.
The binding of human 125I-labeled 'anionic polypeptidic fraction' (APF) to purified rat liver plasma membranes was studied. The dissociation constant for this binding was 3.0 micrograms protein/mg membrane protein. Binding was competitively inhibited by unlabeled human APF, but not by human LDL (low density lipoproteins). When unlabeled HDL3 was added, binding of labeled APF was competitively reduced to a level between that of unlabeled APF and unlabeled LDL. Experiments with cultured rat hepatocytes confirmed those obtained with liver membranes and suggested the presence in rat liver of saturable APF-binding sites which seem to be specific for APF. The physiologic significance of these APF binding sites is discussed in relation to the fate of cholesterol in the liver.  相似文献   

13.
Rat adrenal cells in culture were used to study the uptake of cholesteryl linoleyl ether [( 3H]cholesteryl linoleyl ether), a nonhydrolyzable analog of cholesteryl ester. When [3H]cholesteryl linoleyl ether was added in the form of liposomes, its uptake was enhanced by adrenocorticotropin (ACTH) and by addition of milk lipoprotein lipase and interfered by heparin. When the adrenal cells were incubated with homologous [3H]cholesteryl linoleyl ether-HDL, ACTH treatment also resulted in an increase in [3H]cholesteryl linoleyl ether uptake. The uptake of [3H]cholesteryl linoleyl ether was in excess of the uptake and metabolism of 125I-labeled HDL protein and was not sensitive to heparin. Unlabeled HDL or delipidated HDL reduced very markedly the uptake of [3H]cholesteryl linoleyl ether, while addition of phosphatidylcholine liposomes had little effect. Attempts were made to deplete and enrich the adrenal cells in cholesterol and, while depletion resulted in a decrease in [3H]cholesteryl linoleyl ether-HDL uptake, enrichment of cells with cholesterol had no effect. Among the individual apolipoproteins tested, apolipoprotein A-I and the C apolipoproteins reduced [3H]cholesteryl linoleyl ether uptake, while apolipoprotein E was not effective. Since the labeled ligand studied was a lipid, these effects could not be due to an exchange of apolipoproteins, but indicated competition for binding sites. Preferential uptake of human [3H]cholesteryl linoleyl ether-HDL3 by bovine adrenal cells was found when compared to the uptake and metabolism of 125I-labeled HDL. The present results suggest that the preferential uptake of HDL cholesteryl ester (as studied with [3H]cholesteryl linoleyl ether) requires an interaction between the apolipoproteins of HDL and cell surface components.  相似文献   

14.
High-density lipoprotein 3 (HDL3) binds to capillary endothelial cells when their lumen surfaces are exposed to 125I-HDL3 by post-mortem perfusion of whole brain. Kinetic studies of binding of HDL3 to isolated membranes show that HDL3 binds only to endothelial membranes with high affinity (Kd = 7 micrograms/ml). Trypsin treatment of membranes abolishes HDL3 binding. High-affinity binding sites for HDL3 were recovered when endothelial cells from bovine brain capillaries were maintained in culture (Kd = 13 micrograms/ml HDL3 protein). The characteristics of the binding were preserved up to the 6th passage. Competition experiments using isolated luminal membranes or cultured endothelial cells indicate that only HDL3 and not LDL or methylated LDL, are able to compete binding of 125I-HDL3. Furthermore, the inhibition of 125I-HDL3 binding by lipoprotein A-I and lipoprotein A-I:A-II strongly suggests that apolipoprotein A-I is implicated in the formation of HDL3-receptor complexes. The binding is increased by loading cells with free cholesterol or LDL cholesterol. In addition, surface-bound 125I-HDL3 remains sensitive to mild trypsin treatment after subsequent incubation of BBCE at 37 degrees C. HDL3 bound to the cell surface is not endocytosed, but rather rapidly released into the medium after binding (t1/2 = 5 min).  相似文献   

15.
We studied cholesterol synthesis from [14C]acetate, cholesterol esterification from [14C]oleate, and cellular cholesterol and cholesteryl ester levels after incubating cells with apoE-free high density lipoproteins (HDL) or low density lipoproteins (LDL). LDL suppressed synthesis by up to 60%, stimulated esterification by up to 280%, and increased cell cholesteryl ester content about 4-fold. Esterification increased within 2 h, but synthesis was not suppressed until after 6 h. ApoE-free HDL suppressed esterification by about 50% within 2 h. Cholesterol synthesis was changed very little within 6 h, unless esterification was maximally suppressed; synthesis was then stimulated about 4-fold. HDL lowered cellular unesterified cholesterol by 13-20% within 2 h and promoted the removal of newly synthesized cholesterol and cholesteryl esters. These changes were transient; by 24 h, both esterification and cellular unesterified cholesterol returned to control levels, and cholesteryl esters increased 2-3-fold. HDL core lipid was taken up selectively from 125I-labeled [3H]cholesteryl ester- and ether-labeled HDL. LDL core lipid uptake was proportional to LDL apoprotein uptake. The findings suggest that 1) the cells respond initially to HDL or LDL with changes in esterification, and 2) HDL mediates both the removal of free cholesterol from the cell and the delivery of HDL cholesteryl esters to the cell.  相似文献   

16.
Fibroblasts cultured from the skin of subjects with homozygous familial hyperlipoproteinemia (HFH) internalize and degrade low density lipoproteins at a much lower rate than do fibroblasts from normal subjects. Evidence has been presented that this reflects the absence from such mutant cells of specialized binding sites with high affinity for low density lipoproteins. The specificity of this membrane defect in familial hypercholesterolemia is further supported by the present studies comparing the metabolism of low density lipoproteins (LDL) and high density lipoproteins (HDL) in normal fibroblasts and in fibroblasts from HFH patients. The surface binding (trypsin-releasable (125)I) of (125)I-labeled LDL by HFH cells was approximately 30% of that by normal cells at a concentration of 5 micro g LDL protein per ml. At the same concentration the internalization (cell-associated (125)I after trypsinization) and degradation (trichloroacetic acid-soluble non-iodide (125)I) of (125)I-labeled LDL were less than 10% of the values obtained with normal cells. In contrast, the binding of (125)I-labeled HDL to HFH cells was actually somewhat greater than that to normal cells. Despite this, the internalization and degradation of (125)I-labeled HDL by HFH cells averaged only 70% of that by normal cells. [(3)H]- or [(14)C]Sucrose uptake, a measure of fluid uptake by pinocytosis, was similar in normal and HFH fibroblasts. These findings are consistent with the proposal that fibroblasts from subjects with HFH lack high-affinity receptors for LDL. These receptors do not play a significant role in HDL binding and uptake. Instead, as previously proposed, HDL appears to bind randomly on the cell surface and its internalization is not facilitated by the specific mechanism that internalizes LDL. The small but significant abnormalities in HDL binding and internalization, however, suggest that there may be additional primary or secondary abnormalities of membrane structure and function in HFH cells. Finally, the observed overall rate of uptake of LDL (that internalized plus that degraded) by HFH fibroblasts was considerably greater than that expected from fluid endocytosis alone. This implies that adsorptive endocytosis, associated with binding to low-affinity sites on the cell surface, may play a significant role in LDL degradation by HFH cells, even though it does not regulate endogenous cholesterol synthesis in these cells.  相似文献   

17.
[125I]-labelled apolipoprotein E-free high density lipoprotein (apo E-free HDL) binds to cultured human endothelial cells with high affinity. Competitive binding experiments showed that complexes of egg phosphatidyl choline with respectively apo A-1, A-2 and E, and phosphatidyl choline vesicles alone, competed efficiently with [125I]-apo E-free HDL for binding, suggesting that the binding of HDL to the high affinity receptor is not mediated by recognition of one specific apolipoprotein. Analyses of the respective incubation media of the competitive binding experiments by density gradient ultracentrifugation showed that the [125I]-label of [125I]-HDL redistributes to the competitors used. This implies that the usual competitive binding experiments may not be used in order to investigate which HDL component is involved in the high affinity binding of HDL to the plasma membrane.  相似文献   

18.
The effect of two inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, lovastatin and monacolin L, and an inhibitor of acyl coenzyme A:cholesterol acyltransferase (ACAT), Sandoz compound 58-035, on the interaction of 125I-labeled high density lipoprotein-3 (HDL3) with isolated human enterocytes was studied. Both HMG-CoA reductase inhibitors inhibited cholesterol synthesis and 125I-labeled HDL3 binding and degradation by enterocytes; a strong correlation between changes in cholesterol synthesis and interaction of 125I-labeled HDL3 with cells was observed. Lovastatin caused reduction of the apparent number of 125I-labeled HDL3 binding sites without affecting the binding affinity. No changes of cell cholesterol content were observed after incubation of cells with lovastatin. Mevalonic acid reversed the effect of lovastatin on 125I-labeled HDL3 binding. Lovastatin blocked up-regulation of the HDL receptor in response to loading of cells with nonlipoprotein cholesterol and modified cholesterol-induced changes of 125I-labeled HDL3 degradation. Lovastatin also reduced HDL-mediated efflux of endogenously synthesized cholesterol from enterocytes. The ACAT inhibitor caused a modest increase of 125I-labeled HDL3 binding to enterocytes and significantly decreased its degradation; both effects correlated with inhibition of cholesteryl ester synthesis. The results allow us to assume that the intracellular free cholesterol pool may play a key role in regulation of the HDL receptor.  相似文献   

19.
Pharmacological doses of 17 alpha-ethinyl estradiol induce a low density lipoprotein (LDL) receptor in the liver of male rats. Our aim was to solubilize this receptor. Isolated liver membranes (8,000-100,000 g fraction) from male rats treated with 17 alpha-ethinyl estradiol and from control rats were solubilized in 1% (w/v) Triton X-100. Using Amberlite XAD-2, more than 90% of the detergent was then removed. Liposomes were prepared by precipitating the solubilized proteins with acetone in the presence of phosphatidylcholine. The receptor activity of these liposomes was assayed using human 125I-labeled LDL. Filtration was used to separate bound from free 125I-labeled LDL. The assay was optimized; 0.25 mM CaCl2, 25 mM NaCl, pH 8.0, were chosen as the standard conditions. Binding of 125I-labeled LDL was dependent on Ca2+. Liposomes containing solubilized membrane proteins from treated rats displayed Ca2+-dependent binding which was 11 times higher than for control rats. The specific binding of 125I-labeled LDL was saturable with a Kd = 18 micrograms/ml. 125I-Labeled LDL was displaced by unlabeled lipoproteins containing apolipoproteins B and E and by dimyristoylphosphatidylcholine liposomes containing purified apolipoprotein E, but not by HDL3. The binding was abolished by pronase and was inhibited by suramin. Ligand blotting with 125I-labeled LDL revealed one band of protein with an apparent molecular weight of 133,000 daltons. These properties are characteristic of the low density lipoprotein receptor.  相似文献   

20.
The binding of human 125I-labeled HDL3 (high-density lipoproteins, rho 1.125-1.210 g/cm3) to a crude membrane fraction prepared from bovine liver closely fit the paradigm expected of a ligand binding to a single class of identical and independent sites, as demonstrated by computer-assisted binding analysis. The dissociation constant (Kd), at both 37 and 4 degrees C, was 2.9 micrograms protein/ml (approx. 2.9 X 10(-8) M); the capacity of the binding sites was 490 ng HDL3 (approx. 4.9 pmol) per mg membrane protein at 37 degrees C and 115 at 4 degrees C. Human low-density lipoproteins (LDL) and very-low-density lipoproteins (VLDL) also bound to these sites (Kd = 41 micrograms protein/ml, approx. 6.7 X 10(-8) M for LDL, and Kd = 5.7 micrograms protein/ml, approx. 7.0 X 10(-9) M for VLDL), but this observation must be considered in light of the fact that the normal circulating concentrations of these lipoproteins are much lower than those of HDL. The binding of 125I-labeled HDL3 to these sites was inhibited only slightly by 1 M NaCl, suggesting the presence of primarily hydrophobic interactions at the recognition site. The binding was not dependent on divalent cations and was not displaceable by heparin; the binding sites were sensitive to both trypsin and pronase. Of exceptional note was the finding that various subclasses of human HDL (including subclasses of immunoaffinity-isolated HDL) displaced 125I-labeled HDL3 from the hepatic HDL binding sites with different apparent affinities, indicating that these sites are capable of recognizing highly specific structural features of ligands. In particular, apolipoprotein A-I-containing lipoproteins with prebeta electrophoretic mobility bound to these sites with a strikingly lower affinity (Kd = 130 micrograms protein/ml) than did the other subclasses of HDL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号