首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bacterial dextran B1355, which is normally a potent thymus-independent immunogen, was made tolerogenic by oxidation. The injection of the oxidized dextran into BALB/c mice before, at the same time, or up to 4 days after the injection of the immunogenic form of the dextran resulted in a marked immunologically specific suppression of the number of anti-dextran antibody-forming cells found in the spleen. This suppression resulted from a direct inactivation of antibody-forming cell precursors rather than from either inhibition of antibody secretion or the exhaustive utilization of precursor B cells that have been observed in other tolerance systems. A substantial degree of tolerance was achieved after only a 1-hr in vivo exposure of the spleen cells to the tolerogen. At a dose of 1 mg of oxidized dextran per mouse, tolerance persised for at least 3 weeks. A complete recovery was apparent by 10 weeks. The stability of the tolerance was demonstrated by transferring tolerant spleen cells to irradiated recipients. The response in the recipient animals to an immunogenic dextran challenge remained suppressed. It appears that the tolerogenicity of the oxidized dextran is due to its ability to couple covalently with free amino groups in or near the receptor site of the cell membrane via the reactive dialdehyde groups of the dextran.  相似文献   

2.
We have investigated the suppression of the anti-dextran B1355S immune response using our model of modified self. The anti-dextran response is idiotypically well defined in BALB/c mice. This system enables us to examine the contribution of various predominant idiotypes to the antibody response under conditions of suppression by antigen or by idiotype-specific suppressor cells. Our results demonstrate that the total anti-dextran response can be inhibited by pretreatment of animals with dextran-coupled syngeneic spleen cells; however, the representation of major idiotypes constituting this response are not reduced in percentage. In contrast, pretreatment of mice with MOPC-104E-coupled spleen cells leads to a specific suppression of the private IdI-104E idiotype. The total anti-dextran response remains unchanged, as well as proportions of other major idiotypes known (IdI-588 and IdX). This suppression is mediated by Thy-1.2+, Lyt-2.2+ T cells, as demonstrated by adoptive transfer assays. This system will allow the molecular dissection of the regulation of an idiotypically well-defined system for the suppression by either antigen- or idiotype-specific suppressor T cells.  相似文献   

3.
Spleen cells from mice with progressively-growing methyl-cholanthrene-induced tumors, when immunized in vitro against transplant alloantigens, developed less cytotoxic activity against these antigens as measured by a short-term chromium-release assay than did spleen cells from normal mice. The hyporesponsiveness of spleen cells from the tumor-bearing mice seemed to be due to the presence of suppressor cells which could be removed by nylon-column passage but not by anti-theta treatment and which, in mixture experiments, could inhibit the response of normal spleen cells. The suppression appeared to occur at the sensitization stage and not at the effector stage of the in vitro tests. No evidence was found for mediation of the suppression by soluble factors. These observations emphasize the growing importance of suppressive mechanisms in tumor immune systems.  相似文献   

4.
The spleens of mice bearing large M-1 fibrosarcomas have been shown to contain several populations of cells which nonspecifically suppress antibody synthesis by cocultured normal spleen cells. It has now been shown that the spleens of tumor-bearing mice also contain inducer cells which secrete soluble factors capable of activating suppressor T cells from unprimed precursor cells. The activated suppressor cells are Thy 1+, Lyt 1+2+ and secrete a soluble suppressive factor. They inhibit the in vitro generation of antibody-forming cells by cocultured normal spleen cells stimulated by T-cell-dependent antigens. They do not, however, suppress the antibody response to T-cell-independent antigens and do not inhibit antibody synthesis by cocultured nude mouse spleen cells cultured with T-cell-dependent antigens and exogenous helper factors. In addition, suppression is blocked if conditioned medium containing T-cell growth factors is added to the suppressor cell assays. These data suggest that cells in the spleens of tumor-bearing mice secrete inducing factors which activate suppressor cells. These activated suppressor cells in turn secrete soluble suppressor factors which inhibit antibody synthesis, possibly by interfering with the synthesis or release of T-cell growth factors.  相似文献   

5.
Antigen-specific, IgE isotype-selective suppression is induced following treatment of mice with a high-molecular-weight glutaraldehyde-polymerized ovalbumin preparation (OA-POL). The results show that the suppression is mediated by Lyt 1+,2,3- cells residing in the spleen. Adoptive transfer experiments indicate that Lyt 2,3+ or Lyt 1,2,3+ cells are not required for the establishment of suppression by these Lyt 1+,2,3- suppressor T cells (Ts). Treatment of OA-POL-induced Ts cells with anti-I-Jk serum and complement does not affect their ability to suppress. In marked contrast, spleen cells from animals treated with a single course of OA-POL almost 300 days previously, were shown to contain boosterable memory suppressor T cells (Tsm) which display the Lyt 1-,2,3+ phenotype. The activity of both Ts and Tsm cells appears to result from stimulation by determinants common to native OA and OA-POL rather than by idiotypic determinants expressed on anti-OA antibodies.  相似文献   

6.
Cells from the spleen, lymph nodes, and peritoneum of DBA/2 mice bearing a subcutaneous tumor mediate nonspecific suppression of an in vitro antibody response to sheep red blood cells (SRBC) when cocultured with a normal T-cell subset(s). The spleen cells from the tumor-bearing mouse required for the suppression bear the Lyt 1 and Ala 1 surface markers characteristic of "inducer" T cells and activated cells, respectively. The activity of this cell population is also sensitive to irradiation. The normal T-cell subset which cooperates in the suppression bears the Qa-1 surface antigen which has been associated with suppressor cell precursors in several systems but lacks detectable surface Lyt 1 and 2 markers. Suppression of antibody responses in spleen cell cultures from tumor-bearing mice alone could also be elicited, but only when increased numbers of cells were cultured. These data are consistent with the theory that a tumor-activated, Lyt 1+ T-cell subset has the capacity to nonspecifically suppress immune responses by activating a Qa-1+ subset(s) of T suppressor cells, perhaps via feedback signals.  相似文献   

7.
The spontaneous in vitro anti-DNA antibody response generated by preautoimmune and many normal mouse spleen cells was suppressed by the addition of syngeneic thymocytes or splenic T cells. Suppressive activity was found in normal mice (DBA/2J) and to an equivalent degree in the autoimmune (New Zealand Black X New Zealand White)F1 (B/W) strain. The suppressor cells were cortisone-resistant, radiosensitive and carried Lyt 1 and Lyt 2 markers. Nonspecific suppression was not involved since the primary and primed in vitro anti-sheep erythrocyte (anti-SRBC) responses were unaffected. Both spontaneous and lipopolysaccharide-stimulated anti-DNA antibody responses could be suppressed. There was no difference in the suppressive activity of cells from young or old, normal or autoimmune mice. These T cells may therefore play a role in preventing the anti-DNA antibody response in normal and young B/W mice, but evidently fail to influence the development of in vivo anti-DNA autoimmune responses in the old B/W mice.  相似文献   

8.
The generation of specific antitumor cytotoxic T-lymphocytes (CTL) via 2-fold immunization in vivo and subsequent cultivation without tumor cells (in monoculture) was previously described. The spleen cells from B10 mice bearing progressively growing MX-11 sarcoma suppressed the maturation of CTL specific to MX-11 but not to EL-4 lymphoma in monoculture. It was observed, that the suppression was not the result of the inhibitory effect of suppressor cells upon the IL-2 production, because suppression took place in the presence of the exogenous IL-2 in monoculture. Since the treatment of the spleen cells with MoAb against both L3T4 and Lyt2.2 antigens plus C' considerably decreased the suppressive activity, it was suggested, that two distinct subsets of T-lymphocytes were required for suppression. It might be possible, that the presence of anti-idiotype on the effector suppressors was the cause of the suppressive specificity in the absence of tumor antigens in vitro.  相似文献   

9.
Neonatal tolerance inducibility of self-major histocompatibility complex (MHC)-class II-associated antigens was compared with that of allo-class II antigens. BALB/c (H-2d, Mlsb) mice, less than 24 hr after birth, were intravenously injected with bone marrow cells of either (BALB/c X DBA/2)F1 (H-2d, Mlsb/a, semiallogeneic at the Mls locus) or (BALB/c X B10.BR)F1 (H-2d/k, Mlsb; semiallogeneic at the MHC), as antigens. The mice were tested for in vivo immune activity of class II-reactive T cells by means of the popliteal lymph node-swelling assay. They developed tolerance, irrespective of type of antigens, showing profoundly suppressed host-versus-graft reaction, and those tolerized to the allo-MHC antigens accepted skin grafts of the corresponding allogeneic mice. In the thymus and spleen of the Mls-tolerant mice, antigen-specific class II-reactive T-cell activity was completely abolished, without the apparent involvement of suppressor cells. In contrast, the activity in allo-MHC-tolerant mice was not reduced in either thymus or peripheral lymphoid organs, suggesting that systemic hyporesponsiveness is attributable to reversible suppression of immune competent cells. The resistance for cell-level tolerance induction to allo-class II antigens may not be ascribed to the active participation of allo-MHC antigens in prevention of or in escape from tolerance induction or both, since an injection of bone marrow cells of both Mls and H-2-semiallogeneic (DBA/2 X B10.BR)F1 (H-2d/k, Mlsa/b) mice could induce tolerance to Mlsa-H-2d antigens in newborn thymus cells.  相似文献   

10.
The involvement of a third-order suppressor T cell population (Ts3) in the suppression of in vitro PFC responses was analyzed. It was shown that Ts2 effector-phase suppressor cells, induced by the i.v. injection of NP-coupled syngeneic spleen cells, require a third suppressor T cell population to effect NPb idiotype-specific suppression of an in vitro B cell response. This Ts3 population was shown to be present in NP-primed but not unprimed donors. The Ts3 population specifically binds NP and is Lyt-1-, Lyt-2+, I-J+ and bears NPb idiotypic determinants. The involvement of the Ts3 population in a suppressor pathway that requires recognition of idiotypic determinants is discussed.  相似文献   

11.
Specific immune unresponsiveness was induced in inbred mice (BDF1) by the administration of soluble ovalbumin (OVA) by gastric intubation. Anti-hapten (DNP) responses likewise were specifically diminished when animals were fed autologous carrier (OVA or keyhole limpet hemocyanin). Adoptive transfer of spleen cells demonstrated that the tolerant state could be maintained in irradiated recipient mice, and specific anergy could be transferred to normal recipient animals. Adoptive suppression was mediated by T lymphocytes, as demonstrated by nylon wool fractionation and susceptibility of the cells to anti-Thy 1.2 and complement. Transferred B cells had neither suppressive nor augmentative effects. Enteric administration of OVA also specifically diminished antigen-induced DNA synthesis of primed lymph node T cells, although suppressor cells were not identified in the lymph nodes per se.  相似文献   

12.
Spleen cells from CAF1 mice made tolerant to type III pneumococcal polysaccharide (S3) with S3 coupled to syngeneic spleen cells (S3-SC) develop S3-specific suppressor T cells (Ts). These Ts could be demonstrated consistently only when spleen cells from tolerant mice were cultured in vitro with the specific antigen and the specific tolerogen. Spleen cells from normal mice cultured under the same conditions did not suppress the antibody response to S3. When different numbers of Ts were transferred to normal CAF1 mice, an unusual dose-effect pattern was observed. Maximal suppression of the S3 response occurred when relatively low numbers of Ts, 3 to 30 x 10(5) per recipient, were transferred, whereas larger numbers of cells, 150 x 10(5) per recipient, were not suppressive. These results indicate that a presumably T-independent antigen, S3, can activate antigen-specific Ts. These Ts exhibit unusual dose effects upon transfer and require both an in vivo induction period and in vitro activation for development of maximal activity. These latter observations suggest that S3 may activate a different population of T cells with suppressor function than do conventional T-dependent antigens. The loss of suppression observed when greater than optimal numbers of cells were transferred suggests that a second type of T cell, which has the ability to 'neutralize' the activity of S3-specific Ts, is also induced in the same spleen cell population.  相似文献   

13.
The induction of tuberculin-type delayed hypersensitivity, as measured by skin test, can be specifically inhibited by administration of antibody during sensitization. The cellular mechanisms involved in this tolerance were investigated in CAP1 mice, using chicken conalbumin as antigen. Tolerance was prevented when mice were treated with Cyclophosphamide 2 days before sensitization and suppression. However, it was not affected by splenectomy 7 or 21 days before sensitization. This tolerance could be transferred to normal CAF1 mice with spleen cells, but not with thymocytes, when taken from donor mice 21 to 28 days after sensitization and tolerance induction. Production of these cells in the donors required both antibody and antigen. The cells responsible for the transfer were B cells, as shown by their sensitivity to rabbit anti-mouse-immunoglobulin serum and complement. In addition to B cells, serum from tolerant mice also could transfer suppression at 21 to 28 days. We conclude that sensitizing mice, and treating them with specific immunosuppressive antiserum, induces the recipients to make suppressor B cells and suppressive humoral factors, which are involved in arresting the induction of tuberculin-type delayed hypersensitivity.  相似文献   

14.
Anterior chamber-associated immune deviation (ACAID) is a complex set of immune responses induced by the inoculation of antigens into the anterior chamber of the eye. Histocompatibility antigens, tumor-specific antigens, reactive haptens, and viral antigens have been shown to induce this phenomenon, which comprises the following specific host responses: high titer humoral antibodies, primed cytotoxic T cells, but specifically, impaired skin graft rejection and delayed-type hypersensitivity (DTH). Using the model system of ACAID induced by inoculation of P815 mastocytoma cells into the anterior chambers of H-2-compatible, but minor H-incompatible, BALB/c mice, we demonstrate that the impaired capacity of these animals to develop and express DTH is due to the activation of suppressor T cells. Generation of these cells requires an intact spleen, is not inhibited by cyclophosphamide pretreatment, and is abrogated by systemic treatment of the host with anti-I-J monoclonal antibodies. This splenic suppressor cell(s) can transfer suppression of DTH adoptively to naive syngeneic mice. One suppressor cell is Thy-1.2, Lyt-2.2, and I-Jd positive. A minority of these cells (or a second population of suppressor cells) also expresses the L3T4 surface marker. Suppression is exerted on the efferent limb of DTH expression, although afferent suppression is not excluded. P815-induced ACAID suppressor cells resemble similar cells induced by haptenated spleen cells inoculated into the anterior chamber of the eye. We propose that induction of these suppressor cells, whose target of action is selective for T DTH cells, but not for other types of T cells, is responsible for the phenomenon of immune privilege in the anterior chamber of the eye.  相似文献   

15.
Mice were immunized for contact sensitivity and antibody production by painting the skin with picryl chloride. Lymph node and spleen cells taken 4 days later transferred contact sensitivity. However, cells taken at 7–8 days failed to transfer but were able to block the transfer by 4 day immune cells. These suppressor cells occurred in the regional lymph nodes, spleen and thymus. The suppressor activity of lymph node and spleen cells was due to B cells as shown by the effect of anti-θ serum and complement, nylon wool filtration and separation of EAC positive and negative cells by centrifugation on a discontinuous gradient. The transfer of fractions rich or poor in macrophages showed that the suppressor cell in the transferred population was not a macrophage. Separation using EAC rosettes suggested that B cells were responsible for the suppressor activity in the thymus.T cells isolated from the lymph nodes and spleen 7–8 days after immunization transferred contact sensitivity although the initial population was inactive. This indicates that passive transfer cells are present in the regional lymph nodes and spleen at later times after immunization but cannot be demonstrated because of the presence of suppressor B cells. However, no passive transfer cells were found in the thymus. The production of B suppressor cells required little or no T cell help and following immunization the spleens of reconstituted (B) mice were at least as active as control cells in causing suppression. There are several different suppressor cells which act in the picryl system and the B suppressor cells in immunized mice described here are distinct from the T suppressor cells in mice injected with picryl sulphonic acid.  相似文献   

16.
Adoptive transfer of spleen cells or spleen cell lysates from mice tolerant to human-gamma-globulin (HGG) specifically suppressed the response of normal syngeneic recipients to HGG. The suppressive activity could be transferred for over 100 days after tolerance induction. The suppression induced by both spleen cells and spleen cell lysate was found to be specific as evidenced by a normal response to a challenge with turkey-gamma-globulin or goat erythrocytes. The activity of the suppressive lysate could be removed by passing the material through an HGG immunoadsorbent column but not by passing it through an anti-HGG column or a BSA column. These results indicated that the factor had antigen specificity and was probably not antigen-antibody complexes. That this suppression was not due to a shifting of the kinetics of the antibody response has also been demonstrated. The antigen-specific suppressor factor in the tolerant spleen cell lysates was a protein with a m.w. of approximately 45,000 daltons. The kinetics of the appearance of both suppressor cells and suppressor factor were consistent with a mechanism of active suppression functioning in the maintenance of tolerance to HGG.  相似文献   

17.
Mice were injected intravenously with rabbit antiserum to ganglio-n-tetraosylceramide (asialo GM1, ASGM1), a neutral glycosphingolipid present at high quantities on the surface of natural killer (NK) cells. Spleen cells prepared from the mice were then examined for NK activity against YAC-1 targets, for phagocytic cells and by flow cytometric analysis for Thy1, Lyt1, Lyt2, ASGM1 and surface Ig (SIg) phenotypes. Administration of anti-ASGM1 in mice resulted in a complete depletion of NK activity and ASGM+1 cells in the spleen, but no changes in the proportions of Thy1+ cells and their Lyt1+ and Lyt2+ subsets and phagocytic cells. Corresponding to this selective depletion of ASGM+1 cells and NK activity, the spleen cells showed an increased number of SIg+ B cells and augmented mitogenic responses to B-cell but not T-cell mitogens. These NK-depleted spleen cells also showed production of pokeweek mitogen (PWM)-driven plaque-forming cells (PFC) to much higher levels than those of control spleens. In the spleens of mice treated with varying concentrations of anti-ASGM+1, a good correlation was found between the decreased NK activity and the enhanced PFC response. To directly test the possible suppressor activity of NK cells on PWM-induced PFC response, NK (ASGM+1) cells were highly purified from the spleen by a combination of Percoll gradients and cytolysis of T cells by monoclonal antibodies followed by indirect panning. When added to NK-depleted spleen cells, they suppressed the augmented PFC response of NK-depleted spleen cells, depending on the number of cells added. These results suggest that NK (ASGM+1) cells in mice exhibit a suppressor property on B cells, which are undergoing spontaneous or mitogen-induced differentiation.  相似文献   

18.
The nonspecific suppression of immunological responses that is generated within host popliteal lymph nodes upon exposure to syngeneic normal spleen cells has been examined. The suppression, which had previously been described as being capable of preventing initiation of cytotoxic T lymphocytes (CTLs) to hapten-altered self antigens, arises within 3 to 7 days after injecting the spleen cells. Suppression was shown to be attributable to an induced T cell that was functional when transferred intravenously. Although the cell surface marker(s) on both splenic B and T cells that stimulates appearance of Ts has not yet been identified, the cells possessing the marker were not required to be viable to cause the induction. We have shown here that the Ts is fully functional when it is put in the antigenic site used for CTL immunization. The induced Ts has been identified as bearing the Lyt 2.1 cell surface marker. Furthermore, it has been shown to be insensitive to cyclophosphamide (CY), thus differentiating it from the naturally occurring Ts cell (TS0) that is known to be CY sensitive. In addition to preventing induction of CTLs toward hapten-altered self antigens, exposing popliteal lymph nodes to syngeneic spleen cells induced Ts capable of suppressing the primary IgM antibody response to sheep red blood cells. The Ts cells that suppressed the primary antibody response possessed the same Lyt cell surface markers and CY insensitivity as the Ts that mediated suppression of the CTL response. Thus, evidence that two dissimilar immunological reactions may be down-regulated by the same suppressor mechanism has been provided. Results of a kinetic study showed that the Ts prevented development of both the humoral and the cell-mediated immune responses by affecting their inductive phases. Possible targets for suppression that more than likely would have to be common to the two widely different immune responses have been indicated.  相似文献   

19.
The intravenous injection of killed BCG in an oil-in-saline emulsion (BCG-E) results in the development of intense chronic granulomatous inflammation in the lungs and spleen of C57B1/6 (B6) but not CBA mice. B6 mice injected intravenously with BCG-E exhibited marked suppression of antibody responsiveness and delayed hypersensitivity to sheep erythrocytes, as well as proliferation in response to PPD. In contrast, CBA mice similarly treated with BCG-E were not suppressed in any of these reactivities. The spleen is an important organ in this phenomenon since suppression was reversed by splenectomy and could be transferred to normal recipients with spleen cells from BCG-treated mice. Spleen cells responsible for suppression were adherent to plastic petri plates, removed with carbonyl iron, and were not eliminated with either anti-Thy-1 or anti-immunoglobulin serum + C. This study indicates that macrophages from BCG-inflamed spleen are capable of potent suppression of both antibody- and cellular-mediated immunologic reactivity.  相似文献   

20.
Immune complexes (soluble antigens of L1210 and antibody to L1210) when given to allogeneic C3H mice generated suppressor cells that inhibited receptors for cytophilic antibody on macrophages. Thymocytes or nylon-nonadherent splenic T cells (4 × 107) from immune-complex-treated mice transferred this suppressive activity when injected into normal syngeneic mice. Maximal suppression of macrophages occurred 4 to 6 days after transfer. In contrast, even 5 × 107 nylon-adherent, non-T spleen cells from immune-complex-treated (“suppressed”) mice failed to induce macrophage suppression in the syngeneic recipients. When T-cell-depleted “B” mice were used as recipients, neither thymocytes nor splenic T cells from suppressed mice were able to transfer suppressive activity. However, the admixture of 2 × 107 normal syngeneic thymocytes with 4 × 107 thymocytes from suppressed mice restored the latter's ability to elicit suppression of macrophages in T-cell-deprived recipients. Peritoneal monocytes from recipients of suppressor thymocytes (to L1210) could not attach cytophilic antibody to L1210 but could attach cytophilic antibody to EL-4 and sheep erythrocytes. Thus, suppressor T cells induced by immune complexes can transfer immunologically specific macrophage suppression (inhibition of cytophilic antibody receptors) to syngeneic recipients. The suppressor cells required the cooperation of normal T cells, suggesting either recruitment of suppressor cells from, or a helper effect by, the normal T cells, in order to produce their effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号