首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Finding appropriate rooftop vegetation may improve the quality of runoff from green roofs. Portulaca grandiflora was examined as possible vegetation for green roofs. Green roof substrate was found to have low bulk density (360.7 kg/m3) and high water-holding capacity (49.4%), air-filled porosity (21.1%), and hydraulic conductivity (5270 mm/hour). The optimal substrate also supported the growth of P. grandiflora with biomass multiplication of 450.3% and relative growth rate of 0.038. Phytoextraction potential of P. grandiflora was evaluated using metal-spiked green roof substrate as a function of time and spiked substrate metal concentration. It was identified that P. grandiflora accumulated all metals (Al, Cd, Cr, Cu, Fe, Ni, Pb, and Zn) from metal-spiked green roof substrate. At the end of 40 days, P. grandiflora accumulated 811 ± 26.7, 87.2 ± 3.59, 416 ± 15.8, 459 ± 15.6, 746 ± 20.9, 357 ± 18.5, 565 ± 6.8, and 596 ± 24.4 mg/kg of Al, Cd, Cr, Cu, Fe, Ni, Pb and Zn, respectively. Results also indicated that spiked substrate metal concentration strongly influenced metal accumulation property of P. grandiflora with metal uptake increased and accumulation factor decreased with increase in substrate metal concentration. P. grandiflora also showed potential to translocate all the examined metals with translocation factor greater than 1 for Al, Cu, Fe, and Zn, indicating hyperaccumulation property.  相似文献   

2.
城市内涝是困扰各大城市的环境问题,其主观原因是来自迅速增加的城市不透水面.国外运用屋顶绿化作为截留雨水的措施得到广泛实践,而屋顶绿化滞留雨水能力随气候条件的变化而变化.湿热气候区具有气温高、湿度高、雨量大的气候特点,在此气候条件下探讨屋顶绿化截留雨水的效能具有重要意义.本研究以在夏季雨热同期的广州市为例,搭建3个简单式屋顶绿化测试平台,通过13个月试验期的气象观测和数据测定推算其截留雨水的效能.结果表明: 基质厚度30、50和70 mm简单式屋顶绿化的降雨滞留率分别为27.2%、30.9%和32.1%,平均峰值减少量为18.9%、26.2%和27.7%.广州市建成区面积1035.01 km2,屋顶面积约占37.3%,假设在此区域推行30 mm厚度基质的屋顶绿化,小、中、大雨的总迟滞比率分别为72.8%、22.6%和17.4%,以此推算得出可滞留雨水体积达14317×104 m3,说明简单式屋顶绿化的截留雨水效应具有巨大潜力.本研究结果可为湿热气候区城市缓解城市内涝、建设海绵城市的构想提供参考.  相似文献   

3.
蒸散发过程决定绿色屋顶雨水滞留能力的恢复,进而影响绿色屋顶径流调控功能。基于水量平衡原理和Penman-Monteith公式,利用北京市实验绿色屋顶气象和蒸散发连续监测数据,构建并验证绿色屋顶水文过程模型,模拟分析不同气候区城市绿色屋顶蒸散发变化规律。结果表明:(1)该模型能较准确模拟绿色屋顶蒸散发量,率定和检验期的Nash-Sutcliffe效率系数分别为0.6385和0.6014,决定系数(R2)分别为0.7191和0.6168;(2)基质厚度相同的情况下,从半干旱区(兰州)、半湿润区(北京)到湿润区(武汉和广州),绿色屋顶日平均实际蒸散发量呈增加趋势;(3)增加基质厚度可提升绿色屋顶最大雨水滞留能力,进而增加绿色屋顶实际蒸散发量,但基质厚度对绿色屋顶蒸散发量的影响存在阈值,在兰州、北京、武汉和广州,当基质厚度分别超过10 cm、17 cm、24 cm和25 cm时,绿色屋顶的日平均实际蒸散发量变化不再明显。此外,不同气候区城市绿色屋顶的日平均实际蒸散发量也存在阈值,广州绿色屋顶日平均实际蒸散发量的阈值依次高于武汉、北京和兰州。本研究有望为我国不同气候区绿色屋...  相似文献   

4.
This review paper addresses the role of green roofs in urban drainage considering both management of water quantity and quality. Results from investigation of full scale installations as well as from laboratory models are reviewed. The following factors affecting runoff dynamics from green roofs are discussed: type of green roof and its geometrical properties (slope); soil moisture characteristics; season, weather and rainfall characteristics; age of green roof; vegetation. Design parameters as suggested by different authors are also reviewed. Factors which affect influence of a green roof on runoff water quality are discussed in general terms followed by the review of data regarding concentrations of phosphorus, nitrogen, and heavy metals in green roof runoff, its’ pH, and first flush effect. Linking among fertilization, runoff pollution and vegetation development is given a particular focus. The review indicates clearly that there is a need for more research into a green roof performance in an urban environment. The differences measured by few existing studies between the early years performance of green roofs and the later years indicate a need for long term monitoring of green roofs.  相似文献   

5.
Laboratory bioassays should be performed under appropriate conditions that minimize stress and promote greater longevity to tested animals. For social insects, for instance, the stress triggered by removal individuals from nests may result in changes in their survival and behavior. Here we analyzed the effects of variations of different combinations of temperature and substrate moisture (mL of water/g of nest substrate) on group survival of Constrictotermes sp. (Termitidae: Nasutitermitinae). In general, lower substrate moisture resulted in faster mortality. On the other hand, groups survival longer at a temperature of 26 °C and under higher substrate moisture (2–3 mL/7 g of nest substrate). The result of this study may contribute to the establishment of bioassay protocols performed with Constrictotermes sp. in the laboratory.  相似文献   

6.
In the absence of mineral fertiliser, animal manure may be the only nutrient resource available to smallholder farmers in Africa, and manure is often the main input of C to the soil when crop residues are removed from the fields. Assessments of C and nutrient balances and cycling within agroecosystems or of greenhouse gas emissions often assume average C and nutrient mass fractions in manure, disregarding the impact that manure storage may have on C and nutrient losses from the system. To quantify such losses, in order to refine our models of C and nutrient cycling in smallholder (crop-livestock) farming systems, an experiment was conducted reproducing farmers’ practices: heaps vs. pits of a mix of cattle manure and maize stover (2:3 v/v) stored in the open air during 6 months. Heaps stored under a simple roof were also evaluated as an affordable improvement of the storage conditions. The results were used to derive empirical models and graphs for the estimation of C and nutrient losses. Heaps and pits were turned every month, weighed, and sampled to determine organic matter, total and mineral N, P and K mass fractions. Soils beneath heaps/pits were sampled to measure mineral N to a depth of 1 m, and leaching tube tests in the laboratory were used to estimate P leaching from manure. After 6 months, ca. 70% remained of the initial dry mass of manure stored in pits, but only half of or less of the manure stored in heaps. The stored manure lost 45% of its C in the open air and 69% under roof. The efficiencies of nutrient retention during storage varied between 24–38% for total N, 34–38% for P and 18–34% for K, with the heaps under a roof having greater efficiencies of retention of N and K. Laboratory tests indicated that up to 25% of the P contained in fresh manure could be lost by leaching. Results suggest that reducing the period of storage by, for example, more frequent application and incorporation of manure into the soil may have a larger impact on retaining C and nutrient within the farm system than improving storage conditions.  相似文献   

7.
The production of ligninolytic enzymes (laccase and Mn-dependent peroxidase) by the white-rot fungus Pleurotus pulmonarius (FR.) Quélet was studied in solid-state cultures using agricultural and food wastes as substrate. The highest activities of laccase were found in wheat bran (2,860?±?250 U/L), pineapple peel (2,450?±?230 U/L), and orange bagasse (2,100?±?270 U/L) cultures, all of them at an initial moisture level of 85 %. The highest activities of Mn peroxidase were obtained in pineapple peel cultures (2,200?±?205 U/L) at an initial moisture level of 75 %. In general, the condition of high initial moisture level (80–90 %) was the best condition for laccase activity, while the best condition for Mn peroxidase activity was cultivation at low initial moisture (50–70 %). Cultures containing high Mn peroxidase activities were more efficient in the decolorization of the industrial dyes remazol brilliant blue R (RBBR), Congo red, methylene blue, and ethyl violet than those containing high laccase activity. Also, crude enzymatic extracts with high Mn peroxidase activity were more efficient in the in vitro decolorization of methylene blue, ethyl violet, and Congo red. The dye RBBR was efficiently decolorized by both crude extracts, rich in Mn peroxidase activity or rich in laccase activity.  相似文献   

8.
Green roofs provide ecosystem services through evapotranspiration and nutrient cycling that depend, among others, on plant species, substrate type, and substrate depth. However, no study has assessed thoroughly how interactions between these factors alter ecosystem functions and multifunctionality of green roofs. We simulated some green roof conditions in a pot experiment. We planted 20 plant species from 10 genera and five families (Asteraceae, Caryophyllaceae, Crassulaceae, Fabaceae, and Poaceae) on two substrate types (natural vs. artificial) and two substrate depths (10 cm vs. 30 cm). As indicators of major ecosystem functions, we measured aboveground and belowground biomasses, foliar nitrogen and carbon content, foliar transpiration, substrate water retention, and dissolved organic carbon and nitrates in leachates. Interactions between substrate type and depth strongly affected ecosystem functions. Biomass production was increased in the artificial substrate and deeper substrates, as was water retention in most cases. In contrast, dissolved organic carbon leaching was higher in the artificial substrates. Except for the Fabaceae species, nitrate leaching was reduced in deep, natural soils. The highest transpiration rates were associated with natural soils. All functions were modulated by plant families or species. Plant effects differed according to the observed function and the type and depth of the substrate. Fabaceae species grown on natural soils had the most noticeable patterns, allowing high biomass production and high water retention but also high nitrate leaching from deep pots. No single combination of factors enhanced simultaneously all studied ecosystem functions, highlighting that soil–plant interactions induce trade‐offs between ecosystem functions. Substrate type and depth interactions are major drivers for green roof multifunctionality.  相似文献   

9.
The potential for using agricultural and industrial by-products as substrate for the production of the edible mushroom, Auricularia polytricha, was evaluated using several formulations of selected palm oil wastes mixed with sawdust and further supplemented with selected nitrogen sources. The best substrate formulations were sawdust (SD) mixed with oil palm frond (OPF; 90:10) added with 15 % spent grain (SG) and sawdust mixed with empty fruit bunch (EFB; 50:50) added with 10 % spent grain (SG) with mycelia growth rate of 8 mm/day and 7 mm/day respectively. These two substrate formulations were then subjected to different moisture content levels (65 %, 75 % and 85 %). Highest total fresh sporophore yield at 0.43 % was obtained on SD?+?OPF (90:10)?+?15 % SG at 85 % moisture content, followed closely by SD?+?EFB (50:50)?+?10 % SG with 0.40 % total yield, also at 85 % moisture content. Each of the substrate formulations at 85 % moisture content gave the highest biological efficiency (BE) at 288.9 % and 260.7 %, respectively. Both yield and biological efficiency of A. polytricha on these two formulations were almost three times higher when compared to sawdust substrate alone, thus proving the potential of these formulations to improve yield of this mushroom.  相似文献   

10.
This paper analyses the temperature regime of an existing green roof and a sod roof, compared with a modified bituminous membrane roof and a steel sheet roof. The measurement period was from June 2004 to December 2007 at three different measurement locations. Results are given both seasonally and daily; indexes to characterize the effects of the temperature of planted roofs are also proposed. In summer, temperatures under both the green roof (100 mm) and the sod roof (150 mm) showed a similar temperature run; undesirable higher temperatures on the surfaces did not cause a notable increase in temperature under the substrate layers. The difference between the temperature amplitude under the substrate layers of the planted roofs and the surfaces of the conventional roofs was on average 20 °C. In autumn and spring, the sod roof's soil layer showed higher temperatures and lower amplitude than the green roof's substrate layer, which cooled more. In winter, temperatures under the substrate layers of the planted roofs were higher than the surfaces of the conventional roofs; average amplitude was 1 °C and 7–8 °C, respectively.  相似文献   

11.
The aim of the present study was to investigate whether olive leaves were feasible as a substrate for laccase production by the white-rot fungus Trametes versicolor FPRL 28A INI under solid-state fermentation conditions. Different experiments were conducted to select the variables that allow obtaining high levels of laccase activity. In particular, the effects of the initial moisture content, substrate particle size, supplementation with inorganic and organic nitrogen sources were evaluated. Highest laccase activity (276.62 ± 25.67 U/g dry substrate) was achieved with 80 % initial moisture content and 1.4–1.6 mm particle size of the substrate supplemented with yeast extract (1 % (w/w) nitrogen). Such a high activity was obtained without any addition of inducers.  相似文献   

12.
A strain development program was initiated to improve the tolerance of the pentose-fermenting yeast Pachysolen tannophilus to inhibitors in lignocellulosic hydrolysates. Several rounds of UV mutagenesis followed by screening were used to select for mutants of P. tannophilus NRRL Y2460 with improved tolerance to hardwood spent sulfite liquor (HW SSL) and acetic acid in separate selection lines. The wild type (WT) strain grew in 50 % (v/v) HW SSL while third round HW SSL mutants (designated UHW301, UHW302 and UHW303) grew in 60 % (v/v) HW SSL, with two of these isolates (UHW302 and UHW303) being viable and growing, respectively, in 70 % (v/v) HW SSL. In defined liquid media containing acetic acid, the WT strain grew in 0.70 % (w/v) acetic acid, while third round acetic acid mutants (designated UAA301, UAA302 and UAA303) grew in 0.80 % (w/v) acetic acid, with one isolate (UAA302) growing in 0.90 % (w/v) acetic acid. Cross-tolerance of HW SSL-tolerant mutants to acetic acid and vice versa was observed with UHW303 able to grow in 0.90 % (w/v) acetic acid and UAA302 growing in 60 % (v/v) HW SSL. The UV-induced mutants retained the ability to ferment glucose and xylose to ethanol in defined media. These mutants of P. tannophilus are of considerable interest for bioconversion of the sugars in lignocellulosic hydrolysates to ethanol.  相似文献   

13.
The litter-dwelling fungus Fusarium incarnatum LD-3 has been identified as a novel producer of laccase. The present work was oriented towards the optimization of various cultivation conditions for maximizing laccase production under solid substrate fermentation. The process parameters were optimized by the “one factor at a time” approach. Maximum laccsase production was obtained at pH 5.0 and at a temperature of 28 °C with 60 % moisture content using rice bran as a substrate. The laccase production was enhanced in the presence of aromatic inducer, i.e. ortho-dianisidine at a concentration of 0.5 mM. Laccase production was further increased by 52.56 % when the medium was supplemented with 2 % (v/v) alcohol. Among the various amino acids tested as a growth factor and nitrogen source, D-Serine and DL-2 Amino n-butyric acid, DL-Alanine and L-Glycine were found to be the most suitable for laccase production. The highest laccase production (1,352.64 U/g) was achieved under optimized conditions, and was 2.1-fold higher than the unoptimized conditions. Thus, the novel litter-dwelling fungal isolate Fusarium incarnatum LD-3 seems to be an efficient producer of laccase and can be further exploited for biotechnological applications. This is the first report on the optimization of cultivation conditions and inducers for laccase production from Fusarium incarnatum LD-3.  相似文献   

14.
绿色屋顶径流调控研究进展   总被引:5,自引:0,他引:5  
陈小平  黄佩  周志翔 《生态学杂志》2015,26(8):2581-2590
绿色屋顶在屋顶径流调控方面发挥着重要作用,能够有效减少径流量、延缓产流时间、降低径流峰值和改善径流水质.本文从绿色屋顶的分类及界定、绿色屋顶对径流的调控机制、绿色屋顶对径流量和水质的调控作用及其影响因素等方面阐述了国内外的研究现状,并从绿色屋顶植物的选择、高效绿色屋顶构建模式筛选、绿色屋顶径流调控规律研究、绿色屋顶截流能力的价值评估、绿色屋顶径流污染物的源 汇解析及缓解措施等方面提出了绿色屋顶径流调控的研究趋势,以期为城市绿色屋顶的建设提供理论和方法支持.  相似文献   

15.
We investigated the effects of substrate composition on foraging behavior and growth rate of larval green sturgeon, Acipenser medirostris, in the laboratory at 20±1°C over a period of 5 weeks. Larval groups (n=100) with mean wet weight (0.72±0.01 g) at 50 days post-hatch were reared on slate-rocks, cobble, sand or glass. Typically, fish were negatively rheotactic and exhibited dispersed skimming behaviors on provided substrates during pre-feeding and feeding, respectively, but were all positively rheotactic during feeding. Fish reared on slate-rock substrates were negatively phototactic, remained benthic, and aggregated underneath the substrates. In all substrates except slate-rocks, fish displayed frequent episodes of burst and glide swimming activity, tank wall skimming and vertical swimming behaviors, however these behaviors ceased immediately during feeding and reappeared at the end of the feeding period. Substrate composition led to variable foraging effectiveness and likely contributed to significant differences in specific growth rates (2.28, 1.14, 1.77, and 2.27% body weight per day) and mortality (7%, 40%, 11%, 0%) among the treatment groups; slate-rocks, cobble, sand, and glass, respectively. There were no significant differences in morphometrics, somatotopic indices, and whole-body lipid content among treatment groups at the end of the experiment. The present findings indicate that certain substrates in artificial/natural habitats may negatively affect larval growth and may lead to decreased recruitment of juvenile green sturgeon in the wild.  相似文献   

16.
Tri-substrate mixture of Prosopis juliflora (PJ), red gram husk (RGH) and cotton seed cake (CSC) has been studied for the production of lipase (E.C. 3.1.1.3) using Aspergillus niger MTCC 872 in solid state fermentation. Simplex centroid mixture design (SCMD) was implemented to optimize the tri-substrate mixture composition consisting of PJ, RGH and CSC. Mixture taken in the ratio of 6.66:1.66:1.66 for PJ:RGH:CSC has shown highest lipase activity of 212.20 ± 6.36 U/gds at 30 °C, 7 pH and 70 % initial moisture content (v/w). Sequential optimization of physical parameters was done using the central composite face-centered design (CCFD). The optimum mixture composition has shown the highest lipase activity of 269.87 ± 8.09 U/gds at 35 °C, 7 pH and 70 % initial moisture content (v/w). ANOVA analysis for SCMD and CCFD confirms the model’s significance with R2 values of 0.9989 and 0.968. A 1.27 fold increased lipase activity was obtained after physical parameters optimization. Large scale production using 1 kg substrate was carried out in tray bioreactor with different bed heights and the highest lipase activity of 208.79 ± 6.26 U/gds was obtained. This study signifies the enhancement of lipase production using substrate PJ for lipase production along with the other agricultural residues.  相似文献   

17.
A β-glucosidase gene bglX was cloned from Lactococcus sp. FSJ4 by the method of shotgun. The bglX open reading frame consisted of 1,437 bp, encoding 478 amino acids. SDS-PAGE showed a recombinant bglX monomer of 54 kDa. Substrate specificity study revealed that the enzyme exhibited multifunctional catalysis activity against pNPG, pNPX and pNPGal. This enzyme shows higher activity against aryl glycosides of xylose than those of glucose or galactose. The enzyme exhibited the maximal activity at 40 °C, and the optimal pH was 6.0 with pNPG and 6.5 with pNPX as the substrates. Molecular modeling and substrate docking showed that there should be one active center responsible for the mutifuntional activity in this enzyme, since the active site pocket was substantially wide to allow the entry of pNPG, pNPX and pNPGal, which elucidated the structure–function relationship in substrate specificities. Substrate docking results indicated that Glu180 and Glu377 were the essential catalytic residues of the enzyme. The CDOCKER_ENERGY values obtained by substrate docking indicated that the enzyme has higher activity against pNPX than those of pNPG and pNPGal. These observations are in conformity with the results obtained from experimental investigation. Therefore, such substrate specificity makes this β-glucosidase of great interest for further study on physiological and catalytic reaction processes.  相似文献   

18.

Purpose

The use of high levels of thermal insulation is a common practice towards reducing the energy consumption of the existing building stock; however, the embodied burdens associated with the additional insulation material are usually not taken into account and questions regarding the risks of over-specifying the insulation levels have been emerging, particularly for mild climate regions. This article addresses the issue presenting an integrated approach that combines life cycle assessment and thermal dynamic simulation to assess alternative retrofit strategies for the roof and exterior walls of two dwellings (from the beginning of the twentieth century), in the historic city center of Coimbra, Portugal. A comprehensive analysis of alternative insulation thicknesses (no insulation, 40, 80, and 120 mm of expanded polystyrene) was made to identify optimal thickness levels minimizing life cycle (LC) environmental impacts for a single-family house and an apartment.

Methods

Embodied and operational impact trade-offs were calculated for six impact categories: climate change, ozone depletion, terrestrial acidification, freshwater eutrophication, marine eutrophication, and non-renewable primary energy. The operational energy was calculated using a dynamic thermal modeling software (EnergyPlus). The functional unit selected for this study was 1 m2 of living area over a period of 50 years.

Results and discussion

The single-family house embodied impacts account for 26–57 % of total LC impacts. For insulation thicknesses larger than 80 mm, the embodied impacts are greater than operational impacts. For the apartment, embodied impacts account for 25–49 % of total LC impacts. The environmental benefits of additional insulation are very low (<3 %) for thicknesses of more than 80 mm for both roof and exterior walls. For thicknesses above the tipping point (where total LC impacts are minimized), the marginal impacts of additional insulation are higher than the benefits. The results for the apartment show that optimal insulation thicknesses (LC tipping point) range from 30 to 40 mm for the roof and from 60 to 80 mm for the exterior walls. The LC tipping point for the single-family house is achieved by combining 80–100 mm of roof insulation with 60–80 mm of exterior wall insulation.

Conclusions

Extra insulation levels in temperate climates can lead to higher embodied impacts, without significant reduction in operational impacts, which can result in higher total LC impacts. The results show that a tipping point can be identified, and recommendations are provided for the roof and exterior wall retrofits of buildings from the beginning of the twentieth century.
  相似文献   

19.
Extensive green roofs substrates should meet a list of physicochemical and biochemical requirements to be used as a basis for plant growth: high water holding capacity, good aeration, low bulk density, and proper drainage are some of them. In recent years, the impact of different organic matter doses and the substrate depth on the subsequent plant growth have been deeply studied. By contrast, there are not many publications about the effect of the inorganic component of these substrates on plant development and C and N sequestration potential by the green roof system, and even more under semi-arid Mediterranean conditions. Four substrates were made by mixing the same compost, at 10% by volume, with different inorganic materials: CsB (compost, silica sand, and crushed bricks; 1:1:8), CB (compost and crushed bricks; 1:9), CSB (compost, clay-loam soil, and crushed bricks; 1:1:8), and CsS (compost, silica sand, and clay-loam soil; 1:1:8). These were placed, a depth of 10 cm, on “cultivation tables” in an experimental farm located in the SE of Spain. Two native species were sown in each substrate: Lotus creticus and Asteriscus maritimus. Physicochemical, nutritional, and biochemical properties of the substrates as well as the plant development were evaluated during a 10-month experiment. The CsB and CSB mixtures had good physicochemical properties (high porosity and acceptable water holding capacity) although the levels of C, N, and humic substances were higher in the soil-containing substrates than in the CB and CsB mixtures. The hydrolytic enzyme activity was also promoted in these mixtures. The plant growth pattern showed differences regarding the inorganic composition of the substrate; L. creticus had superior development in the CsB substrate and A. maritimus was able to grow in all tested substrate mixtures, although its cover was low, being a more versatile candidate to establish a green roof cover. The greatest C and N sequestration potential was achieved by the CsS mixture, reaching 1.06 kg TC m−2 of green roof substrate. Therefore, substrate composition impacts the growth of native plant species as well as the C and N sequestration by the green roof system.  相似文献   

20.
A two-dimensional model for substrate transfer and biodegradation in a novel, annular fiber-illuminating bioreactor (AFIBR) is proposed in which photosynthetic bacteria are immobilized on the surface of a side-glowing optical fiber to form a stable biofilm. When excited by light, the desired intensity and uniform light distribution can be obtained within the biofilm zone in bioreactor and then realize continuous hydrogen production. Substrate transfer and biodegradation within the biofilm zone, as well as substrate diffusion and convection within bulk fluid regions are considered simultaneously in this model. The validity of the model is verified experimentally. Based on the model analysis, influences of flow rate and light intensity on the substrate consumption rate and substrate degradation efficiency were investigated. The simulation results show that the optimum operational conditions for the substrate degradation within the AFIBR are: flow rate 100 ml h?1 and light intensity 14.6 μmol photons m?2 s?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号