首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The only fully coupled land-atmosphere global climate model predicts a widespread dieback of Amazonian forest cover through reduced precipitation. Although these predictions are controversial, the structural and compositional resilience of Amazonian forests may also have been overestimated, as current vegetation models fail to consider the potential role of fire in the degradation of forest ecosystems. We examine forest structure and composition in the Arapiuns River basin in the central Brazilian Amazon, evaluating post-fire forest recovery and the consequences of recurrent fires for the patterns of dominance of tree species. We surveyed tree plots in unburned and once-burned forests examined 1, 3 and 9 years after an unprecedented fire event, in twice-burned forests examined 3 and 9 years after fire and in thrice-burned forests examined 5 years after the most recent fire event. The number of trees recorded in unburned primary forest control plots was stable over time. However, in both once- and twice-burned forest plots, there was a marked recruitment into the 10-20cm diameter at breast height tree size classes between 3 and 9 years post-fire. Considering tree assemblage composition 9 years after the first fire contact, we observed (i) a clear pattern of community turnover among small trees and the most abundant shrubs and saplings, and (ii) that species that were common in any of the four burn treatments (unburned, once-, twice- and thrice-burned) were often rare or entirely absent in other burn treatments. We conclude that episodic wildfires can lead to drastic changes in forest structure and composition, with cascading shifts in forest composition following each additional fire event. Finally, we use these results to evaluate the validity of the savannization paradigm.  相似文献   

2.
黑龙江省大兴安岭林区火烧迹地森林更新及其影响因子   总被引:8,自引:0,他引:8  
林火干扰是大兴安岭森林更新的影响因子之一,研究火烧迹地森林更新的影响因子(立地条件、火前植被、火干扰特征)对理解生态系统的结构、功能和火后演替轨迹具有重要意义。选取呼中及新林林业局55个代表性火烧样地,利用增强回归树分析法分析了火烧迹地森林更新的影响因素。结果表明:(1)立地条件是影响针、阔叶树更新苗密度的主要因素;海拔对针叶树更新苗密度的影响最大;坡度对阔叶树更新苗密度影响最大;(2)距上次火烧时间对针叶树更新苗比重影响最大,其次是林型;(3)中度林火干扰后森林更新状况好于轻度和重度火烧迹地。根据火烧迹地森林更新调查分析可知:林型影响火后演替模式,火前为针叶树或阔叶树纯林,火后易发生自我更新(火后树种更新组成与火前林型相同),而针阔混交林在火干扰影响下易于发生序列演替(火后初期以早期演替树种更新为主)。  相似文献   

3.
Not only wildfire damage, but the failure of post-fire forest restoration is also one of the major threats for the conservation of forest ecosystems. Therefore, it is required to estimate wildfire damaged potential and recovery capacity to orientate the management of a post-fire community. The aim of our research is to estimate the resistibility against wildfire and the post-fire regeneration capacity by merging field observation data with Terra/ASTER Level1B satellite data and a fire area simulation model (FARSITE). As a result, the resistibility against wildfire and the post-fire regeneration capacity were high in the high prior-fire normalized differential vegetation index (NDVI) areas, where the trees had been thriving. Also, after the fire, the well developed surface soil (the A horizon) provided a good environment for resprouting from unburned stumps and the rhizome. It is suggested that the thriving forests have a strong resistance against wildfire and have large regeneration capacity.  相似文献   

4.
Gidi Ne'eman  Ido Izhaki 《Ecography》1998,21(5):535-542
The study reported here describes for the first time the similarity between pre- and post-fire spatial patterns of the trees in a Mediterranean pine forest demonstrating that the pre-fire ancestor microsite is occupied also by the next generation. Although Aleppo pine Pinus halepensis Mill, is an obligatory post-fire seeder, it is adapted to regenerate in its pre-fire growing microsite. thus keeping suitable growing sites from generation to generation. We studied the effect of the dead burned adult pines on the density and size of their recruited saplings 2, 5, 11 and 20 yr after fire. A comparison of pine sapling density and size was made between the "near" zone (under the former effect of the burned canopy) and the'far'zone (beyond the former effect of the burned canopy).
In the site 2 yr after fire, seedling density was 56% higher in the "far" zone than in the'near'zone, but seedling .size was similar. However in the site 20 yr after fire, densities were similar in both zones, but the size was bigger by 89% in the "near" zone. Thus, population recruitment after fire seems to peak near the burned pine trees rather than at u distance from them, in contrast to Janzen's original'distance hypothesis' model suggested for undisturbed rainforest. Mere we present a new hypothetical model for the spatial pattern of post-fire regeneration of obligate seeder tree species forming open forests. It is proposed that in such trees the microsites which were kept by the burned adult trees, which are killed by the fire, are also the favorable regeneration microsite for the post-fire generation.  相似文献   

5.
We studied the influence of anthropogenic drivers on the distribution and regeneration of tree species in vegetation at different stages of succession from grasslands to oak forests in mid-montane Central Himalaya. We found fire, grazing, and lopping as the main factors hindering a progressive successional regime towards a late-successional oak community. Succession was studied in five vegetation formations (grasslands, pine, pine–oak, open oak, and dense oak), with similar site conditions, representing a theoretical successional sequence from early- to late-successional stages. A structured survey with uniform distribution of sampling plots in the five selected vegetation formations was conducted to gather information abut the vegetation communities. Early-successional grasslands and pine forests were found to harbour high densities of pine and oak seedling and sapling regeneration. However, recurring fires and chronic unsustainable levels of grazing in these vegetation formations obstructed progressive succession by eliminating regenerating seedling and saplings from the forest understorey. Similarly, in intermediate- and late-successional stages (including pine–oak, open oak, and dense oak), overexploitation of existing oaks trees via lopping and grazing of regenerating oak seedlings and saplings hampered oak regeneration and development. The possibility to convert pine forests into oak as well as the conservation of existing oak forests through controlled grazing and lopping are management options that can contribute to an enhanced functioning of forest ecosystems in the study area. We conclude that with strategic management that restricts the current anthropogenic disturbances, the extent of oak forest in the study area can be increased.  相似文献   

6.
The response of an ecosystem to disturbance reflects its stability, which is determined by two components: resistance and resilience. We addressed both components in a study of early post-fire response of natural broadleaved forest (Quercus robur, Ilex aquifolium) and pine plantation (Pinus pinaster, Pinus sylvestris) to a wildfire that burned over 6000 ha in NW Portugal. Fire resistance was assessed from fire severity, tree mortality and sapling persistence. Understory fire resistance was similar between forests: fire severity at the surface level was moderate to low, and sapling persistence was low. At the canopy level, fire severity was generally low in broadleaved forest but heterogeneous in pine forest, and mean tree mortality was significantly higher in pine forest. Forest resilience was assessed by the comparison of the understory composition, species diversity and seedling abundance in unburned and burned plots in each forest type. Unburned broadleaved communities were dominated by perennial herbs (e.g., Arrhenatherum elatius) and woody species (e.g., Hedera hibernica, Erica arborea), all able to regenerate vegetatively. Unburned pine communities presented a higher abundance of shrubs, and most dominant species relied on post-fire seeding, with some species also being able to regenerate vegetatively (e.g., Ulex minor, Daboecia cantabrica). There were no differences in diversity measures in broadleaved forest, but burned communities in pine forest shared less species and were less rich and diverse than unburned communities. Seedling abundance was similar in burned and unburned plots in both forests. The slower reestablishment of understory pine communities is probably explained by the slower recovery rate of dominant species. These findings are ecologically relevant: the higher resistance and resilience of native broadleaved forest implies a higher stability in the maintenance of forest processes and the delivery of ecosystem services.  相似文献   

7.
Fire is a common but poorly understood disturbance in the forested ecosystems of the Sierra Madre Occidental of Mexico. In this study, fire history, forest structure (density, species composition, regeneration, forest floor fuels, herbaceous cover, and age of pines), and the dendrochronological tree-ring record were measured at two unharvested 70-ha pine-oak sites near Ojito de Camellones, Durango, Mexico. Study sites were matched in slope, aspect, elevation, slope position, and plant composition, but they differed in fire history since 1945 and in forest structure. The long-term mean fire intervals (MFI) for all fires at both sites up to 1945 were similar—4.0 years at Site 1 (1744–1945) and 4.1 years at Site 2 (1815–1945)—but Site 1 burned only three times at the site margins since 1945 while Site 2 had 9 fires that scarred two or more sample trees and 15 total fires since 1945. Density measurements and age and diameter distributions showed that Site 1 was dominated by numerous, younger, smaller trees (mean total basal area of 23.4 m2/ha and 2730 trees/ha), while Site 2 had fewer, older, larger trees (basal area of 37.2 m2/ha, 647 trees/ha). Large, rotten fuel loading and duff depth were also greater at Site 1. Because regeneration averaged 6200 stems/ha at Site 1 and 8730 stems/ha at Site 2 (no significant difference), forest density at Site 2 was not limited by regeneration capability. The distributions of overstory diameter and pine age at both sites indicate that tree establishment occurred in pulses, with the largest cohort of trees establishing at Site 1 following the 1945 fire. The dense regeneration and heavy fuel accumulation at Site 1 are likely to support a switch from the former low-intensity fire regime to a high-intensity, stand-replacing fire across the site when the next suitable combination of ignition and weather occurs. Baseline quantitative information on fire frequency and ecological effects is essential to guide conservation or restoration of Madrean forests and may prove valuable for restoration of related fire-dependent ecosystems that have experienced extended fire exclusion elsewhere in North America.  相似文献   

8.
林火干扰对北方针叶林林下植被的影响   总被引:7,自引:0,他引:7       下载免费PDF全文
林下植被在北方针叶林植被群落中的物种多样性最高, 且具有较高的生物量周转率和地上部分净初级生产力, 对北方针叶林生态系统功能起着重要作用。火干扰是决定北方针叶林林下植被结构与功能的一个重要景观过程。该文综述了火干扰是如何通过与地形、火前林冠组成的交互作用而影响环境资源和林下植被的。最近的研究表明: 林下植被能够影响火后树木更新苗的定植、重建速率及森林演替轨迹; 林下植被还会通过影响元素的生物地球化学过程(凋落物降解和养分循环)影响林下环境资源的数量与异质性。因此, 研究火后初期北方针叶林林下植被的动态变化, 对于物种多样性保护和森林管理具有重要意义。  相似文献   

9.
Tree spatial patterns in dry coniferous forests of the western United States, and analogous ecosystems globally, were historically aggregated, comprising a mixture of single trees and groups of trees. Modern forests, in contrast, are generally more homogeneous and overstocked than their historical counterparts. As these modern forests lack regular fire, pattern formation and maintenance is generally attributed to fire. Accordingly, fires in modern forests may not yield historically analogous patterns. However, direct observations on how selective tree mortality among pre‐existing forest structure shapes tree spatial patterns is limited. In this study, we (a) simulated fires in historical and contemporary counterpart plots in a Sierra Nevadan mixed‐conifer forest, (b) estimated tree mortality, and (c) examined tree spatial patterns of live trees before and after fire, and of fire‐killed trees. Tree mortality in the historical period was clustered and density‐dependent, because trees were aggregated and segregated by tree size before fire. Thus, fires maintained an aggregated distribution of tree groups. Tree mortality in the contemporary period was widespread, except for dispersed large trees, because most trees were a part of large, interconnected tree groups. Thus, postfire tree patterns were more uniform and devoid of moderately sized tree groups. Postfire tree patterns in the historical period, unlike the contemporary period, were within the historical range of variability identified for the western United States. This divergence suggests that decades of forest dynamics without significant disturbances have altered the historical means of pyric pattern formation. Our results suggest that ecological silvicultural treatments, such as forest restoration thinnings, which emulate qualities of historical forests may facilitate the reintroduction of fire as a means to reinforce forest structural heterogeneity.  相似文献   

10.
Fires are among the most globally important disturbances in forest ecosystems. Forest fires can be followed by bark beetle outbreaks. Therefore, the dynamic interactions between bark beetle outbreaks and fire appear to be of general importance in coniferous forests throughout the world. We tested three hypotheses of how forest fires in pine ecosystems (Pinus pinaster Alton and P. radiata D. Don) in Spain could alter the population dynamics of bark beetles and influence the probability of further disturbance from beetle outbreaks: fire could affect the antiherbivore resin defenses of trees, change their nutritional suitability, or affect top-down controls on herbivore populations. P. radiata defenses decreased immediately after fire, but trees with little crown damage soon recovered with defenses higher than before. Fire either reduced or did not affect nutritional quality of phloem and either reduced or had no effect on the abundance, diversity, and relative biomass of natural enemies. After fire, bark beetle abundance increased via rapid aggregation of reproductive adults on scorched trees. However, our results indicate that for populations to increase to an outbreak situation, colonizing beetles must initiate attacks before tree resin defenses recover, host trees must retain enough undamaged phloem to facilitate larval development, and natural enemies should be sufficiently rare to permit high beetle recruitment into the next generation. Coincidence of these circumstances may promote the possibility of beetle populations escaping to outbreak levels.  相似文献   

11.
The behavior of artificial radionuclides and microelements during forest fire events in the pine forests of Altai krai is investigated. It is shown that forest fires are accompanied by active air migration of 90Sr, 137Cs, Hg, Cd, As, and other elements, additionally polluting components of forest biogeocenosis, at least, on the territories adjacent to the fire areas. The activity of element migration depends mainly on the biogeochemical characteristics of the elements, on the humidity of forest combustible materials, and on weather conditions. During the post-fire periods, redistribution of the elements occurs as a result of their transportation with melted snow and rainwater. Revegetation on firest fire burn areas additionally changes the element distribution over the burnt territories.  相似文献   

12.
Aim Forest restoration in ponderosa pine and mixed ponderosa pine–Douglas fir forests in the US Rocky Mountains has been highly influenced by a historical model of frequent, low‐severity surface fires developed for the ponderosa pine forests of the Southwestern USA. A restoration model, based on this low‐severity fire model, focuses on thinning and prescribed burning to restore historical forest structure. However, in the US Rocky Mountains, research on fire history and forest structure, and early historical reports, suggest the low‐severity model may only apply in limited geographical areas. The aim of this article is to elaborate a new variable‐severity fire model and evaluate the applicability of this model, along with the low‐severity model, for the ponderosa pine–Douglas fir forests of the Rocky Mountains. Location Rocky Mountains, USA. Methods The geographical applicability of the two fire models is evaluated using historical records, fire histories and forest age‐structure analyses. Results Historical sources and tree‐ring reconstructions document that, near or before ad 1900, the low‐severity model may apply in dry, low‐elevation settings, but that fires naturally varied in severity in most of these forests. Low‐severity fires were common, but high‐severity fires also burned thousands of hectares. Tree regeneration increased after these high‐severity fires, and often attained densities much greater than those reconstructed for Southwestern ponderosa pine forests. Main conclusions Exclusion of fire has not clearly and uniformly increased fuels or shifted the fire type from low‐ to high‐severity fires. However, logging and livestock grazing have increased tree densities and risk of high‐severity fires in some areas. Restoration is likely to be most effective which seeks to (1) restore variability of fire, (2) reverse changes brought about by livestock grazing and logging, and (3) modify these land uses so that degradation is not repeated.  相似文献   

13.
Forest fires frequently occur in boreal forests, and their effects on forest ecosystems are often significant in terms of carbon flux related to climate changes. Soil respiration is the second largest carbon flux in boreal forests and the change in soil respiration is not negligible. Environmental factors controlling the soil respiration, for example, soil temperature, are altered by such fires. The abnormal increase in soil temperature has an important negative effect on soil microbes by reducing their activities or even by killing them directly with strong heat. On the other hand, although vegetation is directly disturbed by fires, the indirect changes in soil respiration are followed by changes in root activities and soil microbes. However, there is very limited information on soil respiration in the forests of Northeast China. This review, by combining what is known about fire influence on soil respiration in boreal forests from previous studies of post-fire effects on soil conditions, soil microbes, and forest regeneration, presents possible scenarios of the impact of anticipated post-fire changes in forest soil respiration in Northeast China.  相似文献   

14.
After decades of suppression, fire is returning to forests of the western United States through wildfires and prescribed burns. These fires may aid restoration of vegetation structure and processes, which could improve conditions for wildlife species and reduce severe wildfire risk. Understanding response of wildlife species to fires is essential to forest restoration because contemporary fires may not have the same effects as historical fires. Recent fires in the Chiricahua Mountains of southeastern Arizona provided opportunity to investigate long‐term effects of burn severity on habitat selection of a native wildlife species. We surveyed burned forest for squirrel feeding sign and related vegetation characteristics to frequency of feeding sign occurrence. We used radio‐telemetry within fire‐influenced forest to determine home ranges of Mexican fox squirrels, Sciurus nayaritensis chiricahuae, and compared vegetation characteristics within home ranges to random areas available to squirrels throughout burned conifer forest. Squirrels fed in forest with open understory and closed canopy cover. Vegetation within home ranges was characterized by lower understory density, consistent with the effects of low‐severity fire, and larger trees than random locations. Our results suggest that return of low‐severity fire can help restore habitat for Mexican fox squirrels and other native wildlife species with similar habitat affiliations in forests with a historical regime of frequent, low‐severity fire. Our study contributes to an understanding of the role and impact of fire in forest ecosystems and the implications for forest restoration as fire returns to the region.  相似文献   

15.
We studied post-fire transformations in functional characteristics of soil microbial communities and invertebrate complexes in the central-taiga pine forests of Central Siberia. The study revealed that fires of any severity reduce the density and diversity of soil invertebrates and adversely affect the structure and functioning of the sandy podzol microbial complexes. Post-fire recovery of the density and structure of soil invertebrate complexes and the functioning of sandy podzol microbial communities depend on fire duration and severity, as well as dynamics of hydrothermal and trophic properties of the pine forest soils.  相似文献   

16.
Questions: Did fire regimes in old‐growth Pinus ponderosa forest change with Euro‐American settlement compared to the pre‐settlement period? Do tree age structures exhibit a pattern of continuous regeneration or is regeneration episodic and related to fire disturbance or fire‐free periods? Are the forests compositionally stable? Do trees have a clumped spatial pattern and are clumps even‐ or mixed‐age? How might information from this old‐growth forest inform current restoration and management practices? Location: A 235‐ha old‐growth forest in the Ishi Wilderness, southern Cascade Mountains, California. Methods: Age, size, and spatial pattern of trees were quantified in seven stands. Fire history was reconstructed using fire scar dendrochronology. The influence of fire on stand structure was assessed by comparing fire history with age, size, and spatial structure of trees and identifying and measuring trees killed by two recent fires. Results: Species composition in plots was similar but density and basal area of tree populations varied. Age structure for P. ponderosa and Quercus kelloggii showed periods of episodic recruitment that varied among plots. Fire disturbance was frequent before 1905, with a median period between fires of 12 years. Fire frequency declined after 1905 but two recent fires (1990, 1994) killed 36% and 41% of mostly smaller diameter P. ponderosa and Q. kelloggii. Clusters of similar age trees occurred at scales of 28‐1018 m2 but patches were not even‐aged. Interactions between tree regeneration and fire promoted development of uneven age groups of trees. Conclusions: Fire disturbance strongly influenced density, basal area, and spatial structure of tree populations. Fire exclusion over the last 100 years has caused compositional and structural changes. Two recent fires, however, thinned stands and created gaps favorable for Q. kelloggii and P. ponderosa regeneration. The effects of infrequent 20th century fire indicate that a low fire frequency can restore and sustain structural characteristics resembling those of the pre‐fire suppression period forest.  相似文献   

17.
Fire plays a fundamental role in the ecology of Araucaria-Nothofagus forests. This paper highlights the utility of dendrochronological techniques in providing the historical reference conditions to guide ecological restoration. In the Araucarian region human activity has dramatically changed the fire frequency in the Araucaria-Nothofagus forest ecosystems. Although further critical evaluation is required, our preliminary data show that, compared with the Native American period (pre-1883), there was widespread burning of forests associated with the subsequent Euro-Chilean settlement phase. Vast areas of subalpine forest were deliberately burned to increase pasture for cattle ranching. This process is documented by a major increase in the frequency of fires in the forested Araucaria-Nothofagus landscape during the 20th century. Prior to the 1880s the fire regime was characterized by infrequent catastrophic fires with long intervening periods of stability. The immediate reduction of human-induced fire is necessary to move these altered forest ecosystems towards the range of natural structural conditions and reestablish the historical variability of this ecological process. A better understanding of the fire ecology seems crucial in developing strategies for the restoration and management of these fire-dependent forest ecosystems.  相似文献   

18.
This study investigated the combined effects of heterogeneity of pre-fire forest cover and vegetation burn severity on post-fire vegetation density and regeneration at an early stage in Samcheok, Korea. To measure the spatial heterogeneity of pre-fire forests, spatial pattern metrics at a landscape level and class level were adopted, and a regression tree analysis for post-fire vegetation density and regeneration was used to avoid spatial autocorrelation. Two regression tree models were estimated for post-fire vegetation density and post-fire vegetation regeneration with the same independent variable sets, including heterogeneity of pre-fire forest cover and vegetation burn severity. The estimated model suggested that the percentage of Japanese red pine and burn severity were the most significant variables for post-fire vegetation density and regeneration, respectively. The compositional and spatial heterogeneity of pre-fire forest and burn severity, as well as the degree of burn severity, was found to have significant impacts on post-fire vegetation density and regeneration. Overall, more rapid vegetation regeneration can be expected in more severely burned areas. However, this rapid vegetation regeneration at an early stage is due mostly to perennials and shrubs, not to the sprouting or regrowth of trees. The study results strongly indicated that a susceptible forest cover type and its spatial patterns directly influence the heterogeneity of burn severity and early vegetation density and regeneration. Hence, the management of susceptible forest cover types is particularly critical for establishing more fire-resilient forests and for post-fire forest restoration.  相似文献   

19.
20.
One of the main factors involved in the decline in the European wild rabbit in the Iberian Peninsula is the loss of suitable habitats caused by abandonment of agricultural and grazing activities. Nowadays, Mediterranean landscapes suffer from wildfires that affect extensive areas and produce considerable habitat changes. However, little is known about the influence of wildfires and post-fire treatments on rabbit abundance to address policies to recover their populations. To do so, we studied abundances of this species in four types of plots during three consecutive years after a wildfire in Catalonia (NE Spain): (A) unburnt forests, (B) burnt forests with removal of burnt trees but with branches left, (C) burnt forests with removal of burnt trees and branches, and (D) non-forested burnt plots. Rabbits progressively colonised burnt plots, where their abundance increased for at least 5 years after the fire, but decreased or even disappeared in unburnt ones, indicating that forest fires have a positive effect on rabbit populations. Although abundances did not differ between the three burnt plot types, plots with removal of burnt branches had the highest increase in abundance. In addition, soil covered by branches or by dense vegetation appeared negatively correlated with abundance, indicating that this could hinder rabbit movements, while some plant species could benefit rabbits by providing high quality food. Thus, post-fire treatments favourable to rabbit populations might therefore be a good way of increasing the conservation and economic value of areas affected by forest fires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号