首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The typical antipsychotics chlorpromazine (CPZ) and trifluoperazine (TFP) increase the mean molecular area (mma) of acidic, but not neutral, glycerophospholipids in monolayers at pH 7.36 measured by the Langmuir technique. The atypical antipsychotic olanzapine (OLP(1)) is structurally similar to TFP. We have therefore studied the effects of OLP on glycerophospholipid monolayers and in comparison with CPZ. Olanzapine (10 microM, in subphase, pH 7.36) influenced the isotherms (surface pressure versus mma) in monolayers of the neutral dipalmitoyl phosphatidylcholine (DPPC) and the acidic dipalmitoyl phosphatidylserine (DPPS) or 1-palmitoyl-2-oleoylphosphatidylserine (POPS) in the increasing order of mma: DPPS相似文献   

2.
In this article, we investigate the interaction of meso-tetraphenylporphyrin (TPP) with phospholipid monolayers. Pure TPP molecules form films at the air-water interface with large extension of aggregation, which is confirmed by UV-vis spectra of transferred monolayers. For mixed films of TPP with dipalmitoyl phosphatidyl choline (DPPC) or dipalmitoyl phosphatidyl glycerol (DPPG), on the other hand, aggregation is only significant at high surface pressures or high concentrations of TPP (above 0.1 molar ratio). This was observed via Brewster angle microscopy (BAM) for the Langmuir films and UV-vis spectroscopy for transferred layers onto solid substrates. TPP indeed causes the DPPC and DPPG monolayers to expand, especially at the liquid-expanded to liquid-condensed phase transition for DPPC. The effects from TPP cannot be explained using purely geometrical considerations, as the area per TPP molecule obtained from the isotherms is at least twice the expected value from the literature. Therefore, interaction between TPP and DPPC or DPPG should be cooperative, so that more phospholipid molecules are affected than just the first neighbors to a TPP molecule.  相似文献   

3.
The effects of pulmonary surfactant protein SP-B on the properties of monolayers of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG), and a mixture of DPPC:DPPG (7:3, mol:mol) were studied using spread films at the air-water interface. The addition of SP-B to the phospholipid monolayers gave positive deviations from additivity of the mean areas in the films. At low protein concentrations (less than 45% amino acid residues which corresponds to 0.5 mol% or 10 weight% SP-B) monolayers of SP-B/DPPC, SP-B/DPPG and SP-B/(DPPC:DPPG) collapsed at surface pressures of about 70 mN.m-1, comparable to those of the lipids alone. At higher concentrations of SP-B in the protein-lipid monolayers, kink points appeared in the isotherms at about 40-45 mN.m-1, implying possible exclusion of material from the films, hence, changes in the original monolayer compositions. Calculated analyses of the monolayer compositions as a function of surface pressure indicated that nearly pure SP-B, associated with small amounts of phospholipid (2-3 lipid molecules per SP-B dimer), was lost from SP-B/DPPC, SP-B/DPPG, and SP-B/(DPPC:DPPG) films at surface pressures higher than 40-45 mN.m-1. The results are consistent with a low effectiveness of SP-B in removing saturated phospholipids, DPPC or DPPG, from the spread SP-B/phospholipid films.  相似文献   

4.
The simple model of the biological membrane is provided by well-controlled lipid monolayers at the air-water interface. The Maxwell displacement current technique (MDC) provides novel approach to conformation study of the membrane models. The effect of alcohols is interaction with membrane molecules, mainly with the lipid head group and consequent changes in physical-chemical properties of the membrane. The aim of study is to detect changes in structural, electrical and mechanical properties of dipalmitoyl-phosphatidylcholine (DPPC) monolayer on the subphase of methanol-water and ethanol-water mixtures before and after addition of antioxidant agent, vitamin C. Monolayers properties are investigated by a surface pressure analysis (including mechanical properties evaluation) and the Maxwell displacement current measurement, the dipole moment projection calculation. Surface pressure-area isotherms show similar behaviour of the DPPC monolayer on alcohol-water mixtures independently on presence of vitamin C. Binding/adsorption process induces change of electron density distribution across monolayer and thus the molecular dipole moment. We observe small or negligible binding of methanol molecules on oxygen bonds of DPPC. Thus the antioxidant, vitamin C, has no significant effect. For ethanol-water mixtures is observed recovery of electrical properties in presence of antioxidant agent. We suppose that vitamin C regulates DPPC-ethanol molecules interaction.  相似文献   

5.
Molecular dynamics simulations have been performed to investigate the interactions between chlorpromazine (CPZ) and Langmuir monolayers of the zwitterionic dipalmitoylphosphatidylcholine (DPPC) and the anionic dipalmitoylphosphatidylglycerol (DPPG). Simulations for a fixed surface density and different charge states - neutral and protonated CPZ - were able to capture important features of the CPZ-phospholipid monolayer interaction. Neutral CPZ is predominantly found in the hydrophobic tail region, whereas protonated CPZ is located at the lipid-water interface. Specific interactions (hydrogen bonds) between protonated CPZ and the lipid head groups were found for both zwitterionic and anionic monolayers. We computed lipid tail order parameters and investigated the effects of the drug upon tail ordering. We also computed electrostatic surface potentials and found qualitative good agreement with experimental results.  相似文献   

6.
Dehydrodieugenol, a neolignan isolated from the Brazilian plant Nectandra leucantha (Lauraceae) with reported antiprotozoal and anticancer activity, was incorporated in Langmuir monolayers of selected lipids as cell membrane models, aiming to comprehend its action mechanism at the molecular level. The interaction of this compound with the lipids dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylethanolamine (DPPE), dipalmitoylphosphatidylserine (DPPS), and dipalmitoylphosphatidylglycerol (DPPG) was inferred through tensiometry, infrared spectroscopy, and Brewster angle microscopy. The interactions had different effects depending on the chemical nature of the lipid polar head, with expansion for DPPC monolayers, condensation for DPPE, and expansion (at low surface pressures) followed by the overlap of the isotherms (at high surface pressure values) for DPPS and DPPG. Effects caused by dehydrodieugenol in the negatively charged lipids were distinctive, which was also reflected in the hysteresis assays, surface potential-area isotherms, and rheological measurements. Infrared spectroscopy indicated that the drug interaction with the monolayer affects not only the polar groups, but also the acyl lipid chains for all lipids. These results pointed to the fact that the interaction of the drug with lipid monolayers at the air-water interface is modulated by the lipid composition, mainly considering the polar head of the lipids, as well as the hydrophobicity of the lipids and the drug. As negatively charged lipids pointed to distinctive interaction, we believe this can be related to the antiprotozoal and anticancer properties of the compound.  相似文献   

7.
The interaction of the hepatitis G synthetic peptide E2(99-118) with cell membrane phospholipids of different characteristics such as dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) was studied by Langmuir isotherms. Epifluorescence microscopy and Atomic force microscopy (AFM) was also used to study interactions with DPPC. Compression isotherms of DPPC/E2(99-118) and DPPG/E2(99-118) mixed monolayers showed negative deviation from ideallity consistent with the existence of attractive interactions. The incorporation of the peptide in DPPC monolayer was also confirmed in epifluorescence microscopy and AFM studies. The peptide retarded the formation of DPPC domains and did not let the phospholipid get organized. No important differences in the interactions with DPPC (neutral) or DPPG (anionic) were found, thus suggesting that electrostatics forces do not have a predominant influence in these interactions.  相似文献   

8.
Clifton LA  Lad MD  Green RJ  Frazier RA 《Biochemistry》2007,46(8):2260-2266
External reflectance Fourier transform infrared (ER-FTIR) spectroscopy and surface pressure measurements have been used to characterize the interaction of wild-type puroindoline-b (Pin-b) and two mutant forms featuring single residue substitutions-namely, Gly-46 to Ser-46 (Pin-bH) and Trp-44 to Arg-44 (Pin-bS)-with condensed-phase monolayers of zwitterionic (L-alpha-dipalmitoylphosphatidylcholine, DPPC) and anionic (L-alpha-dipalmitoylphosphatidyl-dl-glycerol, DPPG) phospholipids. The interaction with anionic DPPG monolayers, monitored by surface pressure isotherms, was influenced significantly by mutations in Pin-b (p < 0.05); wild-type Pin-b showed the highest surface pressure change of 10.6 +/- 1.0 mN m-1, followed by Pin-bH (7.9 +/- 1.6 mN m-1) and Pin-bS (6.3 +/- 1.0 mN m-1), and the surface pressure isotherm kinetics were also different in each case. Integrated Amide I peak areas from corresponding ER-FTIR spectra confirmed the differences in adsorption kinetics, but also showed that differences in adsorbed amount were less significant, suggesting that mutations influence the degree of penetration into DPPG films. All Pin-b types showed evidence of interaction with DPPC films, detected as changes in surface pressure (5.6 +/- 1.1 mN m-1); however, no protein peaks were detected in the ER-FTIR spectra, which indicated that the interaction was via penetration with limited adsorption at the lipid/water interface. The expression of Pin-b mutants is linked to wheat endosperm hardness; therefore, the data presented here suggest that the lipid binding properties may be pivotal within the mechanism for this quality trait. In addition, the data suggest antimicrobial activities of Pin-b mutants would be lower than those of the wild-type Pin-b, because of decreased selectivity toward anionic phospholipids.  相似文献   

9.
The influence of cholesterol and POPE on lung surfactant model systems consisting of DPPC/DPPG (80:20) and DPPC/DPPG/surfactant protein C (80:20:0.4) has been investigated. Cholesterol leads to a condensation of the monolayers, whereas the isotherms of model lung surfactant films containing POPE exhibit a slight expansion combined with an increased compressibility at medium surface pressure (10-30 mN/m). An increasing amount of liquid-expanded domains can be visualized by means of fluorescence light microscopy in lung surfactant monolayers after addition of either cholesterol or POPE. At surface pressures of 50 mN/m, protrusions are formed which differ in size and shape as a function of the content of cholesterol or POPE, but only if SP-C is present. Low amounts of cholesterol (10 mol %) lead to an increasing number of protrusions, which also grow in size. This is interpreted as a stabilizing effect of cholesterol on bilayers formed underneath the monolayer. Extreme amounts of cholesterol (30 mol %), however, cause an increased monolayer rigidity, thus preventing reversible multilayer formation. In contrast, POPE, as a nonbilayer lipid thought to stabilize the edges of protrusions, leads to more narrow protrusions. The lateral extension of the protrusions is thereby more influenced than their height.  相似文献   

10.
Our study highlights the tight relationship between protein binding to monolayers and the phase-state of the phospholipids. Interaction of mitochondrial creatine kinase with phospholipidic membranes was analysed using a two-phase monolayer system containing anionic phospholipids under chain mismatch conditions. Monolayers were made up of mixtures of DMPC/DPPG or DPPC/DMPG containing 40% negatively charged phospholipids which is approximately the negative charge content of the mitochondrial inner membrane. Langmuir isotherms of these monolayers showed that they underwent a phase transition from a liquid expanded state to a liquid-condensed phase at about 2 mN/m and 5 mN/m respectively. Interface morphology modifications caused by injection of mtCK under these monolayers at low or high surface pressure were monitored by Brewster angle microscopy. This work provides evidence that the presence at the air/water interface of discrete domains with increased charge density, may lead to difference in partition of soluble proteins such as mtCK, interacting with the lipid monolayer. Conversely these proteins may help to organize charged phospholipid domains in a membrane.  相似文献   

11.
Zeng Z  Li D  Xue W  Sun L 《Biophysical chemistry》2007,131(1-3):88-95
A simple surface equation of state is proposed to describe pi-A isotherms of pulmonary surfactant monolayers. The monolayer is considered as undergoing three characteristic states during the compression: the disordered liquid-expanded (LE) state, the ordered liquid-condensed (LC) state and the collapse state. Structural models of pure protein (SP-B and SP-C) monolayer are proposed to interpret the behavior characteristics of monolayer in the states. The area, ALC, is defined as an instantaneous LC-state area when the monolayer is under the complete LC state. The area, At, is defined as a transition area from the ordered LC state to the collapse state. And the collapse pressure, pi(max), is defined as the maximum surface pressure that the monolayer can bear before collapse. The ideal equation of state is revised by ALC, At and pi(max), and a new equation of state is obtained, which is applicable for pure components of pulmonary surfactant. The theoretical pi-A isotherms described by the equation of state are compared with the experimental ones for SP-B, SP-C, DPPC and DPPG, and good agreements are obtained. The equation of state is generalized to protein-lipid binary mixtures by introducing mixing rules. The predicted pi-A isotherms agree with the experimental ones for various pulmonary surfactant components and the average deviation is about 9.2%.  相似文献   

12.
Interaction of the human antimicrobial peptide LL-37 with lipid monolayers has been investigated by a range of complementary techniques including pressure-area isotherms, insertion assay, epifluorescence microscopy, and synchrotron x-ray scattering, to analyze its mechanism of action. Lipid monolayers were formed at the air-liquid interface to mimic the surface of the bacterial cell wall and the outer leaflet of erythrocyte cell membrane by using phosphatidylglycerol (DPPG), phosphatidylcholine (DPPC), and phosphatidylethanolamine (DPPE) lipids. LL-37 is found to readily insert into DPPG monolayers, disrupting their structure and thus indicating bactericidal action. In contrast, DPPC and DPPE monolayers remained virtually unaffected by LL-37, demonstrating its nonhemolytic activity and lipid discrimination. Specular x-ray reflectivity data yielded considerable differences in layer thickness and electron-density profile after addition of the peptide to DPPG monolayers, but little change was seen after peptide injection when probing monolayers composed of DPPC and DPPE. Grazing incidence x-ray diffraction demonstrated significant peptide insertion and lateral packing order disruption of the DPPG monolayer by LL-37 insertion. Epifluorescence microscopy data support these findings.  相似文献   

13.
The interaction of the hydrophobic pulmonary surfactant protein SP-C with dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylglycerol (DPPG) and DPPC:DPPG (7:3, mol:mol) in spread monolayers at the air-water interface has been studied. At low concentrations of SP-C (about 0.5 mol% or 3 weight%protein) the protein-lipid films collapsed at surface pressures of about 70 mN.m-1, comparable to those of the lipids alone. At initial protein concentrations higher than 0.8 mol%, or 4 weight%, the isotherms displayed kinks at surface pressures of about 50 mN.m-1 in addition to the collapse plateaux at the higher pressures. The presence of less than 6 mol%, or 27 weight%, of SP-C in the protein-lipid monolayers gave a positive deviation from ideal behavior of the mean areas in the films. Analyses of the mean areas in the protein-lipid films as functions of the monolayer composition and surface pressure showed that SP-C, associated with some phospholipid (about 8-10 lipid molecules per molecule of SP-C), was squeezed out from the monolayers at surface pressures of about 55 mN.m-1. The results suggest a potential role for SP-C to modify the composition of the monolayer at the air-water interface in the alveoli.  相似文献   

14.
The characteristics of the fluorescent dye, merocyanine 540 (MC-540), incorporated in monolayers of 1,2-dipalmitoyl-phosphatidylcholine (DPPC), and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) were studied in different states of molecular packing. Conditions for phase separation in these monolayers were defined by their pressure/area (pi-A) isotherms. Within the liquid expanded (LE) and the liquid condensed (LC) coexisting phases of DPPC monolayers, low light level epifluorescence microscopy revealed 'dark' discoid domains embedded in a 'bright' matrix. Under the same conditions, and at temperatures as low as 12 degrees C, the pi-A isotherms of POPC demonstrate the existence of a single phase, and no fluorescent domains were observed. Fluorescence spectra of MC-540 labelled monolayers, recorded in different structural states, reveal three distinct emission peaks: a 572 nm peak, present for monolayer packing conditions at low surface pressures; a 585 nm peak, similar to that obtained from dye molecules in fluid phase lipid bilayers, and observed here within the respective area/molecule ranges of 54-62 A2 and 62-69 A2 for monolayers of DPPC and POPC with diminishing intensity at increasing surface pressure; and finally, a peak at 560 nm, which predominates in densely packed POPC monolayers. Our results are interpreted on the basis of dye partitioning between monolayer and subphase, and different orientations of the dye with respect to the monolayer in various structural states. The usefulness of MC-540 to differentiate lipid packing in cell membranes is discussed.  相似文献   

15.
Puroindolines, cationic and cystine-rich low molecular weight lipid binding proteins from wheat seeds, display unique foaming properties and antimicrobial activity. To unravel the mechanism involved in these properties, the interaction of puroindoline-a (PIN-a) with dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) monolayers was studied by coupling Langmuir-Blodgett and imaging techniques. Compression isotherms of PIN-a/phospholipid monolayers and adsorption of PIN-a to lipid monolayers showed that the protein interacted strongly with phospholipids, especially with the anionic DPPG. The electrostatic contribution led to the formation of a highly stable lipoprotein monolayer. Confocal laser scanning microscopy and atomic force microscopy showed that PIN-a was mainly inserted in the liquid-expanded phase of the DPPC, where it formed an aggregated protein network and induced the fusion of liquid-condensed domains. For DPPG, the protein partitioned in both the liquid-expanded and liquid-condensed phases, where it was aggregated. The extent of protein aggregation was related both to the physical state of phospholipids, i.e., condensed or expanded, and to the electrostatic interactions between lipids and PIN-a. Aggregation of PIN-a at air-liquid and lipid interfaces could account for the biological and technological properties of this wheat lipid binding protein.  相似文献   

16.
Research on lipid/drug interactions at the nanoscale underpins the emergence of synergistic mechanisms for topical drug administration. The structural understanding of bio-mimetic systems employing 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) as a lung surfactant model mixed with antibiotics, as well as their biophysical properties, is of critical importance to modulate the effectiveness of therapeutic agents released directly to the airways. In this paper, we investigate the structural details of the interaction between Levofloxacin, ‘a respiratory quinolone’, and the macrolide Clarithromycin, with DPPC monolayers at the air-water interface, using a combination of Brewster angle microscopy, polarization modulation-infrared reflection-adsorption spectroscopy (PM-IRRAS), surface pressure isotherms and neutron reflectometry (NR) to describe the structural details of this interaction. The results allowed association of changes in the π-A isotherm profile with changes in the molecular organization and the co-localization of the antibiotics within the lipid monolayer by NR measurements. Overall, both antibiotics are able to increase the thickness of the acyl tails in DPPC monolayers with a corresponding reduction in tail tilt as well as to interact with the phospholipid headgroups as shown by PM-IRRAS experiments. The effects on the DPPC monolayers are correlated with the physical-chemical properties of each antibiotic and dependent on its concentration.  相似文献   

17.
Pulmonary surfactant, a lipid-protein complex, secreted into the fluid lining of lungs prevents alveolar collapse at low lung volumes. Pulmonary surfactant protein C (SP-C), an acylated, hydrophobic, alpha-helical peptide, enhances the surface activity of pulmonary surfactant lipids. Fluorescein-labeled SP-C (F-SP-C) (3, 6, 12 wt%) in dipalmitoylphosphatidylcholine (DPPC), and DPPC:dipalmitoylphosphatidylglycerol (DPPG) [DPPC:DPPG 7:3 mol/mol] in spread monolayers was studied by epifluorescence microscopy. Mass spectometry of F-SP-C indicated that the protein is partially deacylated and labeled with 1 mol fluorescein/1 mol protein. The protein partitioned into the fluid, or liquid expanded, phase. Increasing amounts of F-SP-C in DPPC or DPPC:DPPG monolayers decreased the size and total amounts of the condensed phase at all surface pressures. Calcium (1.6 mM) increased the amount of the condensed phase in monolayers of DPPC:DPPG but not of DPPC alone, and such monolayers were also perturbed by F-SP-C. The study indicates that SP-C perturbs the packing of neutral and anionic phospholipid monolayers even when the latter systems are condensed by calcium, indicating that interactions between SP-C and the lipids are predominantly hydrophobic in nature.  相似文献   

18.
The interactions of three neuroleptic drugs, clozapine (CLZ), chlorpromazine (CPZ), and haloperidol (HPD) with phospholipids were compared using DSC and Langmuir balance. Main emphasis was on the drug-induced effects on the lateral organization of lipid mixtures of the saturated zwitterionic 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and the unsaturated acidic phosphatidylserine, brainPS. In multilamellar vesicles (MLV) phase separation was observed by DSC at X(PS)> or =0.05. All three drugs bound to these MLVs, abolishing the pretransition at X(drug)> or =0.03. The main transition temperature (T(m)) decreased almost linearly with increasing contents of the drugs, CLZ having the smallest effect. In distinction from the other two drugs, CLZ abolished the phase separation evident in the endotherms for DPPC/brainPS (X(PS)=0.05) MLVs. Compression isotherms of DPPC/brainPS/drug (X(PS)=X(drug)=0.05) monolayers revealed the neuroleptics to increase the average area/molecule, CLZ being the most effective. Penetration into brainPS monolayers showed strong interactions between the three drugs and this acidic phospholipid (in decreasing order CPZ>HPD>CLZ). Hydrophobic interactions demonstrated using neutral eggPC monolayers decreased in a different order, CLZ>CPZ>HPD. Fluorescence microscopy revealed domain morphology of DPPC/brainPS monolayers to be modulated by these drugs, increasing the gel-fluid domain boundary length in the phase coexistence region. To conclude, our data support the view that membrane-partitioning drugs could exert part of their effects by changing the lateral organization and thus also the functions of biomembranes.  相似文献   

19.
The phase behavior of lipid mixtures containing 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (18:0, 22:6 PC) with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) was studied with bilayers using differential scanning calorimetry (DSC), and with monolayers monitoring pressure/area isotherms and surface elasticity, and lipid domain formation followed by epifluorescence microscopy. From DSC studies it is concluded that DPPC/18:0, 22:6 PC phase separates into DPPC-rich and 18:0, 22:6 PC-rich phases. In monolayers, phase separation is indicated by changes in pressure-area isotherms implying phase separation where 18:0, 22:6 PC is 'squeezed out' of the remaining DPPC monolayer. Phase separation into lipid domains in the mixed PC monolayer is quantified by epifluorescence microscopy using the fluorescently labeled phospholipid membrane probe, 1, 2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl). These results further describe the ability of docosahexaenoic acid to participate in lipid phase separations in membranes.  相似文献   

20.
Pulmonary surfactant, a thin lipid/protein film lining mammalian lungs, functions in vivo to reduce the work of breathing and to prevent alveolar collapse. Analogues of two hydrophobic surfactant proteins, SP-B and SP-C, have been incorporated into therapeutic agents for respiratory distress syndrome, a pathological condition resulting from deficiency in surfactant. To facilitate rational design of therapeutic agents, a molecular level understanding of lipid interaction with surfactant proteins or their analogues in aqueous monolayer films is necessary. The current work uses infrared reflection-absorption spectroscopy (IRRAS) to determine peptide conformation and the effects of S-palmitoylation on the lipid interactions of a synthetic 13 residue N-terminal peptide [SP-C13(palm)(2)] of SP-C, in mixtures with 1,2-dipalmitoylphosphatidylcholine (DPPC) or 1,2-dipalmitoylphosphatidylglycerol (DPPG). Two Amide I' features, at approximately 1655 and approximately 1639 cm(-1) in the peptide IRRAS spectra, are assigned to alpha-helical peptide bonds in hydrophobic and aqueous environments, respectively. In binary DPPC/SP-C13(palm)(2) films, the proportion of hydrated/hydrophobic helix increases reversibly with surface pressure (pi), suggestive of the peptide being squeezed out from hydrophobic regions of the monolayer. No such effect was observed for DPPG/peptide monolayers, indicative of stronger, probably electrostatic, interactions. Depalmitoylation produced a weakened interaction with either phospholipid as deduced from IRRAS spectra and from pi-area isotherms. S-Palmitoylation may modulate peptide hydration and conformation in the N-terminal region of SP-C and may thus permit the peptide to remain in the film at the high surface pressures present during lung compression. The unique capability of IRRAS to detect the surface pressure dependence of protein or peptide structure/interactions in a physiologically relevant model for surfactant is clearly demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号