首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
艾丁嗜盐小盒菌B2菌株(Haloarcula aidinensis, strain B2)16Sr RNA的核苷酸序列已以双脱氧核苷酸链终止法确定。该菌16Sr RNA显示出了典型的古生物类(Archaea)特性。虽然艾丁嗜盐小盒菌B2菌株在序列方面更接近细菌类(Bacteria)的16SrRNA,但它的序列也显示出与真核生物类(Eucarya)的某些特殊的相似性。在序列和结构方面,该菌与细菌类或真核生物类之间的相似程度要高于细菌类与真核生物类之间的相似程度。另外,该菌16SrRNA的序列与其它嗜盐菌序列相比较支持了以前的结论,即艾丁嗜盐小盒菌B2菌株应属于嗜盐小盒菌属(Haloarcula)的一新种。  相似文献   

3.
The earth contains a huge number of largely uncharacterized Bacteria and Archaea. Microbiologists are struggling to summarize their genetic diversity and classify them, which has resulted in heated debates on methods for defining species, mechanisms that lead to speciation and whether microbial species even exist. This Review proposes that decisions on the existence of species and methods to define them should be guided by a method-free species concept that is based on cohesive evolutionary forces. It summarizes current approaches to defining species and the problems of these approaches, and presents selected examples of the population genetic patterns at and below the species level.  相似文献   

4.
The pragmatic species concept for Bacteria and Archaea is ultimately based on DNA-DNA hybridization (DDH). While enabling the taxonomist, in principle, to obtain an estimate of the overall similarity between the genomes of two strains, this technique is tedious and error-prone and cannot be used to incrementally build up a comparative database. Recent technological progress in the area of genome sequencing calls for bioinformatics methods to replace the wet-lab DDH by in-silico genome-to-genome comparison. Here we investigate state-of-the-art methods for inferring whole-genome distances in their ability to mimic DDH. Algorithms to efficiently determine high-scoring segment pairs or maximally unique matches perform well as a basis of inferring intergenomic distances. The examined distance functions, which are able to cope with heavily reduced genomes and repetitive sequence regions, outperform previously described ones regarding the correlation with and error ratios in emulating DDH. Simulation of incompletely sequenced genomes indicates that some distance formulas are very robust against missing fractions of genomic information. Digitally derived genome-to-genome distances show a better correlation with 16S rRNA gene sequence distances than DDH values. The future perspectives of genome-informed taxonomy are discussed, and the investigated methods are made available as a web service for genome-based species delineation.  相似文献   

5.
Although Archaea inhabit the human body and possess some characteristics of pathogens, there is a notable lack of pathogenic archaeal species identified to date. We hypothesize that the scarcity of disease-causing Archaea is due, in part, to mutually-exclusive phage and virus populations infecting Bacteria and Archaea, coupled with an association of bacterial virulence factors with phages or mobile elements. The ability of bacterial phages to infect Bacteria and then use them as a vehicle to infect eukaryotes may be difficult for archaeal viruses to evolve independently. Differences in extracellular structures between Bacteria and Archaea would make adsorption of bacterial phage particles onto Archaea (i.e. horizontal transfer of virulence) exceedingly hard. If phage and virus populations are indeed exclusive to their respective host Domains, this has important implications for both the evolution of pathogens and approaches to infectious disease control.  相似文献   

6.
Prokaryotes perform key functions in Antarctic ecosystems, and knowledge of the taxonomy of Antarctic prokaryotes is a prerequisite for the transfer of information between fields of scientific inquiry. The taxonomy of prokaryotes has been greatly revised and improved due to the refinements afforded by molecular techniques such as 16S rRNA sequencing. Past inventories of Antarctic microbial diversity are difficult to reconcile with the developing, phylogenetically-based taxonomy.Antarctic prokaryotes are considerably diverse and most evolutionary groups are represented, including representatives of both Archaea and Bacteria. The diversity appears unique due to the ease with which new species can be isolated; however, that may be a result of our vastly incomplete knowledge of both Antarctic and non-Antarctic prokaryotic diversity. Use of the 16S rRNA gene as a molecular clock would suggest that the majority of Antarctic prokaryotes diverged from their nearest known non-Antarctic relatives long before a stable ice-sheet developed in Antarctica. The time of colonization (or recolonization) of Antarctic environments by individual species may have been very recent in evolutionary time scales.  相似文献   

7.
It is desirable to estimate a tree of life, a species tree including all available species in the 3 superkingdoms, Archaea, Bacteria, and Eukaryota, using not a limited number of genes but full-scale genome information. Here, we report a new method for constructing a tree of life based on protein domain organizations, that is, sequential order of domains in a protein, of all proteins detected in a genome of an organism. The new method is free from the identification of orthologous gene sets and therefore does not require the burdensome and error-prone computation. By pairwise comparisons of the repertoires of protein domain organizations of 17 archaeal, 136 bacterial, and 14 eukaryotic organisms, we computed evolutionary distances among them and constructed a tree of life. Our tree shows monophyly in Archaea, Bacteria, and Eukaryota and then monophyly in each of eukaryotic kingdoms and in most bacterial phyla. In addition, the branching pattern of the bacterial phyla in our tree is consistent with the widely accepted bacterial taxonomy and is very close to other genome-based trees. A couple of inconsistent aspects between the traditional trees and the genome-based trees including ours, however, would perhaps urge to revise the conventional view, particularly on the phylogenetic positions of hyperthermophiles.  相似文献   

8.
The prokaryotic diversity of aerobic and anaerobic bacterial isolates and of bacterial and archaeal 16S rDNA clones was determined for a microbial mat sample from the moated region of Lake Fryxell, McMurdo Dry Valleys, Antarctica. Among the anaerobic bacteria, members of Clostridium estertheticum and some other psychrotolerant strains dominated whereas methanogens and other Archaea were lacking. Isolates highly related to Flavobacterium hibernum, Janthiniobacterium lividum, and Arthrobacter flavus were among the aerobic bacteria most frequently isolated. Assessment of more than 350 partial 16S rDNA clone sequences of libraries generated by Bacteria- and Archaea-specific PCR primers revealed a rich spectrum of bacterial diversity but only two different archaeal clone sequences. Among the Bacteria, representative sequences belonged to the class Proteobacteria, order Verrucomicrobiales, class Actinobacteria, Clostridium/Bacillus subphylum of Gram-positives, and the Cytophaga-Flavobacterium-Bacteroides phylum. The clones formed about 70 higher taxonomy groups (<98% sequence similarity) and 133 potential species, i.e., groups of clones sharing greater than 98% similarity. Only rarely were clone sequences found to be highly related to Lake Fryxell isolates and to strains of described species. Subsequent analysis of ten sequencing batches of 36 individual clones indicated that the diversity might be still higher than had been assessed.  相似文献   

9.
Bacterial strains are currently grouped into species based on overall genomic similarity and sharing of phenotypes deemed ecologically important. Many believe this polyphasic taxonomy is in need of revision because it lacks grounding in evolutionary theory, and boundaries between species are arbitrary. Recent taxonomy efforts using multilocus sequence typing (MLST) data are based on the identification of distinct phylogenetic clusters. However, these approaches face the problem of deciding the phylogenetic level at which clusters are representative of evolutionary or taxonomically distinct units. In this review, I propose classifying two phylogenetic clusters as separate species only when they have statistically significantly diverged as a result of adaptive evolution. More than a method for classification, the concept of adaptive divergence can be used in a 'reverse ecology' approach to identify lineages that are in the process of speciation or genes involved in initial adaptive divergence.  相似文献   

10.
Two hydrothermal springs (AI: 51 °C, pH 3; AIV: 92 °C, pH 8) were analysed to determine prokaryotic community composition. Using pyrosequencing, 93,576 partial 16S rRNA gene sequences amplified with V2/V3-specific primers for Bacteria and Archaea were investigated and compared to 16S rRNA gene sequences from direct metagenome sequencing without prior amplification. The results were evaluated by fluorescence in situ hybridization (FISH). While in site AIV Bacteria and Archaea were detected in similar relative abundances (Bacteria 40 %, Archaea 35 %), the acidic spring AI was dominated by Bacteria (68 %). In spring AIV the combination of 16S rRNA gene sequence analysis and FISH revealed high abundance (>50 %) of heterotrophic bacterial genera like Caldicellulosiruptor, Dictyoglomus, and Fervidobacterium. In addition, chemolithoautotrophic Aquificales were detected in the bacterial community with Sulfurihydrogenibium being the dominant genus. Regarding Archaea, only Crenarchaeota, were detected, dominated by the family Desulfurococcaceae (>50 %). In addition, Thermoproteaceae made up almost 25 %. In the acidic spring (AI) prokaryotic diversity was lower than in the hot, slightly alkaline spring AIV. The bacterial community of site AI was dominated by organisms related to the chemolithoautotrophic genus Acidithiobacillus (43 %), to the heterotrophic Acidicaldus (38 %) and to Anoxybacillus (7.8 %). This study reveals differences in the relative abundance of heterotrophic versus autotrophic microorganisms as compared to other hydrothermal habitats. Furthermore, it shows how different methods to analyse prokaryotic communities in complex ecosystems can complement each other to obtain an in-depth picture of the taxonomic composition and diversity within these hydrothermal springs.  相似文献   

11.
Ferredoxins, iron-sulfur (Fe-S) cluster proteins, play a key role in oxidoreduction reactions. To date, evolutionary analysis of these proteins across the domains of life have been confined to observing the abundance of Fe-S cluster types (2Fe-2S, 3Fe-4S, 4Fe-4S, 7Fe-8S (3Fe-4s and 4Fe-4S) and 2[4Fe-4S]) and the diversity of ferredoxins within these cluster types was not studied. To address this research gap, here we propose a subtype classification and nomenclature for ferredoxins based on the characteristic spacing between the cysteine amino acids of the Fe-S binding motif as a subtype signature to assess the diversity of ferredoxins across the living organisms. To test this hypothesis, comparative analysis of ferredoxins between bacterial groups, Alphaproteobacteria and Firmicutes and ferredoxins collected from species of different domains of life that are reported in the literature has been carried out. Ferredoxins were found to be highly diverse within their types. Large numbers of alphaproteobacterial species ferredoxin subtypes were found in Firmicutes species and the same ferredoxin subtypes across the species of Bacteria, Archaea, and Eukarya, suggesting shared common ancestral origin of ferredoxins between Archaea and Bacteria and lateral gene transfer of ferredoxins from prokaryotes (Archaea/Bacteria) to eukaryotes. This study opened new vistas for further analysis of diversity of ferredoxins in living organisms.  相似文献   

12.
13.
基因组分析方法在微生物分类学中的应用   总被引:1,自引:0,他引:1  
细菌分类学始于19世纪后半叶,当时主要是以表型标记和生理生化特性为基础的简单分类,之后DNA-DNA分子杂交、16S rRNA基因序列分析方法的出现给微生物分类带来了极大的便利。尽管如此,这些分类学方法仍然存在一些局限性,而基因组时代的到来,为微生物分类带来了新思路。本文主要介绍了5种基于全基因组数据的微生物分类方法,包括平均核苷酸同源性分析、核心基因组分析、最大唯一匹配指数分析、K串组分矢量法和基因流动性分析,并论述了这些方法在微生物分类学中的应用。  相似文献   

14.
Cataloging the very large number of undescribed species of insects could be greatly accelerated by automated DNA based approaches, but procedures for large-scale species discovery from sequence data are currently lacking. Here, we use mitochondrial DNA variation to delimit species in a poorly known beetle radiation in the genus Rivacindela from arid Australia. Among 468 individuals sampled from 65 sites and multiple morphologically distinguishable types, sequence variation in three mtDNA genes (cytochrome oxidase subunit 1, cytochrome b, 16S ribosomal RNA) was strongly partitioned between 46 or 47 putative species identified with quantitative methods of species recognition based on fixed unique ("diagnostic") characters. The boundaries between groups were also recognizable from a striking increase in branching rate in clock-constrained calibrated trees. Models of stochastic lineage growth (Yule models) were combined with coalescence theory to develop a new likelihood method that determines the point of transition from species-level (speciation and extinction) to population-level (coalescence) evolutionary processes. Fitting the location of the switches from speciation to coalescent nodes on the ultrametric tree of Rivacindela produced a transition in branching rate occurring at 0.43 Mya, leading to an estimate of 48 putative species (confidence interval for the threshold ranging from 47 to 51 clusters within 2 logL units). Entities delimited in this way exhibited biological properties of traditionally defined species, showing coherence of geographic ranges, broad congruence with morphologically recognized species, and levels of sequence divergence typical for closely related species of insects. The finding of discontinuous evolutionary groupings that are readily apparent in patterns of sequence variation permits largely automated species delineation from DNA surveys of local communities as a scaffold for taxonomy in this poorly known insect group.  相似文献   

15.
Maras salterns are located 3,380 m above sea level in the Peruvian Andes. These salterns consist of more than 3,000 little ponds which are not interconnected and act as crystallizers where salt precipitates. These ponds are fed by hypersaline spring water rich in sodium and chloride. The microbiota inhabiting these salterns was examined by fluorescence in situ hybridization (FISH), 16S rRNA gene clone library analysis, and cultivation techniques. The total counts per milliliter in the ponds were around 2 x 10(6) to 3 x 10(6) cells/ml, while the spring water contained less than 100 cells/ml and did not yield any detectable FISH signal. The microbiota inhabiting the ponds was dominated (80 to 86% of the total counts) by Archaea, while Bacteria accounted for 10 to 13% of the 4',6'-diamidino-2-phenylindole (DAPI) counts. A total of 239 16S rRNA gene clones were analyzed (132 Archaea clones and 107 Bacteria clones). According to the clone libraries, the archaeal assemblage was dominated by microorganisms related to the cosmopolitan square archaeon "Haloquadra walsbyi," although a substantial number of the sequences in the libraries (31% of the 16S rRNA gene archaeal clones) were related to Halobacterium sp., which is not normally found in clone libraries from solar salterns. All the bacterial clones were closely related to each other and to the gamma-proteobacterium "Pseudomonas halophila" DSM 3050. FISH analysis with a probe specific for this bacterial assemblage revealed that it accounted for 69 to 76% of the total bacterial counts detected with a Bacteria-specific probe. When pond water was used to inoculate solid media containing 25% total salts, both extremely halophilic Archaea and Bacteria were isolated. Archaeal isolates were not related to the isolates in clone libraries, although several bacterial isolates were very closely related to the "P. halophila" cluster found in the libraries. As observed for other hypersaline environments, extremely halophilic bacteria that had ecological relevance seemed to be easier to culture than their archaeal counterparts.  相似文献   

16.
A combination of culture-dependent and culture-independent methodologies (Bacteria and Archaea 16S rRNA gene clone library analyses) was used to determine the microbial diversity present within a geographically distinct high Arctic permafrost sample. Culturable Bacteria isolates, identified by 16S rRNA gene sequencing, belonged to the phyla Firmicutes, Actinobacteria and Proteobacteria with spore-forming Firmicutes being the most abundant; the majority of the isolates (19/23) were psychrotolerant, some (11/23) were halotolerant, and three isolates grew at -5 degrees C. A Bacteria 16S rRNA gene library containing 101 clones was composed of 42 phylotypes related to diverse phylogenetic groups including the Actinobacteria, Proteobacteria, Firmicutes, Cytophaga - Flavobacteria - Bacteroides, Planctomyces and Gemmatimonadetes; the bacterial 16S rRNA gene phylotypes were dominated by Actinobacteria- and Proteobacteria-related sequences. An Archaea 16S rRNA gene clone library containing 56 clones was made up of 11 phylotypes and contained sequences related to both of the major Archaea domains (Euryarchaeota and Crenarchaeota); the majority of sequences in the Archaea library were related to halophilic Archaea. Characterization of the microbial diversity existing within permafrost environments is important as it will lead to a better understanding of how microorganisms function and survive in such extreme cryoenvironments.  相似文献   

17.
Based on the amplification of a 16S rDNA, a PCR assay for the identification of species of Haloferax to genus level was performed. Two variable regions of the 16S rDNA in Haloferax spp. were selected as genus-specific primers for the PCR assay and hybridization probe. Five genera of halophilic Archaea and Escherichia coli were examined as outside groups. Using this approach, all strains of Haloferax spp. were positive. In contrast, all species belonging to the most closely related genera, including Natrinema, Halorubrum, Halobacterium, and Haloarcula, were negative. In addition, the mass bloom of halophilic Archaea that develops in the El-Mallahet saltern of Alexandria City was positive using the same approach. This assay, which does not require pure cultures of microorganisms, is a specific and rapid method for identifying Haloferax spp. in hypersaline environments.  相似文献   

18.
DNA-DNA hybridization has been established as an important technology in bacterial species taxonomy and phylogenetic analysis. In this study, we analyzed how the efficiency with which the genomic DNA from one species hybridizes to the genomic DNA of another species (DNA-DNA hybridization) in microarray analysis relates to the similarity between two genomes. We found that the predicted DNA-DNA hybridization based on genome sequence similarity correlated well with the experimentally determined microarray hybridization. Between closely related strains, significant numbers of highly divergent genes (<55% identity) and/or the accumulation of mismatches between conserved genes lowered the DNA-DNA hybridization signal, and this reduced the hybridization signals to below 70% for even bacterial strains with over 97% 16S rRNA gene identity. In addition, our results also suggest that a DNA-DNA hybridization signal intensity of over 40% indicates that two genomes at least shared 30% conserved genes (>60% gene identity). This study may expand our knowledge of DNA-DNA hybridization based on genomic sequence similarity comparison and further provide insights for bacterial phylogeny analyses.  相似文献   

19.
Bacteria are profoundly different from eukaryotes in their patterns of genetic exchange. Nevertheless, ecological diversity is organized in the same way across all of life: individual organisms fall into more less discrete clusters on the basis of their phenotypic, ecological, and DNA sequence characteristics. Each sequence cluster in the bacterial world appears to correspond to an "ecotype," defined as a population of cells in the same ecological niche, which would all be out-competed by any adaptive mutant coming from the population. Ecotypes, so defined, share many of the dynamic properties attributed to eukaryotic species: genetic diversity within an ecotype is limited by a force of cohesion (in this case, periodic selection); different ecotypes are free to diverge without constraint from one another; and ecotypes are ecologically distinct. Also, ecotypes can be discovered and classified as DNA sequence clusters, even when we are ignorant of their ecology. Owing to the rarity and promiscuity of bacterial genetic exchange, speciation in the bacterial world is expected to be much less constrained than in the world of animals and plants.  相似文献   

20.
Despite a growing appreciation of their vast diversity in nature, mechanisms of speciation are poorly understood in Bacteria and Archaea. Here we use high-throughput genome sequencing to identify ongoing speciation in the thermoacidophilic Archaeon Sulfolobus islandicus. Patterns of homologous gene flow among genomes of 12 strains from a single hot spring in Kamchatka, Russia, demonstrate higher levels of gene flow within than between two persistent, coexisting groups, demonstrating that these microorganisms fit the biological species concept. Furthermore, rates of gene flow between two species are decreasing over time in a manner consistent with incipient speciation. Unlike other microorganisms investigated, we do not observe a relationship between genetic divergence and frequency of recombination along a chromosome, or other physical mechanisms that would reduce gene flow between lineages. Each species has its own genetic island encoding unique physiological functions and a unique growth phenotype that may be indicative of ecological specialization. Genetic differentiation between these coexisting groups occurs in large genomic "continents," indicating the topology of genomic divergence during speciation is not uniform and is not associated with a single locus under strong diversifying selection. These data support a model where species do not require physical barriers to gene flow but are maintained by ecological differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号