首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tissue ischemia remains a common problem in plastic surgery and one for which proangiogenic approaches have been investigated. Given the recent discovery of circulating endothelial stem or progenitor cells that are able to form new blood vessels, the authors sought to determine whether these cells might selectively traffic to regions of tissue ischemia and induce neovascularization. Endothelial progenitor cells were isolated from the peripheral blood of healthy human volunteers and expanded ex vivo for 7 days. Elevation of a cranially based random-pattern skin flap was performed in nude mice, after which they were injected with fluorescent-labeled endothelial progenitor cells (5 x 10(5); n = 15), fluorescent-labeled human microvascular endothelial cells (5 x 10(5); n = 15), or media alone (n = 15). Histologic examination demonstrated that endothelial progenitor cells were recruited to ischemic tissue and first appeared by postoperative day 3. Subsequently, endothelial progenitor cell numbers increased exponentially over time for the remainder of the study [0 cells/mm2 at day 0 (n = 3), 9.6 +/- 0.9 cells/mm2 at day 3 (n = 3), 24.6 +/- 1.5 cells/mm2 at day 7 (n = 3), and 196.3 +/- 9.6 cells/mm2 at day 14 (n = 9)]. At all time points, endothelial progenitor cells localized preferentially to ischemic tissue and healing wound edges, and were not observed in normal, uninjured tissues. Endothelial progenitor cell transplantation led to a statistically significant increase in vascular density in ischemic tissues by postoperative day 14 [28.7 +/- 1.2 in the endothelial progenitor cell group (n = 9) versus 18 +/- 1.1 in the control media group (n = 9) and 17.7 +/- 1.0 in the human microvascular endothelial cell group (n = 9; p < 0.01)]. Endothelial progenitor cell transplantation also showed trends toward increased flap survival [171.2 +/- 18 mm2 in the endothelial progenitor cell group (n = 12) versus 134.2 +/- 10 mm2 in the media group (n = 12) and 145.0 +/- 13 mm2 in the human microvascular endothelial cell group (n = 12)], but this did not reach statistical significance. These findings indicate that local tissue ischemia is a potent stimulus for the recruitment of circulating endothelial progenitor cells. Systemic delivery of endothelial progenitor cells increased neovascularization and suggests that autologous endothelial progenitor cell transplantation may have a role in the salvage of ischemic tissue.  相似文献   

2.
Tissue engineering may offer patients new options when replacement or repair of an organ is needed. However, most tissues will require a microvascular network to supply oxygen and nutrients. One strategy for creating a microvascular network would be promotion of vasculogenesis in situ by seeding vascular progenitor cells within the biopolymeric construct. To pursue this strategy, we isolated CD34(+)/CD133(+) endothelial progenitor cells (EPC) from human umbilical cord blood and expanded the cells ex vivo as EPC-derived endothelial cells (EC). The EPC lost expression of the stem cell marker CD133 but continued to express the endothelial markers KDR/VEGF-R2, VE-cadherin, CD31, von Willebrand factor, and E-selectin. The cells were also shown to mediate calcium-dependent adhesion of HL-60 cells, a human promyelocytic leukemia cell line, providing evidence for a proinflammatory endothelial phenotype. The EPC-derived EC maintained this endothelial phenotype when expanded in roller bottles and subsequently seeded on polyglycolic acid-poly-l-lactic acid (PGA-PLLA) scaffolds, but microvessel formation was not observed. In contrast, EPC-derived EC seeded with human smooth muscle cells formed capillary-like structures throughout the scaffold (76.5 +/- 35 microvessels/mm(2)). These results indicate that 1) EPC-derived EC can be expanded in vitro and seeded on biodegradable scaffolds with preservation of endothelial phenotype and 2) EPC-derived EC seeded with human smooth muscle cells form microvessels on porous PGA-PLLA scaffolds. These properties indicate that EPC may be well suited for creating microvascular networks within tissue-engineered constructs.  相似文献   

3.
Several physiological and pathophysiological events involving vascular endothelium occur at the microvascular level. Studies on human microvasculature require homogenous primary cultures of microvascular endothelial cells. However, procedures available for isolating and culturing human dermal microvascular cells (HDMEC) result in significant contamination with fibroblasts. To eliminate contamination with fibroblasts or other cells, we developed a procedure to isolate HDMEC from neonatal human foreskin by panning the cells using EN4, an anti-endothelial cell monoclonal antibody. Panned cells uniformly expressed von Willebrand factor and CD36, confirming their microvascular endothelial characteristics, whereas cells cultured without panning showed a significant degree of contamination with fibroblasts. In the presence of vascular endothelial growth factor (VEGF), HDMEC could be cultured under serum-free conditions. VEGF stimulated the growth of HDMEC in a dose-dependent manner in serum-free medium or in media supplemented with either human serum or newborn calf serum. Since differences exist between large vessel endothelial cells and microvascular endothelial cells, we compared the response to VEGF stimulation of HDMEC with human umbilical vein endothelial cells (HUVEC). The dose response of the two cell types to VEGF was different. This effect of VEGF on endothelial cells may be mediated by the VEGF receptorkdr,since mRNA forkdrwas detected using RT–PCR in both HDMEC and HUVEC. The procedure described in this study will make possible the culture of highly enriched HDMEC without contamination with fibroblasts and facilitate studies with these cells under defined assay conditions in a serum-free environment.  相似文献   

4.
5.
Human microvascular endothelial cell-1 (HMEC-1) generated by transfection with SV40 large T antigen has been the prevailing model for in vitro studies on endothelium. However, the transduction of SV40 may lead to unwanted cell behaviors which are absent in primary cells. Thus, establishing a new microvascular endothelial cell line, which is capable of maintaining inherent features of primary endothelial cells, appears to be extremely important. Here, we immortalized primary human microvascular endothelial cells (pHMECs) by engineering the human telomerase catalytic protein (hTERT) into the cells. Endothelial cell-specific markers were examined and the angiogenic responses were characterized in these cells (termed as HMVECs, for human microvascular endothelial cells). We found that VEGF receptor 2 (Flk-1/KDR), tie1, and tie2 expression is preserved in HMVEC, whereas Flk-1/KDR is absent in HMEC-1. In addition, HMVEC showed similar angiogenic responses to VEGF as HMEC-1. Furthermore, the HMVEC line was found to generate a prominent angiogenic response to periostin, a potent angiogenic factor identified recently. The data indicate that HMVEC may serve as a suitable in vitro endothelium model.  相似文献   

6.
Normal human colonic microvascular endothelial cells (HUCMEC) have been isolated from surgical specimens by their adherence to Ulex europaeus agglutinin bound to magnetic dynabeads that bind alpha-L-fucosyl residues on the endothelial cell membrane. Immunocytochemistry demonstrated the presence of a range of endothelial-specific markers on HUCMEC, including the von Willebrand factor, Ulex europaeus agglutinin, and platelet endothelial cell adhesion molecule-1. The growing cells form monolayers with the characteristic cobblestone morphology of endothelial cells and eventually form tube-like structures. HUCMEC produce vascular endothelial growth factor (VEGF) and express the receptors, kinase insert domain-containing receptor (KDR) and fms-like tyrosine kinase, through which VEGF mediates its actions in the endothelium. VEGF induces the tyrosine phosphorylation of KDR and a proliferative response from HUCMEC comparable to that elicited from human umbilical vein endothelial cells (HUVEC). On binding to HUCMEC or HUVEC, (125)I-labeled VEGF internalizes or dissociates to the medium. Once internalized, (125)I-labeled VEGF is degraded and no evidence of ligand recycling was observed. However, significantly less VEGF is internalized, and more is released to the medium from HUCMEC than HUVEC. Angiogenesis results from the proliferation and migration of microvascular, not large-vessel, endothelial cells. The demonstration that microvascular endothelial cells degrade less and release more VEGF to the medium than large-vessel endothelial cells identifies a mechanism permissive of the role of microvascular cells in angiogenesis.  相似文献   

7.
Dendritic cells are migratory cells. Before they extravasate from the circulation into the skin across capillary blood vessel walls, they have to interact with endothelial cells. Using a fluorimetric adhesion assay, we have recently shown that CD34+-derived dendritic cell precursors are able to bind to resting and stimulated dermal microvascular endothelial cells. In the present study, we attempted to visualize this process at an ultrastructural level. CD34+ progenitor cells were purified from human cord blood samples by means of immunomagnetic beads, and dendritic cells were generated by culture in the presence of GM-CSF, TNF- and hSCF for 5 days. Immature CD83 CD86low dendritic cells were added to human dermal microvascular endothelial cells grown to confluence on membrane chambers. After 2 h, unbound dendritic cell precursors were removed, and bound cells were prepared for routine scanning electron microscopy. We found that (1) dendritic cell precursors firmly adhere to microvascular endothelial cells, enveloping them with their surface processes; (2) dendritic cell precursors are extremely deformable as they squeeze through the dense network of microvascular endothelial cells; (3) microvascular endothelial cells form, in part, a multi-layered network rather than the typical cobblestone pattern as seen by phase-contrast microscopy. The morphology of dendritic cell precursors and of human dermal microvascular endothelial cells was examined here, for the first time, by scanning electron microscopy. These data further emphasize that CD34+-derived dendritic cells efficiently adhere to dermal microvascular endothelial cells.  相似文献   

8.
Partial pressure of extracellular oxygen influences a number of major cellular functions. The purpose of this study was to determine if the proliferation, morphology, and synthesis of proteins important in the function of skin microvascular endothelial cells were significantly altered by an extracellular oxygen tension used to culture endothelial cells. Microvascular endothelial cells were isolated from the dermis of neonatal foreskins and were studied at a venous capillary oxygen level (5% O(2), 38 mm Hg) and at an atmospheric oxygen level (20.8% O(2,) 158 mm Hg). At all time points studied and at all passage numbers, a significant inhibition of proliferation was observed at 20.8% O(2) compared to identical cultures grown and subcultured at 5% O(2). Two morphologically distinct endothelial cell populations were observed at 5% O(2). When mediators of angiogenesis and inflammation-such as basic fibroblast growth factor (bFGF), phorbol myristate acetate (PMA), and interleukin-1beta (IL-1beta)-were studied, additional differences in proliferation were observed. Atmospheric O(2) inhibited the synthesis of a major basement membrane protein (Type IV collagen), a major surface protein (PECAM-1), and increased the synthesis of von Willebrand factor (vWf). The rate of vascular channel formation induced by collagen gels was decreased at 5% O(2). These results demonstrate that an increase in extracellular oxygen tension from 5 to 20.8% can significantly alter the cellular physiology of human skin microvascular endothelial cells.  相似文献   

9.
A single infusion of Escherichia coli endotoxin into sheep results in structural evidence of pulmonary endothelial injury, increases in both prostacyclin and prostaglandin E2 (PGE2) in lung lymph, and an increase in pulmonary microvascular permeability. Endotoxin-induced lung endothelial damage can also be induced in vitro, but to date these studies have utilized endothelium from large pulmonary vessels. In the present study, we have grown endothelial cells from peripheral lung vessels of cows and sheep and exposed these microvascular endothelial cells to endotoxin. Controls included lung microvascular endothelium without endotoxin and endothelial cells from bovine and sheep main pulmonary artery with and without addition of endotoxin. We found that endotoxin caused significant increases in release of prostacyclin and PGE2 from both bovine and sheep lung microvascular and pulmonary artery endothelium. Normal bovine and sheep pulmonary artery and bovine lung microvascular endothelium released greater levels of prostacyclin than PGE2 (ng/ng); release of PGE2 from the microvascular cells was greater than from the pulmonary artery endothelium in both species. Exposure of endothelial cells from cow and sheep main pulmonary artery to endotoxin results in endothelial cell retraction and pyknosis, a loss of barrier function, increased release of prostacyclin and PGE2 and eventual cell lysis. In lung microvascular cells, the increases in prostanoids were accompanied by changes in cell shape but occurred in the absence of either detectable alterations in barrier function or cytolysis. Thus, while endotoxin causes alterations to endothelial cells from both large and small pulmonary vessels, the effects are not identical suggesting site specific phenotypic expression of endothelial cells even within a single vessel. To determine whether the response of either the large or small pulmonary vessel endothelial cells in culture mimics most closely the in vivo response of the lung to endotoxin requires further study.  相似文献   

10.
VE-cadherin is an endothelial-specific cadherin that plays important roles in vascular morphogenesis and growth control. To investigate the mechanisms by which endothelial cells regulate cadherin cell surface levels, a VE-cadherin mutant containing the non-adhesive interleukin-2 (IL-2) receptor extracellular domain and the VE-cadherin cytoplasmic tail (IL-2R-VE-cadcyto) was expressed in microvascular endothelial cells. Expression of the IL-2R-VE-cadcyto mutant resulted in the internalization of endogenous VE-cadherin and in a dramatic decrease in endogenous VE-cadherin levels. The internalized VE-cadherin co-localized with early endosomes, and the lysosomal inhibitor chloroquine dramatically inhibited the down-regulation of VE-cadherin in cells expressing the IL-2R-VE-cadcyto mutant. Chloroquine treatment also resulted in the accumulation of a VE-cadherin fragment lacking the beta-catenin binding domain of the VE-cadherin cytoplasmic tail. The formation of the VE-cadherin fragment could be prevented by treating endothelial cells with proteasome inhibitors. Furthermore, inhibition of the proteasome prevented VE-cadherin internalization and inhibited the disruption of endothelial intercellular junctions by the IL-2RVE-cadcyto mutant. These results provide new insights into the mechanisms of VE-cadherin processing and degradation in microvascular endothelial cells.  相似文献   

11.
Pro-angiogenic signaling by the endothelial presence of CEACAM1   总被引:6,自引:0,他引:6  
Here, we demonstrate the expression of carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1) in angiogenic sprouts but not in large mother blood vessels within tumor tissue. Correspondingly, only human microvascular endothelial cells involved in in vitro tube formation exhibit CEACAM1. CEACAM1-overexpressing versus CEACAM1-silenced human microvascular endothelial cells were used in migration and tube formation assays. CEACAM1-overexpressing microvascular endothelial cells showed prolonged survival and increased tube formation when they were stimulated with vascular endothelial growth factor (VEGF), whereas CEACAM1 silencing via small interfering RNA blocks these effects. Gene array and LightCycler analyses show an up-regulation of angiogenic factors such as VEGF, VEGF receptor 2, angiopoietin-1, angiopoietin-2, tie-2, angiogenin, and interleukin-8 but a down-regulation of collagen XVIII/endostatin and Tie-1 in CEACAM1-overexpressing microvascular endothelial cells. Western blot analyses confirm these results for VEGF and endostatin at the protein level. These results suggest that constitutive expression of CEACAM1 in microvascular endothelial cells switches them to an angiogenic phenotype, whereas CEACAM1 silencing apparently abrogates the VEGF-induced morphogenetic effects during capillary formation. Thus, strategies targeting the endothelial up-regulation of CEACAM1 might be promising for antiangiogenic tumor therapy.  相似文献   

12.
We have shown previously that acute ischemia leads to depolarization of pulmonary microvascular endothelial cells that is prevented with cromakalim, suggesting the presence of ATP-sensitive K+ (KATP) channels in these cells. Thus KATP channel expression and activity were evaluated in rat pulmonary microvascular endothelial cells (RPMVEC) by whole cell current measurements, dot blot (mRNA), and immunoblot (protein) for the inwardly rectifying K+ channel (KIR) 6.2 subunit and fluorescent ligand binding for the sulfonylurea receptor (SUR). Low-level expression of a KATP channel was detected in endothelial cells in routine (static) culture and led us to examine whether its expression is inducible when endothelial cells are adapted to flow. Channel expression (mRNA and both KIR6.2 and SUR proteins) and inwardly rectified membrane current by patch clamp increased significantly when RPMVEC were adapted to flow at 10 dyn/cm2 for 24 h in either a parallel plate flow chamber or an artificial capillary system. Induction of the KATP channel with flow adaptation was also observed in bovine pulmonary artery endothelial cells. Flow-adapted but not static RPMVEC showed cellular plasma membrane depolarization upon stop of flow that was inhibited by a KATP channel opener and prevented by addition of cycloheximide to the medium during the flow adaptation period. These studies indicate the induction of KATP channels by flow adaptation in pulmonary endothelium and that the expression and activity of this channel are essential for the endothelial cell membrane depolarization response with acute decrease in shear stress. flow adaptation; KIR 6.2; sulfonylurea receptor; fluorescent glyburide; pulmonary microvascular endothelial cells  相似文献   

13.
Whereas the adhesion of leukocytes and erythrocytes to vascular endothelium has been implicated in the vasooclusive events associated with sickle cell disease, the role of platelet-vessel wall interactions in this process remains undefined. The objectives of this study were to: 1) determine whether the adhesion of platelets and leukocytes in cerebral venules differs between sickle cell transgenic (betaS) mice and their wild-type (WT) counterparts (C57Bl/6) under both resting and posthypoxic conditions, and 2) define the contributions of P-selectin to these adhesion processes. Animals were anesthetized, and platelet and leukocyte interactions with endothelial cells of cerebral postcapillary venules were monitored and quantified using intravital fluorescence microscopy in WT, betaS, and chimeric mice produced by transplanting bone marrow from WT or betaS mice into WT or P-selectin-deficient (P-sel(-/-)) mice. Platelet and leukocyte adhesion to endothelial cells in both unstimulated and posthypoxic betaS mice were significantly elevated over WT levels. Chimeric mice involving bone marrow transfer from betaS mice to P-sel(-/-) mice exhibited a profound attenuation of both platelet and leukocyte adhesion compared with betaS bone marrow transfer to WT mice. These findings indicate that betaS mice assume both an inflammatory and prothrombogenic phenotype, with endothelial cell P-selectin playing a major role in mediating these microvascular responses.  相似文献   

14.
Polypeptides of bovine aortic, pulmonary artery, and pulmonary microvascular endothelial cells, as well as vascular smooth muscle cells and retinal pericytes were evaluated by two-dimensional gel electrophoresis. The principal cytoskeletal proteins in all of these cell types were actin, vimentin, tropomyosin, and tubulin. Cultured pulmonary microvascular endothelial cells also expressed 12 unique polypeptides including a 41 kd acidic type I and two isoforms of a 52 kd basic type II simple epithelial cytokeratin microvascular endothelial cell expression of the simple epithelial cytokeratins was maintained in cultured in the presence or absence of retinal-derived growth factor, and regardless of whether cells were cultured on gelatin, fibronectin, collagen I, collagen IV, laminin, basement membrane proteins, or plastic. Cytokeratin expression was maintained through at least 50 population doublings in culture. The expression of cytokeratins was found to be regulated by cell density. Pulmonary microvascular endothelial cells seeded at 2.5 X 10(5) cell/cm2 (confluent seeding) expressed 3.5 times more cytokeratins than cells seeded at 1.25 X 10(4) cells/cm2 (sparse seeding). Vimentin expression was not altered by cell density. By indirect immunofluorescence microscopy it was determined that the cytokeratins were distributed cytoplasmically at subconfluent cell densities but that cytokeratin 19 sometimes localized at regions of cell-cell contact after cells reached confluence. Vimentin had a cytoplasmic distribution regardless of cell density. These results suggest that pulmonary microvascular endothelial cell have a distinctive cytoskeleton that may provide them with functionally unique properties when compared with endothelial cells derived from the macrovasculature. In conjunction with conventional endothelial cell markers, the presence of simple epithelial cytokeratins may be an important biochemical criterion for identifying pulmonary microvascular endothelial cells.  相似文献   

15.
Endotoxemia promotes adhesive interactions between platelets and microvascular endothelium in vivo. We sought to determine whether endotoxin (lipopolysaccharide, LPS) modified platelet thrombus formation in mouse cremaster venules and whether Toll-like receptor 4 (TLR4) and neutrophils were involved in the response. Intravital videomicroscopy was performed in the cremaster microcirculation of pentobarbital-anesthetized mice; venular platelet thrombi were induced with a light/dye endothelial injury model. C57BL/6 mice treated with Escherichia coli endotoxin had enhanced rates of venular platelet thrombus formation: the time to microvessel occlusion was reduced by approximately 50% (P < 0.005) compared with saline-treated animals. Enhanced microvascular thrombosis was evident as early as 2 h after LPS administration. LPS had no effect on thrombosis in either of two mouse strains with altered TLR4 signaling (C57BL/10ScNJ or C3H/HeJ), whereas it enhanced thrombosis in the control strains (C57BL/10J and C3H/HeN). LPS also enhanced platelet adhesion to endothelium in the absence of light/dye injury. Platelet adhesion, but not enhanced thrombosis, was inhibited by depletion of circulating neutrophils. LPS failed to enhance platelet aggregation ex vivo and did not influence platelet P-selectin expression, a marker of platelet activation. These findings support the notion that endotoxemia promotes platelet thrombus formation independent of neutrophils and without enhancement of platelet aggregation, via a TLR4-dependent mechanism.  相似文献   

16.
The exact nature of shock wave (SW) action is not, as yet, fully understood, although a possible hypothesis may be that shock waves induce neoangiogenesis. To test this hypothesis, a three-dimensional (3D) culture model on Matrigel was developed employing a human microvascular endothelial cell line (HMEC-1) which was stimulated with low energy soft- focused SW generated by an SW lithotripter. After 12 hours we observed a statistically significant increase in capillary connections subsequent to shock-wave treatment in respect to the control group and a marked 3-hour down-regulation in genes involved in the apoptotic processes (BAX, BCL2LI, GADD45A, PRKCA), in cell cycle (CDKN2C, CEBPB, HK2, IRF1, PRKCA), oncogenes (JUN, WNT1), cell adhesion (ICAM-1), and proteolytic systems (CTSD, KLK2, MMP10). Our preliminary results indicate that microvascular endothelial cells in vitro quickly respond to SW, proliferating and forming vessel-like structures, depending on the energy level employed and the number of shocks released. The early decreased expression in the analysed genes could be interpreted as the first reactive response of the endothelial cells to the external stimuli and the prelude to the events characterizing the neo-angiogenic sequence.  相似文献   

17.
We identified Shiga toxin gene (stx)-negative Escherichia coli O26:H11 and O26:NM (nonmotile) strains as the only pathogens in the stools of five patients with hemolytic-uremic syndrome (HUS). Because the absence of stx in E. coli associated with HUS is unusual, we examined the strains for potential virulence factors and interactions with microvascular endothelial cells which are the major targets affected during HUS. All five isolates possessed the enterohemorrhagic E. coli (EHEC)-hlyA gene encoding EHEC hemolysin (EHEC-Hly), expressed the enterohemolytic phenotype, and were cytotoxic, in dose- and time-dependent manners, to human brain microvascular endothelial cells (HBMECs). Significantly reduced cytotoxicity in an EHEC-Hly-negative spontaneous derivative of one of these strains, and a dose- and time-dependent cytotoxicity of recombinant E. coli O26 EHEC-Hly to HBMECs, suggest that the endothelial cytotoxicity of these strains was mediated by EHEC-Hly. The toxicity of EHEC-Hly to microvascular endothelial cells plausibly contributes to the virulence of the stx-negative E. coli O26 strains and to the pathogenesis of HUS.  相似文献   

18.
19.
Vascular surgeries such as coronary artery bypass require small diameter vascular grafts with properties that are not available at this time. Approaches using synthetic biomaterials have been not completely successful in producing non-thrombogenic grafts with inner diameters less than 6 mm, and there is a need for new biomaterials and graft designs. We propose silk fibroin as a microvascular graft material and describe tubular silk scaffolds that demonstrate improved properties over existing vascular graft materials. Silk tubes produced using an aqueous gel spinning technique were first assessed in vitro in terms of thrombogenicity (thrombin and fibrinogen adsorption, platelet adhesion) and vascular cell responses (endothelial and smooth muscle cell attachment and proliferation) in comparison with polytetrafluoroethylene (PTFE), a synthetic material most frequently used for vascular grafts. Silk tubes were then implanted into the abdominal aortas of Sprague-Dawley rats. At time points of 2 weeks and 4 weeks post implantation, tissue outcomes were assessed through gross observation (acute thrombosis, patency) and histological staining (H&E, Factor VIII, smooth muscle actin). Over the 4-week time period, we observed graft patency and endothelial cell lining of the lumen surfaces. These results demonstrate the feasibility of using silk fibroin as a vascular graft material and some advantages of silk tubes over the currently used synthetic grafts.  相似文献   

20.
We test the hypothesis that microvascular endothelial cells may undergo apoptosis in response to acute pulmonary venous hypertension. The isolated rabbit lungs were perfused in situ for 4 h with left atrial pressure of 0, 10, or 20 mmHg at a constant blood flow. Edema formation was monitored by lung weight gain. To assay for apoptosis, we performed agarose gel electrophoresis of DNA, in situ nick end labeling of DNA strand breaks, and electron microscopy. We also examined the levels of expression of Bcl-2, a suppressor of apoptosis, in microvascular endothelial cells using an immunohistochemical technique. In a vascular pressure-dependent fashion, we found apoptosis in endothelial cells of alveolar septal capillaries, as well as expression of Bcl-2 in arteriolar and venular endothelial cells. We conclude that acute pulmonary venous hypertension induces apoptosis in capillary endothelial cells but not in arteriolar and venular endothelial cells, suggesting that microvascular endothelial cell apoptosis is dependent on the levels of Bcl-2 expression and influences the formation or resolution of acute hydrostatic lung edema.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号