首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After the termination step of translation, the posttermination complex (PoTC), composed of the ribosome, mRNA, and a deacylated tRNA, is processed by the concerted action of the ribosome-recycling factor (RRF), elongation factor G (EF-G), and GTP to prepare the ribosome for a fresh round of protein synthesis. However, the sequential steps of dissociation of the ribosomal subunits, and release of mRNA and deacylated tRNA from the PoTC, are unclear. Using three-dimensional cryo-electron microscopy, in conjunction with undecagold-labeled RRF, we show that RRF is capable of spontaneously moving from its initial binding site on the 70S Escherichia coli ribosome to a site exclusively on the large 50S ribosomal subunit. This movement leads to disruption of crucial intersubunit bridges and thereby to the dissociation of the two ribosomal subunits, the central event in ribosome recycling. Results of this study allow us to propose a model of ribosome recycling.  相似文献   

2.
The prokaryotic post-termination ribosomal complex is disassembled by ribosome recycling factor (RRF) and elongation factor G. Because of the structural similarity of RRF and tRNA, we compared the biochemical characteristics of RRF binding to ribosomes with that of tRNA. Unesterified tRNA inhibited the disassembly of the post-termination complex in a competitive manner with RRF, suggesting that RRF binds to the A-site. Approximately one molecule of ribosome-bound RRF was detected after isolation of the RRF-ribosome complex. RRF and unesterified tRNA similarly inhibited the binding of N-acetylphenylalanyl-tRNA to the P-site of non-programmed but not programmed ribosomes. Under the conditions in which unesterified tRNA binds to both the P- and E-sites of non-programmed ribosomes, RRF inhibited 50% of the tRNA binding, suggesting that RRF does not bind to the E-site. The results are consistent with the notion that a single RRF binds to the A- and P-sites in a somewhat analogous manner to the A/P-site bound peptidyl tRNA. The binding of RRF and tRNA to ribosomes was influenced by Mg(2+) and NH(4)(+) ions in a similar manner.  相似文献   

3.
The ribosome-recycling factor (RRF) and elongation factor-G (EF-G) disassemble the 70S post-termination complex (PoTC) into mRNA, tRNA, and two ribosomal subunits. We have determined cryo-electron microscopic structures of the PoTC·RRF complex, with and without EF-G. We find that domain II of RRF initially interacts with universally conserved residues of the 23S rRNA helices 43 and 95, and protein L11 within the 50S ribosomal subunit. Upon EF-G binding, both RRF and tRNA are driven towards the tRNA-exit (E) site, with a large rotational movement of domain II of RRF towards the 30S ribosomal subunit. During this intermediate step of the recycling process, domain II of RRF and domain IV of EF-G adopt hitherto unknown conformations. Furthermore, binding of EF-G to the PoTC·RRF complex reverts the ribosome from ratcheted to unratcheted state. These results suggest that (i) the ribosomal intersubunit reorganizations upon RRF binding and subsequent EF-G binding could be instrumental in destabilizing the PoTC and (ii) the modes of action of EF-G during tRNA translocation and ribosome-recycling steps are markedly different.  相似文献   

4.
Elongation factor G (EF-G) and ribosome recycling factor (RRF) disassemble post-termination complexes of ribosome, mRNA, and tRNA. RRF forms stable complexes with 70 S ribosomes and 50 S ribosomal subunits. Here, we show that EF-G releases RRF from 70 S ribosomal and model post-termination complexes but not from 50 S ribosomal subunit complexes. The release of bound RRF by EF-G is stimulated by GTP analogues. The EF-G-dependent release occurs in the presence of fusidic acid and viomycin. However, thiostrepton inhibits the release. RRF was shown to bind to EF-G-ribosome complexes in the presence of GTP with much weaker affinity, suggesting that EF-G may move RRF to this position during the release of RRF. On the other hand, RRF did not bind to EF-G-ribosome complexes with fusidic acid, suggesting that EF-G stabilized by fusidic acid does not represent the natural post-termination complex. In contrast, the complexes of ribosome, EF-G and thiostrepton could bind RRF, although with lower affinity. These results suggest that thiostrepton traps an intermediate complex having RRF on a position that clashes with the P/E site bound tRNA. Mutants of EF-G that are impaired for translocation fail to disassemble post-termination complexes and exhibit lower activity in releasing RRF. We propose that the release of ribosome-bound RRF by EF-G is required for post-termination complex disassembly. Before release from the ribosome, the position of RRF on the ribosome will change from the original A/P site to a new location that clashes with tRNA on the P/E site.  相似文献   

5.
After peptide release by a class-1 release factor, the ribosomal subunits must be recycled back to initiation. We have demonstrated that the distance between a strong Shine-Dalgarno (SD) sequence and a codon in the P site is crucial for the binding stability of the deacylated tRNA in the P site of the posttermination ribosome and the in-frame maintenance of its mRNA. We show that the elongation factor EF-G and the ribosomal recycling factor RRF split the ribosome into subunits in the absence of initiation factor 3 (IF3) by a mechanism that requires both GTP and GTP hydrolysis. Taking into account that EF-G in the GTP form and RRF bind with positive cooperativity to the free 50S subunit but with negative cooperativity to the 70S ribosome, we suggest a mechanism for ribosome recycling that specifies distinct roles for EF-G, RRF, and IF3.  相似文献   

6.
During translation, elongation factor G (EF-G) plays a catalytic role in tRNA translocation and a facilitative role in ribosome recycling. By stabilizing the rotated ribosome and interacting with ribosome recycling factor (RRF), EF-G was hypothesized to induce the domain rotations of RRF, which subsequently performs the function of splitting the major intersubunit bridges and thus separates the ribosome into subunits for recycling. Here, with systematic mutagenesis, FRET analysis and cryo-EM single particle approach, we analyzed the interplay between EF-G/RRF and post termination complex (PoTC). Our data reveal that the two conserved loops (loop I and II) at the tip region of EF-G domain IV possess distinct roles in tRNA translocation and ribosome recycling. Specifically, loop II might be directly involved in disrupting the main intersubunit bridge B2a between helix 44 (h44 from the 30S subunit) and helix 69 (H69 from the 50S subunit) in PoTC. Therefore, our data suggest a new ribosome recycling mechanism which requires an active involvement of EF-G. In addition to supporting RRF, EF-G plays an enzymatic role in destabilizing B2a via its loop II.  相似文献   

7.
Ribosome recycling factor (RRF) together with elongation factor G (EF-G) disassembles the post- termination ribosomal complex. Inhibitors of translocation, thiostrepton, viomycin and aminoglycosides, inhibited the release of tRNA and mRNA from the post-termination complex. In contrast, fusidic acid and a GTP analog that fix EF-G to the ribosome, allowing one round of tRNA translocation, inhibited mRNA but not tRNA release from the complex. The release of tRNA is a prerequisite for mRNA release but partially takes place with EF-G alone. The data are consistent with the notion that RRF binds to the A-site and is translocated to the P-site, releasing deacylated tRNA from the P- and E-sites. The final step, the release of mRNA, is accompanied by the release of RRF and EF-G from the ribosome. With the model post-termination complex, 70S ribosomes were released from the post-termination complex by the RRF reaction and were then dissociated into subunits by IF3.  相似文献   

8.
X-ray and NMR analyses on ribosome recycling factors (RRFs) from thermophilic bacteria showed that they display a tRNA-like L-shaped conformation consisting of two domains. Since then, it has been accepted that domain I, consisting of a three-helix bundle, corresponds to the anticodon arm of tRNA and domain II and a beta/alpha/beta sandwich structure, corresponds to the acceptor arm. In this study, we obtained a RRF from a mesophilic bacterium, Vibrio parahaemolyticus, by gene cloning and carried out an x-ray analysis on it at 2.2 A resolution. This RRF was shown to be active in an in vitro assay system using Escherichia coli polysomes and elongation factor G (EF-G). In contrast, the above-mentioned RRFs from thermophilic bacteria were inactive in such a system. Analysis of the relative orientations between the two domains in the structures of various RRFs, including this RRF from mesophilic bacterium, revealed that domain II rotates about the long axis of the helix bundle of domain I. To elucidate the ribosome binding site of RRF, the peptide fragment (RRF-DI) corresponding to domain I of RRF was expressed and characterized. RRF-DI is bound to 70 S ribosome and the 50 S subunit with an affinity similar to that of wild-type RRF. But it does not bind to the 30 S subunit. These findings caused us to reinvestigate the concept of the mimicry of RRF to tRNA and to propose a new model where domain I corresponds to the acceptor arm of tRNA and domain II corresponds to the anticodon arm. This is just the reverse of a model that is now widely accepted. However, the new model is in better agreement with published biological findings.  相似文献   

9.
In bacteria, disassembly of the ribosome at the end of translation is facilitated by an essential protein factor termed ribosome recycling factor (RRF), which works in concert with elongation factor G. Here we describe the crystal structure of the Thermus thermophilus RRF bound to a 70S ribosomal complex containing a stop codon in the A site, a transfer RNA anticodon stem-loop in the P site and tRNA(fMet) in the E site. The work demonstrates that structures of translation factors bound to 70S ribosomes can be determined at reasonably high resolution. Contrary to earlier reports, we did not observe any RRF-induced changes in bridges connecting the two subunits. This suggests that such changes are not a direct requirement for or consequence of RRF binding but possibly arise from the subsequent stabilization of a hybrid state of the ribosome.  相似文献   

10.
Lancaster L  Kiel MC  Kaji A  Noller HF 《Cell》2002,111(1):129-140
Ribosome recycling factor (RRF) disassembles posttermination complexes in conjunction with elongation factor EF-G, liberating ribosomes for further rounds of translation. The striking resemblance of its L-shaped structure to that of tRNA has suggested that the mode of action of RRF may be based on mimicry of tRNA. Directed hydroxyl radical probing of 16S and 23S rRNA from Fe(II) tethered to ten positions on the surface of E. coli RRF constrains it to a well-defined location in the subunit interface cavity. Surprisingly, the orientation of RRF in the ribosome differs markedly from any of those previously observed for tRNA, suggesting that structural mimicry does not necessarily reflect functional mimicry.  相似文献   

11.
Ribosomal RNA (rRNA) contains a number of modified nucleosides in functionally important regions including the intersubunit bridge regions. As the activity of ribosome recycling factor (RRF) in separating the large and the small subunits of the ribosome involves disruption of intersubunit bridges, we investigated the impact of rRNA methylations on ribosome recycling. We show that deficiency of rRNA methylations, especially at positions 1518 and 1519 of 16S rRNA near the interface with the 50S subunit and in the vicinity of the IF3 binding site, adversely affects the efficiency of RRF-mediated ribosome recycling. In addition, we show that a compromise in the RRF activity affords increased initiation with a mutant tRNAfMet wherein the three consecutive G-C base pairs (29GGG31:39CCC41), a highly conserved feature of the initiator tRNAs, were mutated to those found in the elongator tRNAMet (29UCA31:39ψGA41). This observation has allowed us to uncover a new role of RRF as a factor that contributes to fidelity of initiator tRNA selection on the ribosome. We discuss these and earlier findings to propose that RRF plays a crucial role during all the steps of protein synthesis.  相似文献   

12.
Ribosome recycling factor (RRF) disassembles post-termination ribosomal complexes in concert with elongation factor EF-G freeing the ribosome for a new round of polypeptide synthesis. How RRF interacts with EF-G and disassembles post-termination ribosomes is unknown. RRF is structurally similar to tRNA and is therefore thought to bind to the ribosomal A site and be translocated by EF-G during ribosome disassembly as a mimic of tRNA. However, EF-G variants that remain active in GTP hydrolysis but are defective in tRNA translocation fully activate RRF function in vivo and in vitro. Furthermore, RRF and the GTP form of EF-G do not co-occupy the terminating ribosome in vitro; RRF is ejected by EF-G from the preformed complex. These findings suggest that RRF is not a functional mimic of tRNA and disassembles the post-termination ribosomal complex independently of the translocation activity of EF-G.  相似文献   

13.
14.
At the end of translation in bacteria, ribosome recycling factor (RRF) is used together with elongation factor G to recycle the 30S and 50S ribosomal subunits for the next round of translation. In x-ray crystal structures of RRF with the Escherichia coli 70S ribosome, RRF binds to the large ribosomal subunit in the cleft that contains the peptidyl transferase center. Upon binding of either E. coli or Thermus thermophilus RRF to the E. coli ribosome, the tip of ribosomal RNA helix 69 in the large subunit moves away from the small subunit toward RRF by 8 Å, thereby disrupting a key contact between the small and large ribosomal subunits termed bridge B2a. In the ribosome crystals, the ability of RRF to destabilize bridge B2a is influenced by crystal packing forces. Movement of helix 69 involves an ordered-to-disordered transition upon binding of RRF to the ribosome. The disruption of bridge B2a upon RRF binding to the ribosome seen in the present structures reveals one of the key roles that RRF plays in ribosome recycling, the dissociation of 70S ribosomes into subunits. The structures also reveal contacts between domain II of RRF and protein S12 in the 30S subunit that may also play a role in ribosome recycling.  相似文献   

15.
Elucidation of the structure of the ribosome has stimulated numerous proposals for the roles of specific rRNA elements, including the universally conserved helix 69 (H69) of 23S rRNA, which forms intersubunit bridge B2a and contacts the D stems of A- and P-site tRNAs. H69 has been proposed to be involved not only in subunit association and tRNA binding but also in initiation, translocation, translational accuracy, the peptidyl transferase reaction, and ribosome recycling. Consistent with such proposals, deletion of H69 confers a dominant lethal phenotype. Remarkably, in vitro assays show that affinity-purified Deltah69 ribosomes have normal translational accuracy, synthesize a full-length protein from a natural mRNA template, and support EF-G-dependent translocation at wild-type rates. However, Deltah69 50S subunits are unable to associate with 30S subunits in the absence of tRNA, are defective in RF1-catalyzed peptide release, and can be recycled in the absence of RRF.  相似文献   

16.
Ribosome recycling factor (RRF), in concert with elongation factor EF-G, is required for disassembly of the posttermination complex of the ribosome after release of polypeptides. The crystal structure of Thermus thermophilus RRF was determined at 2.6 A resolution. It is a tRNA-like L-shaped molecule consisting of two domains: a long three-helix bundle (domain 1) and a three-layer beta/alpha/beta sandwich (domain 2). Although the individual domain structures are similar to those of Thermotoga maritima RRF (Selmer et al., Science, 1999, 286:2349-2352), the interdomain angle differs by 33 degrees in two molecules, suggesting that the hinge between two domains is potentially flexible and responsive to different conditions of crystal packing. The hinge connects hydrophobic junctions of domains 1 and 2. The structure-based genetic analysis revealed the strong correlation between the hinge flexibility and the in vivo function of RRF. First, altering the hinge flexibility by making alanine or serine substitutions for large-size residues conserved at the hinge loop and nearby in domain 1 frequently gave rise to gain of function except a Pro residue conserved at the hinge loop. Second, the hinge defect resulting from a too relaxed hinge structure can be compensated for by secondary alterations in domain 1 that seem to increase the hydrophobic contact between domain 1 and the hinge loop. These results show that the hinge flexibility is vital for the function of RRF and that the steric interaction between the hinge loop and domains 1 and 2 restricts the interdomain angle and/or the hinge flexibility. These results indicate that RRF possesses an architectural difference from tRNA regardless of a resemblance to tRNA shape: RRF has a "gooseneck" elbow, whereas the tRNA elbow is rigid, and the direction of flex of RRF and tRNA is at a nearly right angle to each other. Moreover, surface electrostatic potentials of the two RRF proteins are dissimilar and do not mimic the surface potential of tRNA or EF-G. These properties will add a new insight into RRF, suggesting that RRF is more than a simple tRNA mimic.  相似文献   

17.
Kim KK  Min K  Suh SW 《The EMBO journal》2000,19(10):2362-2370
We have determined the crystal structure of the Escherichia coli ribosome recycling factor (RRF), which catalyzes the disassembly of the termination complex in protein synthesis. The L-shaped molecule consists of two domains: a triple-stranded antiparallel coiled-coil and an alpha/beta domain. The coil domain has a cylindrical shape and negatively charged surface, which are reminiscent of the anticodon arm of tRNA and domain IV of elongation factor EF-G. We suggest that RRF binds to the ribosomal A-site through its coil domain, which is a tRNA mimic. The relative position of the two domains is changed about an axis along the hydrophobic cleft in the hinge where the alkyl chain of a detergent molecule is bound. The tRNA mimicry and the domain movement observed in RRF provide a structural basis for understanding the role of RRF in protein synthesis.  相似文献   

18.
Ribosome recycling is a process which dissociates the post-termination complexes (post-TC) consisting of mRNA-bound ribosomes harbouring deacylated tRNA(s). Ribosome recycling factor (RRF), and elongation factor G (EFG) participate in this crucial process to free the ribosomal subunits for a new round of translation. We discuss the overall pathway of ribosome recycling in eubacteria with especial reference to the important role of the initiation factor 3 (IF3) in this process. Depending on the step(s) at which IF3 function is implicated, three models have been proposed. In model 1, RRF and EFG dissociate the post-TCs into the 50S and 30S subunits, mRNAand tRNA(s). In this model, IF3, which binds to the 30S subunit, merely keeps the dissociated subunits apart by its anti-association activity. In model 2, RRF and EFG separate the 50S subunit from the post-TC. IF3 then dissociates the remaining complex of mRNA, tRNA and the 30S subunit, and keeps the ribosomal subunits apart from each other. However, in model 3, both the genetic and biochemical evidence support a more active role for IF3 even at the step of dissociation of the post-TC by RRF and EFG into the 50S and 30S subunits.  相似文献   

19.
Seo HS  Kiel M  Pan D  Raj VS  Kaji A  Cooperman BS 《Biochemistry》2004,43(40):12728-12740
Ribosome recycling factor (RRF) and elongation factor-G (EF-G) are jointly essential for recycling bacterial ribosomes following termination of protein synthesis. Here we present equilibrium and rapid kinetic measurements permitting formulation of a minimal kinetic scheme that accounts quantitatively for RRF and EF-G interaction on the Escherichia coli ribosome. RRF and EF-G (a) each form a binary complex on binding to a bare ribosome which undergoes isomerization to a more stable complex, (b) form mixed ternary complexes on the ribosome in which the affinity for each factor is considerably lower than its affinity for binding to a bare ribosome, and (c) each bind to two sites per ribosome, with EF-G having considerably higher second-site affinity than RRF. Addition of EF-G to the ribosome-RRF complex induces rapid RRF dissociation, at a rate compatible with the rate of ribosome recycling in vivo, but added RRF does not increase the lability of ribosome-bound EF-G. Added thiostrepton slows the initial binding of EF-G, and prevents both formation of the more stable EF-G complex and EF-G-induced RRF dissociation. These findings are relevant for the mechanism of post-termination complex disassembly.  相似文献   

20.
Solution structure of the ribosome recycling factor from Aquifex aeolicus   总被引:4,自引:0,他引:4  
The solution structure of ribosome recycling factor (RRF) from hyperthermophilic bacterium, Aquifex aeolicus, was determined by heteronuclear multidimensional NMR spectroscopy. Fifteen structures were calculated using restraints derived from NOE, J-coupling, and T1/T2 anisotropies. The resulting structure has an overall L-shaped conformation with two domains and is similar to that of a tRNA molecule. The domain I (corresponding to the anticodon stem of tRNA) is a rigid three alpha-helix bundle. Being slightly different from usual coiled-coil arrangements, each helix of domain I is not twisted but straight and parallel to the main axis. The domain II (corresponding to the portion with the CCA end of tRNA) is an alpha/beta domain with an alpha-helix and two beta-sheets, that has some flexible regions. The backbone atomic root-mean-square deviation (rmsd) values of both domains were 0.7 A when calculated separately, which is smaller than that of the molecule as a whole (1.4 A). Measurement of 15N-[1H] NOE values show that the residues in the corner of the L-shaped molecule are undergoing fast internal motion. These results indicate that the joint region between two domains contributes to the fluctuation in the orientation of two domains. Thus, it was shown that RRF remains the tRNA mimicry in solution where it functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号