首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alcohol-cytochrome 553 reductase was detected in several strains of the mesoxydans and oxydans group ofAcetobacter. A similar enzyme, but with a higher optimum pH, was detected inAcetobacter aceti (liquefaciens) and in two strains ofGluconobacter.Intermittent ultrasonic disruption ofAcetobacter aceti cells, strainsrancens T-5 andmobilis 6428, showed that the alcohol-cytochrome 553 reductase was mainly localized on the cell hull. The NADP-linked aldehyde dehydrogenase appeared to be present as a cytoplasmic component.The oxidation rate of ethanol and acetaldehyde by intact resting cells which have been grown with either glucose or ethanol as a carbon source under either neutral or acidic conditions was nearly identical. The ethanol oxidizing enzyme system thus behaved as constitutive enzymes, as would be expected if they were bound to the cell hull.The results support the hypothesis that the alcohol-cytochrome 553 reductase is one of the important components of the enzyme system responsible for the physiological production of acetic acid from ethanol by acetic acid bacteria.  相似文献   

2.
Industrial vinegar production by submerged acetic acid fermentation has been carried out using Acetobacter strains at about 30°C. To obtain strains suitable for acetic acid fermentation at higher temperature, about 1,100 strains of acetic acid bacteria were isolated from vinegar mash, soils in vinegar factories and fruits, and their activities to oxidize ethanol at high temperature were examined. One of these strains, No. 1023, identified as Acetobacter aceti, retained full activity to produce acetic acid in continuous submerged culture at 35°C and produced 45% of activity at 38°C, while the usual strain of A. aceti completely lost its activity at 35°C. Thus the use of this strain may reduce the cooling costs of industrial vinegar production.  相似文献   

3.
During growth of ethanol plus sulfate Desulfovibrio gigas and three other Desulfovibrio strains tested contained high NAD-dependent alcohol dehydrogenase activities and dye-linked aldehyde dehydrogenase activities. In lactate-grown cells these activities were lower or absent. In D. gigas an NADH dehydrogenase activity was found which was higher during growth on ethanol than during growth on lactate. The NADH dehydrogenase activity appeared to consist of at least three different soluble enzymes. The aldehyde dehydrogenase activity in D. gigas was highest with benzylviologen as an acceptor and was strongly stimulated by potassium ions. Coenzyme A or phosphate dependency could not be shown, indicating that acetyl-CoA or acetyl phosphate are not intermediates in the conversion of acetaldehyde to acetate.In the absence of sulfate D. gigas was able to convert ethanol to acetate by means of interspecies hydrogen transfer to a methanogen. This conversion, however, did not lead to growth of the Desulfovibrio.Abbreviations DH dehydrogenase - BV2+/BV+ oxidized/reduced benzylviologen - DCPIP 2,6-dichlorophenolindophenol - MTT 3-(4,5-dimethylthiazol-2-yl)-2,4-diphenyltetrazolium bromide - MV2+/MV+ oxidized/reduced methylviologen - PMS phenazine methosulfate  相似文献   

4.
Acetic acid bacteria are used in the commercial production of lactobionic acid (LacA). However, the lactose-oxidizing enzyme of these bacteria remains unidentified. Lactose-oxidizing activity has been detected in bacterial membrane fractions and is strongly inhibited by d-glucose, suggesting that the enzyme was a membrane-bound quinoprotein glucose dehydrogenase, but these dehydrogenases have been reported to be incapable of oxidizing lactose. Thus, we generated m-GDH-overexpressing and -deficient strains of Komagataeibacter medellinensis NBRC3288 and investigated their lactose-oxidizing activities. Whereas the overexpressing variants produced ~2–5-fold higher amounts of LacA than the wild-type strains, the deficient variant produced no LacA or d-gluconic acid. Our results indicate that the lactose-oxidizing enzyme from acetic acid bacteria is membrane-bound quinoprotein glucose dehydrogenase.

Abbreviations: LacA: lactobionic acid; AAB: acetic acid bacterium; m-GDH: membrane-bound quinoprotein glucose dehydrogenase; DCIP: 2,6-dichlorophenolindophenol; HPAEC-PAD: high-performance anion-exchange chromatography with pulsed amperometric detection  相似文献   


5.
Membrane-bound, pyrroloquinoline quinone-dependent, alcohol dehydrogenase functions as the primary dehydrogenase in the respiratory chain of acetic acid bacteria. In this study, an ability of the enzyme to directly react with ubiquinone was investigated in alcohol dehydrogenases purified from both Acetobacter aceti and Gluconobacter suboxydans by two different approaches. First, it was shown that the enzymes are able to reduce natural ubiquinones, ubiquinone-9 or -t0, in a detergent solution as well as a soluble short-chain homologue, ubiquinone-I. In order to show the reactivity of the enzyme with natural ubiquinone in a native membrane environment, furthermore, alcohol dehydrogenase was reconstituted into proteoliposomes together with natural ubiquinone and a terminal ubiquinol oxidase. The reconstitution was done by binding the detergent-free dehydrogenase at room temperature to proteoliposomes that had been prepared in advance from a ubiquinol oxidase and phospholipids containing ubiquinone by detergent dialysis using octyl-β-D-glucopyranoside; the enzyme of A. aceti was reconstituted together with ubiquinone-9 and A. aceti cytochrome a1 while G. suboxydans alcohol dehydrogenase was done into proteoliposomes containing ubiquinone-10 and G. suboxydans cytochrome o. The proteoliposomes thus reconstituted had a reasonable level of ethanol oxidase activity, the electron transfer reaction of which was also able to generate a ‘membrane potential. Thus, it has been shown that alcohol dehydrogenase of acetic acid bacteria donates electrons directly to ubiquinone in the cytoplasmic membranes and thus the ethanol oxidase respiratory chain of acetic acid bacteria is constituted of only three membranous respiratory components, alcohol dehydrogenase, ubiquinone, and terminal ubiquinol oxidase.  相似文献   

6.
Summary Leifson's findings, that motile, acetate-oxidizing acetic acid bacteria (Acetobacter) have peritrichous flagella, and that motile, non-acetate oxidizing ones (Acetomonas) have polar flagella, of notably short wavelength, are fully confirmed and photographically illustrated. It is not confirmed, however, that the peritrichous flagella ofAcetobacter are always of “orthodox” type with a wavelength of about 2.9 μ, nor that they always tend to be few in number. In one strain ofA. aceti they were numerous, and the wavelength was as short (1.4 μ) as that considered byLeifson to be uniquely confined to the polar flagella ofAcetomonas. Furthermore the polar flagella of the latter genus seem not always to be multitrichous, strains having been found with only a single polar flagellum.  相似文献   

7.
Two-dimensional gel electrophoretic analysis of the membrane fraction of Acetobacter aceti revealed the presence of several proteins that were produced in response to acetic acid. A 60-kDa protein, named AatA, which was mostly induced by acetic acid, was prepared; aatA was cloned on the basis of its NH2-terminal amino acid sequence. AatA, consisting of 591 amino acids and containing ATP-binding cassette (ABC) sequences and ABC signature sequences, belonged to the ABC transporter superfamily. The aatA mutation with an insertion of the neomycin resistance gene within the aatA coding region showed reduced resistance to acetic acid, formic acid, propionic acid, and lactic acid, whereas the aatA mutation exerted no effects on resistance to various drugs, growth at low pH (adjusted with HCl), assimilation of acetic acid, or resistance to citric acid. Introduction of plasmid pABC101 containing aatA under the control of the Escherichia coli lac promoter into the aatA mutant restored the defect in acetic acid resistance. In addition, pABC101 conferred acetic acid resistance on E. coli. These findings showed that AatA was a putative ABC transporter conferring acetic acid resistance on the host cell. Southern blot analysis and subsequent nucleotide sequencing predicted the presence of aatA orthologues in a variety of acetic acid bacteria belonging to the genera Acetobacter and Gluconacetobacter. The fermentation with A. aceti containing aatA on a multicopy plasmid resulted in an increase in the final yield of acetic acid.  相似文献   

8.
  • 1 Twenty-six strains of mice were surveyed by starch gel electrophoresis for genetic variation of four liver enzymes; aldehyde dehydrogenase, aldehyde oxidase, xanthine oxidase and formaldehyde dehydrogenase.
  • 2 A variant of aldehyde dehydrogenase was found in strains ICFW, IS/Cam, NZB, NZW, Simpson and Schneider. A variant of aldehyde oxidase was found in CE. A possible variant of xanthine oxidase was found in SF/Cam.
  • 3 The gene determining the electrophoretic variant of aldehyde oxidase is either the same as, or very closely linked to, the Aox gene which determines aldehyde oxidase activity.
  相似文献   

9.
N-Acylethanolamines (NAEs) are members of the fatty acid amide family. The NAEs have been proposed to serve as metabolic precursors to N-acylglycines (NAGs). The sequential oxidation of the NAEs by an alcohol dehydrogenase and an aldehyde dehydrogenase would yield the N-acylglycinals and/or the NAGs. Alcohol dehydrogenase 3 (ADH3) is one enzyme that might catalyze this reaction. To define a potential role for ADH3 in NAE catabolism, we synthesized a set of NAEs and evaluated these as ADH3 substrates. NAEs were oxidized by ADH3, yielding the N-acylglycinals as the product. The (V/K)app values for the NAEs included here were low relative to cinnamyl alcohol. Our data show that the NAEs can serve as alcohol dehydrogenase substrates.  相似文献   

10.
H2-FormingN 5,N10-methylenetetrahydromethanopterin dehydrogenase (Hmd) is a novel type of hydrogenase found in methanogenic Achaea that contains neither nickel nor iron-sulfur clusters. The enzyme has previously been characterized fromMethanobacterium thermoautotrophicum and fromMethanopyrus kandleri. We report here on the purification and properties of the enzyme fromMethanococcus thermolithotrophicus. Thehmd gene was cloned and sequenced. The results indicate that the enzyme fromMc. thermolithotrophicus is functionally and structurally closely related to the H2-forming methylene tetrahydromethanopterin dehydrogenase fromMb. thermoautotrophicum andMp. kandleri. From amino acid sequence comparisons of the three enzymes, a phylogenetic tree was deduced that shows branching orders similar to those derived from sequence comparisons of the 16S rRNA of the orders Methanococcales, Methanobacteriales, and Methanopyrales.Abbreviations H 2 Forming dehydrogenase orHmd - H2-FormingN 5,N10 methylene tetrahydromethanopterin dehydrogenase - H 4MPT Tetrahydromethanopterin - CH 2=H4MPT N5,N10 Methylene tetrahydromethanopterin - CHH 4MPT+ N5,N10 Methenyltetrahydromethanopterin - MALDI-TOF-MS Matrix-assisted laser desorption  相似文献   

11.
Long-chain alcohol dehydrogenase and longchain aldehyde dehydrogenase were induced in the cells of Candida tropicalis grown on n-alkanes. Subcellular localization of these dehydrogenases, together with that of acyl-CoA synthetase and glycerol-3-phosphate acyltransferase, was studied in terms of the metabolism of fatty acids derived from n-alkane substrates. Both longchain alcohol and aldehyde dehydrogenases distributed in the fractions of microsomes, mitochondria and peroxisomes obtained from the alkane-grown cells of C. tropicalis. Acyl-CoA synthetase was also located in these three fractions. Glycerol-3-phosphate acyltransferase was found in microsomes and mitochondria, in contrast to fatty acid -oxidation system localized exclusively in peroxisomes. Similar results of the enzyme localization were also obtained with C. lipolytica grown on n-alkanes. These results suggest strongly that microsomal and mitochondrial dehydrogenases provide long-chain fatty acids to be utilized for lipid synthesis, whereas those in peroxisomes supply fatty acids to be degraded via -oxidation to yield energy and cell constituents.  相似文献   

12.
Desulfobacter postgatei grows on acetate and sulfate as energy source. The oxidation of acetate to 2 CO2 proceeds via the citric acid cycle involving membrane-bound succinate dehydrogenase and membrane-bound malate dehydrogenase. We report here that the organism contains membrane-bound NADPH dehydrogenase and ferredoxin: NADP oxidoreductase for the reoxidation of NADPH and reduced ferredoxin generated during isocitrate- and 2-oxoglutarate oxidation, respectively. The presence of proton translocating ATPase activity is also described.NADPH dehydrogenase and succinate dehydrogenase were found to be electrically connected within the membrane and electron transfer between these two enzymes was shown to be coupled with proton translocation. The membrane fraction catalyzed the oxidation of NADPH with fumarate and the reduction of NADP with succinate. NADPH oxidation with fumarate was stimulated by protonophores and inhibited by the proton translocating ATPase inhibitor dicyclohexylcarbodiimide (DCCD) and by heptylhydroxyquinoline-N-oxide (HQNO); inhibition by DCCD was relieved by protonophores. NADP reduction with succinate was dependent on ATP and inhibited by protonophores, DCCD, and HQNO. The membrane fraction also mediated the oxidation of NADPH with the water soluble menaquinone analogue dimethylnaphthoquinone (DMN) and the reduction of fumarate with DMNH2. Only the former reaction was stimulated by protonophores and only the latter reaction was inhibited by HQNO. This suggests that the NADPH dehydrogenase reaction is the site of energy conservation and the succinate dehydrogenase is the site of HQNO inhibition.Non-standard abbreviations APS Adenosine 5-phosphosulfate - DCCD N,N-dicyclohexylcarbodiimide - DCPIP 2,6-dichloroindophenol - DMN 2,3-dimethyl-1,4-naphthoquinone - DTT DL-1,4-dithiothreitol - HQNO 2(n-heptyl)-4-hydroxyquinoline-N-oxide - TCS 3,5,3,4-tetrachlorosalicylanilide - Tricine N-tris-(hydroxymethyl)methylglycine - TTFB 4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazole - SF-6847 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile  相似文献   

13.
A bifunctional alcohol/acetaldehyde dehydrogenase (AdhE) gene (adhE) was cloned from Leuconostoc mesenteroides C7 (LMC7), which is the dominant lactic acid bacterium produced during heterofermentation of kimchi. The nucleotide sequence of the DNA fragment containing putative adhE, which is 2685 bp long and encodes an 886 amino acid polypeptide, exhibits 99% homology with Leu. mesenteroides sp. cremoris. The deduced AdhE comprises two conserved domains: alcohol dehydrogenase (Adh) and acetaldehyde dehydrogenase (Aldh). Moreover, two NAD-binding sites were observed, based on the presence of the GXGXXG motif. A pADHE containing the adhE gene expressed AdhE at the translational level in Escherichia coli BL21, which was at a higher level than in E. coli DH5 and E. coli JM109. The AdhE of LMC7 showed Adh and Aldh activities that, when expressed in E. coli. BL21, were 7.5 and 5.7 U mg-1 , respectively.  相似文献   

14.
A genomic clone bank of Acetobacter polyoxogenes NBI1028 constructed in Escherichia coli by use of the expression vector pUC18 was screened with antibody raised against membrane-bound aldehyde dehydrogenase (ALDH; 75 kilodaltons [kDa]) from A. polyoxogenes NBI1028. A clone that synthesized a 41-kDa protein cross-reactive with anti-ALDH antibody was isolated. For cloning of the full-length ALDH structural gene, a cosmid gene bank was screened by Southern blot hybridization with the cloned DNA as a probe, and subcloning from the positive cosmid clone was performed with shuttle vector pMV24. Plasmid pAL25, containing the full-length ALDH structural gene, was isolated and expressed in both E. coli and Acetobacter aceti to produce a fused protein (78 kDa) with a short NH2-terminal β-galactosidase peptide. pAL25 conferred ALDH production on a mutant of A. aceti lacking the enzyme activity. Transformation of A. aceti subsp. xylinum NBI2099 with pAL25 caused 2- and 1.4-fold increases in the production rate and in the maximum concentration of acetic acid in submerged fermentation, respectively.  相似文献   

15.
Summary Six strains of acetic acid bacteria were evaluated with respect to their capability to catalyze the stereoselective reduction of ketones. The cells were permeabilized before the bioconversions. The best strains wereGluconobacter oxydans DSM 50049 andAcetobacter aceti DSM 2002. Using either of these two strains it was possible to reduce all 12 ketones to (S)-alcohols with an enantiomeric excess of 94 %. The highest level of enzymatic activity was found inAcetobacter aceti DSM 2002.  相似文献   

16.
Thirty-six strains of acetic acid bacteria classified in the genera Acetobacter, Gluconobacter, and Acidomonas were examined for their partial base sequences in positions 1220 through 1375, 156 bases, of 16S rRNA. The strains of the Q10-equipped Gluconobacter species examined were divided into two subgroups, which included the type strains of Gluconobacter oxydans, the type species of the genus Gluconobacter, and of a second species, Gluconobacter cerinus, respectively. The base differences numbered four between the two type strains. The strains of the Q9-equipped species examined classified in the type subgenus Acetobacter of the genus Acetobacter were not very distant phylogenetically from those of the genus Gluconobacter. The calculated number of base differences was 9–6 between the type strains of G. oxydans and G. cerinus and the type strains of Acetobacter aceti and Acetobacter pasteurianus. In contrast, the strains of the Q10-equipped species examined classified in the subgenus Gluconoacetobacter of the genus Acetobacter were very distant phylogenetically from those of the Acetobacter and Gluconobacter species mentioned above. The number of base differences was calculated to be 14-8. Furthermore, the strains of the methanol-assimilating, Q10-equipped species of the genus Acidomonas examined were located in phylogenetically isolated positions. The type strain of Acidomonas methanolica (≡ Acetobacter methanolicus), the type species of the genus Acidomonas, had 16–9 base differences. The data obtained here indicated that the members of the subgenus Gluconoacetobacter of the genus Acetobacter can be distinguished at the generic level. The new genus Gluconoacetobacter was proposed with the type species, Gluconoacetobacter liquefaciens, in recognition of the genus Acidomonas along with the genera Acetobacter and Gluconobacter in the classification of the acetic acid bacteria.  相似文献   

17.
Shuttle vector pMV301 was constructed by ligation of pMV102 found in A. aceti subsp. xylinum NBI 1002 to E. coli plasmid pACYC177. It is 6.0 kb in size, has unique restriction sites suitable for insertion of a foreign DNA fragment and confers ampicillin resistance to the Acetobacter host. This vector transforms A. aceti subsp. aceti 10-80S1 and industrial vinegar producer A. aceti subsp. xylinum NBI 1002 as well as E. coli. Various chimeric plasmids were also constructed by ligation of pMV102 to E. coli plasmids to examine the expression of drug resistance genes. In addition to the ampicillin resistance gene, resistance genes for kanamycin, chloramphenicol and tetracycline derived from E. coli plasmids were expressed in Acetobacter. Most of the constructed shuttle vectors were stably maintained in Acetobacter.  相似文献   

18.
Various strains of Paracoccus denitrificans grown under conditions of unrestricted oxygen supply contained low but measurable activities of fermentation enzymes such as ethanol dehydrogenase and 2,3-butanediol dehydrogenase. However, when the bacteria were subsequently incubated for up to 22 h under restricted aeration conditions permitting respiration rates of only 10 or 6% of the maximum value to occur, the above enzymes increased in specific activities by 5- or 10-fold to 0.14 mol/min·mg protein. Lactate dehydrogenase was not detected. Six strains tested reacted almost alike.Cells grown anaerobically on fructose in the presence of limiting concentrations of KNO3 contained specific activities of up to 0.41 (in case of ethanol dehydrogenase) and 0.56 (butanediol dehydrogenase) mol/min·mg protein. Lactate dehydrogenase was only formed at low activity (0.012 mol/min·mg protein) after a long period of incubation.Cells of P. denitrificans strain Stanier 381 grown anaerobically in the chemostat on fructose+KNO3 with either fructose or nitrate as the limiting factor differed with respect to the specific enzyme activities, too. Ethanol dehydrogenase was high under conditions of nitrate limitation and low under fructose limitation. 2,3-Butanediol dehydrogenase, but not lactate dehydrogenase, was formed in moderate activities.  相似文献   

19.
Electrophoretic and activity variation of the stomach and ocular isozyme of aldehyde dehydrogenase (designated AHD-4) was observed between C57BL/6J and SWR/J inbred strains of mice. The phenotypes were inherited in a normal mendelian fashion, with two alleles at a single locus (Ahd-4) showing codominant expression. The alleles assorted independently of those atAdh-3 [encoding the stomach and ocular isozyme of alcohol dehydrogenase (ADH-C2)] on chromosome 3. Three chromosome 11 markers, hemoglobin -chain (Hba), trembler (Tr), and rex (Re), were used in backcross analyses which established thatAhd-4 is closely linked to trembler. The distribution patterns for stomach and ocular AHD-4 phenotypes were examined among SWXL recombinant inbred mice, and those for stomach and ocular ADH-C2 among BXD recombinant inbred strains. The data provided evidence for the genetic identity of stomach and ocular ADH-C2 and of stomach and ocular AHD-4.This research was supported in part by the U.S. Department of Energy under Contract DE-ACO5-84OR214000 with Martin Marietta Energy Systems, Inc. (to R.A.P.).  相似文献   

20.
The ratios of the oxidation rates of aldose sugars, determined in cell-free extracts of Acinetobacter calcoaceticus, vary with the strain and growth conditions used. Three distinct forms of glucose dehydrogenase with different substrate specificities, occurring in variable proportions in these extracts, are responsible for this effect. One form is the already known soluble glucose dehydrogenase, the other two forms are complexes containing enzyme and components of the respiratory chain. The proportions in which the enzyme forms are found in the cell-free extract correlate with the oxidative behaviour of whole cells with respect to aldose sugars. It is concluded, therefore, that the enzyme forms are not an artefact of the isolation procedure but that they exist as such in vivo. Since the two complexes can be converted into the soluble enzyme form, aldose dehydrogenase can, probably, be integrated in three different ways into the respiratory chain.The presence of glucose during growth does not stimulate aldose dehydrogenase production. This is not surprising since the enzyme has no function in carbon metabolism, except perhaps in strains growing on pentoses at high pH. Therefore, the physiological role of quinoprotein aldose dehydrogenase in this organism may be primarily in energy generation.Non-standard abbreviations quinoproteins enzymes containing 2,7,9-tricarboxy-1 H-pyrrolo [2,3f] quinoline-4,5-dione (pyrrolo-quinoline quinone) as the coenzyme  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号