首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Gorr IH  Boos D  Stemmann O 《Molecular cell》2005,19(1):135-141
Stable maintenance of genetic information requires chromosome segregation to occur with high accuracy. Anaphase is triggered when ring-shaped cohesin is cleaved by separase, a protease regulated by association with its inhibitor securin. Dispensability of vertebrate securin strongly suggests additional means of separase regulation. Indeed, sister chromatid separation but not securin degradation is inhibited by constitutively active cyclin-dependent kinase 1 (Cdk1) and can be rescued solely by preventing phosphorylation of separase. We demonstrate that Cdk1-dependent phosphorylation of separase is not sufficient for inhibition. In a second step, Cdk1 stably binds phosphorylated separase via its regulatory cyclin B1 subunit. Complex formation results in inhibition of both protease and kinase, and we show that vertebrate separase is a direct inhibitor of Cdk1. This unanticipated function of separase is negatively regulated by securin but independent of separase's proteolytic activity.  相似文献   

2.
At the onset of anaphase, a caspase-related protease (separase) destroys the link between sister chromatids by cleaving the cohesin subunit Scc1. During most of the cell cycle, separase is kept inactive by binding to an inhibitory protein called securin. Separase activation requires proteolysis of securin, which is mediated by an ubiquitin protein ligase called the anaphase-promoting complex. Cells regulate anaphase entry by delaying securin ubiquitination until all chromosomes have attached to the mitotic spindle. Though no longer regulated by this mitotic surveillance mechanism, sister separation remains tightly cell cycle regulated in yeast mutants lacking securin. We show here that the Polo/Cdc5 kinase phosphorylates serine residues adjacent to Scc1 cleavage sites and strongly enhances their cleavage. Phosphorylation of separase recognition sites may be highly conserved and regulates sister chromatid separation independently of securin.  相似文献   

3.
Sister chromatid cohesion is established during replication by entrapment of both dsDNAs within the cohesin ring complex. It is dissolved in anaphase when separase, a giant cysteine endopeptidase, cleaves the Scc1/Rad21 subunit of cohesin, thereby triggering chromosome segregation. Separase is held inactive by association with securin until this anaphase inhibitor is destroyed at the metaphase-to-anaphase transition by ubiquitin-dependent degradation. The relevant ubiquitin ligase, the anaphase-promoting complex/cyclosome, also targets cyclin B1, thereby causing inactivation of Cdk1 and mitotic exit. Although separase is essential, securin knock-out mice are surprisingly viable and fertile. Capitalizing on our previous finding that Cdk1-cyclin B1 can also bind and inhibit separase, we investigated whether this kinase might be suitable to maintain faithful timing and execution of anaphase in the absence of securin. We found that, similar to securin, Cdk1-cyclin B1 regulates separase in both a positive and negative manner. Although securin associates with nascent separase to co-translationally assist proper folding, Cdk1-cyclin B1 acts on native state separase. Upon entry into mitosis, Cdk1-cyclin B1-dependent phosphorylation of Ser-1126 renders separase prone to inactivation by aggregation/precipitation. Stable association of Cdk1-cyclin B1 with phosphorylated separase counteracts this tendency and stabilizes separase in an inhibited yet activatable state. These opposing effects are suited to prevent premature cleavage of cohesin in early mitosis while ensuring timely activation of separase by anaphase-promoting complex/cyclosome-dependent degradation of cyclin B1. Coupling sister chromatid separation with subsequent exit from mitosis by this simplified mode might have been the common scheme of mitotic control prior to the evolution of securin.  相似文献   

4.
Complete dissociation of sister chromatid cohesion and subsequent induction of poleward movement of disjoined sisters are two essential events underlying chromosome segregation; however, how cells coordinate these two processes is not well understood. Here, we developed a fluorescence-based sensor for the protease separase that mediates cohesin cleavage. We found that separase undergoes an abrupt activation shortly before anaphase onset in the vicinity of chromosomes. This activation profile of separase depends on the abilities of two of its binding proteins, securin and cyclin B1, to inhibit its protease activity and target it to chromosomes. Subsequent to its proteolytic activation, separase then binds to and inhibits a subset of cyclin B1-cdk1, which antagonizes cdk1-mediated phosphorylation on chromosomes and facilitates poleward movement of sisters in anaphase. Therefore, by consecutively acting as a protease and a cdk1 inhibitor, separase coordinates two key processes to achieve simultaneous and abrupt separation of sister chromatids.  相似文献   

5.
Regulation of human separase by securin binding and autocleavage   总被引:20,自引:0,他引:20  
BACKGROUND: Sister chromatid separation is initiated by separase, a protease that cleaves cohesin and thereby dissolves sister chromatid cohesion. Separase is activated by the degradation of its inhibitor securin and by the removal of inhibitory phosphates. In human cells, separase activation also coincides with the cleavage of separase, but it is not known if this reaction activates separase, which protease cleaves separase, and how separase cleavage is regulated.RESULTS: Inhibition of separase expression in human cells by RNA interference causes the formation of polyploid cells with large lobed nuclei. In mitosis, many of these cells contain abnormal chromosome plates with unseparated sister chromatids. Inhibitor binding experiments in vitro reveal that securin prevents the access of substrate analogs to the active site of separase. Upon securin degradation, the active site of full-length separase becomes accessible, allowing rapid autocatalytic cleavage of separase at one of three sites. The resulting N- and C-terminal fragments remain associated and can be reinhibited by securin. A noncleavable separase mutant retains its ability to cleave cohesin in vitro.CONCLUSIONS: Our results suggest that separase is required for sister chromatid separation during mitosis in human cells. Our data further indicate that securin inhibits separase by blocking the access of substrates to the active site of separase. Securin proteolysis allows autocatalytic processing of separase into a cleaved form, but separase cleavage is not essential for separase activation.  相似文献   

6.
The spindle assembly checkpoint monitors the integrity of the spindle microtubules, which attach to sister chromatids at kinetochores and play a vital role in preserving genome stability by preventing missegregation. A key target of the spindle assembly checkpoint is securin, the separase inhibitor. In budding yeast, loss of securin results in precocious sister chromatid separation when the microtubule spindle is disrupted. However, in contrast to budding yeast, mammalian securin is not required for spindle checkpoint, suggesting that there are redundant mechanisms controlling the dissolution of sister chromatid cohesion in the absence of securin. One candidate mechanism is the inhibitory phosphorylation of separase. We generated a nonphosphorylable point mutant (S1121A) separase allele in securin-/- mouse embryonic stem cells. Securin(-/-)separase(+/S1121A) cells are viable but fail to maintain sister chromatid cohesion in response to the disruption of spindle microtubules, show enhanced sensitivity to nocodazole, and cannot recover from prometaphase arrest.  相似文献   

7.
The onset of anaphase is triggered by the activation of a site-specific protease called separase. Separase cleaves the chromosomal cohesins holding the duplicated sister chromatids together, allowing sisters to simultaneously separate and segregate to opposite ends of the cell before division. Activated separase cleaves not only cohesin, but also itself; however, the biological significance of separase self-cleavage has remained elusive. Before anaphase, separase is inhibited by at least two mechanisms. The first involves the binding of securin, whereas the second requires the phosphorylation-dependent binding of cyclin-dependent kinase 1 (Cdk1)/cyclin B1. Because securin and Cdk1/cyclin B1 interact with separase in a mutually exclusive manner, the degradation of both these inhibitors plays an important role in activating separase at anaphase. Here we identify a new separase interacting partner, a specific subtype of the heterotrimeric protein phosphatase 2A (PP2A). PP2A associates with separase through the B' (B56) regulatory subunit and does so independently of securin and cyclin B1 binding. The association of PP2A with separase requires a 55-amino acid domain closely juxtaposed to separase autocleavage sites. Strikingly, mutation of these cleavage sites increases PP2A binding, suggesting that separase cleavage disrupts the interaction of PP2A with separase. Furthermore, expression of a non-cleavable separase, but not a non-cleavable mutant that cannot bind PP2A, causes a premature loss of centromeric cohesion. Together these observations provide a new mechanistic insight into a physiological function for separase self-cleavage.  相似文献   

8.
Mammalian eggs naturally arrest at metaphase of the second meiotic division, until sperm triggers a series of Ca(2+) spikes that result in activation of the anaphase-promoting complex/cyclosome (APC/C). APC/C activation at metaphase targets destruction-box containing substrates, such as cyclin B1 and securin, for degradation, and as such eggs complete the second meiotic division. Cyclin B1 degradation reduces maturation (M-phase)-promoting factor (MPF) activity and securin degradation allows sister chromatid separation. Here we examined the second meiotic division in mouse eggs following expression of a cyclin B1 construct with an N-terminal 90 amino acid deletion (Delta 90 cyclin B1) that was visualized by coupling to EGFP. This cyclin construct was not an APC/C substrate, and so following fertilization, sperm were incapable of stimulating Delta 90 cyclin B1 degradation. In these eggs, chromatin remained condensed and no pronuclei formed. As a consequence of the lack of pronucleus formation, sperm-triggered Ca(2+) spiking continued indefinitely, consistent with a current model in which the sperm-activating factor is localized to the nucleus. Because Ca(2+) spiking was not inhibited by Delta 90 cyclin B1, the degradation timing of securin, visualized by coupling it to EGFP, was unaffected. However, despite rapid securin degradation, sister chromatids remained attached. This was a direct consequence of MPF activity because separation was induced following application of the MPF inhibitor roscovitine. Similar observations regarding the ability of MPF to prevent sister chromatid separation have recently been made in Xenopus egg extracts and in HeLa cells. The results presented here show this mechanism can also occur in intact mammalian eggs and further that this mechanism appears conserved among vertebrates. We present a model in which metaphase II arrest is maintained primarily by MPF levels only.  相似文献   

9.
Vertebrate eggs arrest at second meiotic metaphase. The fertilizing sperm causes meiotic exit through Ca(2+)-mediated activation of the anaphase-promoting complex/cyclosome (APC/C). Although the loss in activity of the M-phase kinase CDK1 is known to be an essential downstream event of this process, the contribution of phosphatases to arrest and meiotic resumption is less apparent, especially in mammals. Therefore, we explored the role of protein phosphatase 2A (PP2A) in mouse eggs using pharmacological inhibition and activation as well as a functionally dominant-negative catalytic PP2A subunit (dn-PP2Ac-L199P) coupled with live cell imaging. We observed that PP2A inhibition using okadaic acid induced events normally observed at fertilization: degradation of the APC/C substrates cyclin B1 and securin resulting from loss of the APC/C inhibitor Emi2. Although sister chromatids separated, chromatin remained condensed, and polar body extrusion was blocked as a result of a rapid spindle disruption, which could be ameliorated by non-degradable cyclin B1, suggesting that spindle integrity was affected by CDK1 loss. Similar cell cycle effects to okadaic acid were also observed using dominant-negative PP2Ac. Preincubation of eggs with the PP2A activator FTY720 could block many of the actions of okadaic acid, including Emi2, cyclin B1, and securin degradation and sister chromatid separation. Therefore, in conclusion, we used okadaic acid, dn-PP2Ac-L199P, and FTY720 on mouse eggs to demonstrate that PP2A is needed to for both continued metaphase arrest and successful exit from meiosis.  相似文献   

10.
Ubiquitin-dependent proteolysis of cyclin B and securin initiates sister chromatid segregation and anaphase. The anaphase-promoting complex/cyclosome and its coactivator CDC20 (APC/CCDC20) form the main ubiquitin E3 ligase for these two proteins. APC/CCDC20 is regulated by CDK1-cyclin B and counteracting PP1 and PP2A family phosphatases through modulation of both activating and inhibitory phosphorylation. Here, we report that PP1 promotes cyclin B destruction at the onset of anaphase by removing specific inhibitory phosphorylation in the N-terminus of CDC20. Depletion or chemical inhibition of PP1 stabilizes cyclin B and results in a pronounced delay at the metaphase-to-anaphase transition after chromosome alignment. This requirement for PP1 is lost in cells expressing CDK1 phosphorylation–defective CDC206A mutants. These CDC206A cells show a normal spindle checkpoint response and rapidly destroy cyclin B once all chromosomes have aligned and enter into anaphase in the absence of PP1 activity. PP1 therefore facilitates the metaphase-to-anaphase transition by promoting APC/CCDC20-dependent destruction of cyclin B in human cells.  相似文献   

11.
The universal triggering event of eukaryotic chromosome segregation is cleavage of centromeric cohesin by separase. Prior to anaphase, most separase is kept inactive by association with securin. Protein phosphatase 2A (PP2A) constitutes another binding partner of human separase, but the functional relevance of this interaction has remained enigmatic. We demonstrate that PP2A stabilizes separase‐associated securin by dephosphorylation, while phosphorylation of free securin enhances its polyubiquitylation by the ubiquitin ligase APC/C and proteasomal degradation. Changing PP2A substrate phosphorylation sites to alanines slows degradation of free securin, delays separase activation, lengthens early anaphase, and results in anaphase bridges and DNA damage. In contrast, separase‐associated securin is destabilized by introduction of phosphorylation‐mimetic aspartates or extinction of separase‐associated PP2A activity. G2‐ or prometaphase‐arrested cells suffer from unscheduled activation of separase when endogenous securin is replaced by aspartate‐mutant securin. Thus, PP2A‐dependent stabilization of separase‐associated securin prevents precocious activation of separase during checkpoint‐mediated arrests with basal APC/C activity and increases the abruptness and fidelity of sister chromatid separation in anaphase.  相似文献   

12.
Activity of separase, a cysteine protease that cleaves sister chromatid cohesin at the onset of anaphase, is tightly regulated to ensure faithful chromosome segregation and genome stability. Two mechanisms negatively regulate separase: inhibition by securin and phosphorylation on serine 1121. To gauge the physiological significance of the inhibitory phosphorylation, we created a mouse strain in which Ser1121 was mutated to Ala (S1121A). Here we report that this S1121A point mutation causes infertility in mice. We show that germ cells in the mutants are depleted during development. We further demonstrate that S1121A causes chromosome misalignment during proliferation of the postmigratory primordial germ cells, resulting in mitotic arrest, aneuploidy, and eventual cell death. Our results indicate that inhibitory phosphorylation of separase plays a critical role in the maintenance of sister chromatid cohesion and genome stability in proliferating postmigratory primordial germ cells.  相似文献   

13.
W Liu  J Yin  G Zhao  Y Yun  S Wu  KT Jones  A Lei 《Theriogenology》2012,78(6):1171-1181
During mammalian oocyte maturation, two consecutive meiotic divisions are required to form a haploid gamete. For each meiotic division, oocytes must transfer from metaphase to anaphase, but maturation promoting factor (cyclin-dependent kinase 1/cyclin B1) activity would keep the oocytes at metaphase. Therefore, inactivation of maturation promoting factor is needed to finish the transition and complete both these divisions; this is provided through anaphase-promoting complex/cyclosome-dependent degradation of cyclin B1. The objective of this study was to examine meiotic divisions in bovine oocytes after expression of a full length cyclin B1 and a nondegradable N-terminal 87 amino acid deletion, coupled with the fluorochrome Venus, by microinjecting their complementary RNA (cRNA). Overexpression of full-length cyclin B1-Venus inhibited homologue disjunction and first polar body formation in maturing oocytes (control 70% vs. overexpression 16%; P < 0.05). However at the same levels of expression, it did not block second meiotic metaphase and cleavage of eggs after parthenogenetic activation (control: 82% pronuclei and 79% cleaved; overexpression: 91% pronuclei and 89% cleaved). The full length cyclin B1 and a nondegradable N-terminal 87 amino acid deletion caused metaphase arrest in both meiotic divisions, whereas degradation of securin was unaffected. Roscovitine, a potent cyclin-dependent kinase 1 (CDK1) inhibitor, overcame this metaphase arrest in maturing oocytes at 140 μM, but higher doses (200 μM) were needed to overcome arrest in eggs. In conclusion, because metaphase I (MI) blocked by nondegradable cyclin B1 was distinct from metaphase II (MII) in their different sensitivities to trigger CDK1 inactivation, we concluded that mechanisms of MI arrest differed from MII arrest.  相似文献   

14.
Dual inhibition of sister chromatid separation at metaphase.   总被引:29,自引:0,他引:29  
O Stemmann  H Zou  S A Gerber  S P Gygi  M W Kirschner 《Cell》2001,107(6):715-726
Separation of sister chromatids in anaphase is mediated by separase, an endopeptidase that cleaves the chromosomal cohesin SCC1. Separase is inhibited by securin, which is degraded at the metaphase-anaphase transition. Using Xenopus egg extracts, we demonstrate that high CDC2 activity inhibits anaphase but not securin degradation. We show that separase is kept inactive under these conditions by a mechanism independent of binding to securin. Mutation of a single phosphorylation site on separase relieves the inhibition and rescues chromatid separation in extracts with high CDC2 activity. Using quantitative mass spectrometry, we show that, in intact cells, there is complete phosphorylation of this site in metaphase and significant dephosphorylation in anaphase. We propose that separase activation at the metaphase-anaphase transition requires the removal of both securin and an inhibitory phosphate.  相似文献   

15.
Disjunction of pairs of homologous chromosomes during the first meiotic division (MI) requires anaphase-promoting complex (APC)-mediated activation of separase in budding yeast and Caenorhabditis elegans, but not Xenopus laevis. It is not clear which model best fits the mammalian system. Here we show that homologue disjunction in mouse oocytes is dependent on proteolysis of the separase inhibitor securin and the Cdk1 regulatory sub-unit cyclin B1. Proteolysis of both proteins was entirely dependent on their conserved destruction box (D-box) motifs, through which they are targeted to the APC. These data indicate that the mechanisms regulating homologue disjunction in mammalian oocytes are similar to those of budding yeast and C.elegans.  相似文献   

16.
BACKGROUND: Chromosome segregation during mitosis and meiosis is triggered by dissolution of sister chromatid cohesion, which is mediated by the cohesin complex. Mitotic sister chromatid disjunction requires that cohesion be lost along the entire length of chromosomes, whereas homolog segregation at meiosis I only requires loss of cohesion along chromosome arms. During animal cell mitosis, cohesin is lost in two steps. A nonproteolytic mechanism removes cohesin along chromosome arms during prophase, while the proteolytic cleavage of cohesin's Scc1 subunit by separase removes centromeric cohesin at anaphase. In Saccharomyces cerevisiae and Caenorhabditis elegans, meiotic sister chromatid cohesion is mediated by Rec8, a meiosis-specific variant of cohesin's Scc1 subunit. Homolog segregation in S. cerevisiae is triggered by separase-mediated cleavage of Rec8 along chromosome arms. In principle, chiasmata could be resolved proteolytically by separase or nonproteolytically using a mechanism similar to the mitotic "prophase pathway." RESULTS: Inactivation of separase in C. elegans has little or no effect on homolog alignment on the meiosis I spindle but prevents their timely disjunction. It also interferes with chromatid separation during subsequent embryonic mitotic divisions but does not directly affect cytokinesis. Surprisingly, separase inactivation also causes osmosensitive embryos, possibly due to a defect in the extraembryonic structures, referred to as the "eggshell." CONCLUSIONS: Separase is essential for homologous chromosome disjunction during meiosis I. Proteolytic cleavage, presumably of Rec8, might be a common trigger for the first meiotic division in eukaryotic cells. Cleavage of proteins other than REC-8 might be necessary to render the eggshell impermeable to solutes.  相似文献   

17.
During mitosis, equal transmission of the duplicated chromosomes demands a strict regulation of separase, which cleaves cohesin and triggers sister chromatid separation in anaphase. Vertebrate separase is inhibited by securin and the inhibitory phosphorylation of separase. However, knockout experiments indicate that securin is dispensable and the inhibitory phosphorylation was observed only in M phase cells. This begs the question how cohesin cleavage by separase is prevented in the absence these two mechanisms. Here we show that separase is excluded from cohesin by the nuclear envelope, which forms in telophase and disassembles in mitosis. The exclusion is achieved passively by its large physical mass and may be backed up by the CRM1-dependent nuclear export. A functional NES motif is identified in separase. We demonstrated that the nuclear envelope is sufficient to prevent active separase from cleaving nuclear cohesin. We propose that the nuclear exclusion is important to prevent cohesin cleavage during interphase in the absence of securin and the phosphorylation inhibition.  相似文献   

18.
Cyclin-specific control of ribosomal DNA segregation   总被引:1,自引:0,他引:1  
Following chromosome duplication in S phase of the cell cycle, the sister chromatids are linked by cohesin. At the onset of anaphase, separase cleaves cohesin and thereby initiates sister chromatid separation. Separase activation results from the destruction of its inhibitor, securin, which is triggered by a ubiquitin ligase called the anaphase-promoting complex (APC). Here, we show in budding yeast that securin destruction and, thus, separase activation are not sufficient for the efficient segregation of the repetitive ribosomal DNA (rDNA). We find that rDNA segregation also requires the APC-mediated destruction of the S-phase cyclin Clb5, an activator of the protein kinase Cdk1. Mutations that prevent Clb5 destruction are lethal and cause defects in rDNA segregation and DNA synthesis. These defects are distinct from the mitotic-exit defects caused by stabilization of the mitotic cyclin Clb2, emphasizing the importance of cyclin specificity in the regulation of late-mitotic events. Efficient rDNA segregation, both in mitosis and meiosis, also requires APC-dependent destruction of Dbf4, an activator of the protein kinase Cdc7. We speculate that the dephosphorylation of Clb5-specific Cdk1 substrates and Dbf4-Cdc7 substrates drives the resolution of rDNA in early anaphase. The coincident destruction of securin, Clb5, and Dbf4 coordinates bulk chromosome segregation with segregation of rDNA.  相似文献   

19.
Penkner AM  Prinz S  Ferscha S  Klein F 《Cell》2005,120(6):789-801
Meiotic cohesin serves in sister chromatid linkage and DNA repair until its subunit Rec8 is cleaved by separase. Separase is activated when its inhibitor, securin, is polyubiquitinated by the Cdc20 regulated anaphase-promoting complex (APC(Cdc20)) and consequently degraded. Differently regulated APCs (APC(Cdh1), APC(Ama1)) have not been implicated in securin degradation at meiosis I. We show that Mnd2, a factor known to associate with APC components, prevents premature securin degradation in meiosis by APC(Ama1). mnd2Delta cells lack linear chromosome axes and exhibit precocious sister chromatid separation, but deletion of AMA1 suppresses these defects. Besides securin, Sgo1, a protein essential for protection of centromeric cohesion during anaphase I, is also destabilized in mnd2delta cells. Mnd2's disappearance prior to anaphase II may activate APC(Ama1). Human oocytes may spend many years in meiotic prophase before maturation. Inhibitors of meiotic APC variants could prevent loss of chiasmata also in these cells, thereby guarding against aberrant chromosome segregation.  相似文献   

20.
The dual mechanism of separase regulation by securin   总被引:8,自引:0,他引:8  
BACKGROUND: Sister chromatid separation and segregation at anaphase onset are triggered by cleavage of the chromosomal cohesin complex by the protease separase. Separase is regulated by its binding partner securin in two ways: securin is required to support separase activity in anaphase; and, at the same time, securin must be destroyed via ubiquitylation before separase becomes active. The molecular mechanisms underlying this dual regulation of separase by securin are unknown.RESULTS: We show that, in budding yeast, securin supports separase localization. Separase enters the nucleus independently of securin, but securin is required and sufficient to cause accumulation of separase in the nucleus, where its known cleavage targets reside. Securin also ensures that separase gains full proteolytic activity in anaphase. We also show that securin, while present, directly inhibits the proteolytic activity of separase. Securin prevents the binding of separase to its substrates. It also hinders the separase N terminus from interacting with and possibly inducing an activating conformational change at the protease active site 150 kDa downstream at the protein's C terminus.CONCLUSIONS: Securin inhibits the proteolytic activity of separase in a 2-fold manner. While inhibiting separase, securin is able to promote nuclear accumulation of separase and help separase to become fully activated after securin's own destruction at anaphase onset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号