首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Ethylene regulation of fruit ripening: Molecular aspects   总被引:19,自引:0,他引:19  
Progress in ethylene regulating fruit ripening concerning itsperception and signal transduction and expression of ACC synthaseand ACC oxidase genes is reviewed. ACC synthase and ACC oxidasehave been characterized and their genes cloned from various fruittissues. Both ACC synthase and ACC oxidase are encoded bymultigene families, and their activities are associated withfruit ripening. In climacteric fruit, the transition toautocatalytic ethylene production appears to be due to a seriesof events in which ACC sythase and ACC oxidase genes have beenexpressed developmentally. Differential expression of ACCsynthase and ACC oxidase gene family members is probably involvedin such a transition that ultimately controls the onset of fruitripening.In comparison to ACC synthase and ACC oxidase, less is knownabout ethylene perception and signal transduction because of thedifficulties in isolating and purifying ethylene receptors orethylene-binding proteins using biochemical methods. However, theidentification of the Nr tomato ripening mutant as anethylene receptor, the applications of new potent anti-ethylenecompounds and the generation of transgenic fruits with reducedethylene production have provided evidence that ethylenereceptors regulate a defined set of genes which are expressedduring fruit ripening. The properties and functions of ethylenereceptors, such as ETR1, are being elucidated.Application of molecular genetics, in combination withbiochemical approaches, will enable us to better understand theindividual steps leading from ethylene perception and signaltransduction and expression of ACC synthase and ACC oxidase genefamily member to the physiological responses.  相似文献   

2.
3.
4.
5.
Molecular biology of fruit ripening and its manipulation with antisense genes   总被引:25,自引:0,他引:25  
Considerable progress in tomato molecular biology has been made over the past five years. At least 19 different mRNAs which increase in amount during tomato fruit ripening have been cloned and genes for enzymes involved in cell wall degradation (polygalacturonase and pectinesterase) and ethylene synthesis (ACC synthase) have been identified by conventional procedures. Transgenic plants have been used to identify regions of DNA flanking fruit-specific, ripening-related and ethylene-regulated genes and trans-acting factors which bind to these promoters have also been identified.Antisense genes expressed in transgenic plants have proved to be highly effective for inhibiting the specific expression of ripening-related genes. These experiments have changed our understanding of how softening occurs in tomato fruit. Antisense techniques have also been used to identify genes encoding enzymes for carotenoid biosynthesis (phytoene synthase) and ethylene biosynthesis (the ethylene-forming enzyme). The altered characteristics of fruit transformed with specific antisense genes, such as retarded ripening and resistance to splitting, may prove to be of value to fruit growers, processors and ultimately the consumer.  相似文献   

6.
Ethylene is required for climacteric fruit ripening. Inhibition of ethylene biosynthesis genes, 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase, prevents or delays ripening, but it is not known how these genes are modulated during normal development. LeHB-1, a previously uncharacterized tomato homeobox protein, was shown by gel retardation assay to interact with the promoter of LeACO1 , an ACC oxidase gene expressed during ripening. Inhibition of LeHB-1 mRNA accumulation in tomato fruit, using virus-induced gene silencing, greatly reduced LeACO1 mRNA levels, and inhibited ripening. Conversely, ectopic overexpression of LeHB-1 by viral delivery to developing flowers elsewhere on injected plants triggered altered floral organ morphology, including production of multiple flowers within one sepal whorl, fusion of sepals and petals, and conversion of sepals into carpel-like structures that grew into fruits and ripened. Our findings suggest that LeHB-1 is not only involved in the control of ripening but also plays a critical role in floral organogenesis.  相似文献   

7.
The plant hormone ethylene is involved in many plant processes ranging from seed germination to leaf and flower senescence and fruit ripening. Ethylene is synthesized from methionine, via S-adenosyl-L-methionine (SAM) and 1-amino-cyclopropane-1-carboxylic acid (ACC). The key ethylene biosynthetic enzymes are ACC synthase (ACS) and ACC oxidase (ACO). Manipulation of ethylene biosynthesis by chemicals and gene technology is discussed. Biotechnological modification of ethylene synthesis is a promising method to prevent spoilage of agricultural and horticultural products.  相似文献   

8.
 Increased ethylene evolution accompanies seed germination of many species including Pisum sativum L., but only a little is known about the regulation of the ethylene biosynthetic pathway in different seed tissues. Biosynthesis of the direct ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), the expression of ACC oxidase (ACO), and ethylene production were investigated in the cotyledons and embryonic axis of germinating pea seeds. An early onset and sequential induction of ACC biosynthesis, accumulation of Ps-ACO1 mRNA and of ACO activity, and ethylene production were localized almost exclusively in the embryonic axis. Maximal levels of ACC, Ps-ACO1 mRNA, ACO enzyme activity and ethylene evolution were found when radicle emergence was just complete. Treatment of germinating seeds with ethylene alone or in combination with the inhibitor of ethylene action 2,5-norbornadiene showed that endogenous ethylene regulates its own biosynthesis through a positive feedback loop that enhances ACO expression. Accumulation of Ps-ACO1 mRNA and of ACO enzyme activity in the embryonic axis during the late phase of germination required ethylene, whereas Ps-ACS1 mRNA levels and overall ACC contents were not induced by ethylene treatment. Ethylene did not induce ACO in the embryonic axis during the early phase of germination. Ethylene-independent signalling pathways regulate the spatial and temporal pattern of ethylene biosynthesis, whereas the ethylene signalling pathway regulates high-level ACO expression in the embryonic axis, and thereby enhances ethylene evolution during seed germination. Received: 28 September 1999 / Accepted: 27 December 1999  相似文献   

9.
To elucidate the role of ethylene in the production of flavor compounds by tomato fruits, wild-type tomato (Lycopersicon esculentum L., cv. Lichun) and its transgenic antisense LeACS2 line with suppressed ethylene biosynthesis were used. The metabolism of individual sugars was ethylene-independent. However, citric acid and malic acid were under ethylene regulation. The content of these acids was higher in transgenic tomato fruits and returned to normal level after transgenic fruits were treated with ethylene. Because most of amino acids, which are important precursors of volatiles, were shown to be correlated with ethylene, we surmise that amino acid-related aroma volatiles were also affected by ethylene. Headspace analysis of volatiles showed a significant accumulation of aldehydes in wild-type tomato fruits during fruit ripening and showed a dramatic decrease in most aroma volatiles in transgenic tomato fruits as compared with wild-type fruits. The production of hexanal, hexanol, trans-2-heptenal, cis-3-hexanol, and carotenoid-related volatiles, except β-damascenone and β-ionone, was inhibited by suppression of ethylene biosynthesis. No remarkable differences were observed in the concentrations of cis-3-hexenal and trans-2-hexenal between transgenic and wild-type tomato fruits, indicating these two volatiles to be independent of ethylene. Thus, there are various regulation patterns of flavor profiles in tomato fruits by ethylene. Published in Russian in Fiziologiya Rastenii, 2007, Vol. 54, No. 1, pp. 92–101. The text was submitted by the authors in English. Both authors equally contributed to this work.  相似文献   

10.
Abstract. Phosphate inhibited endogenous as well as 1-aminocyclopropane-1-carboxylic acid (ACC)-stimulated ethylene synthesis in slices of tomato fruit, segments of carrot root and pea hypocotyls. ACC concentrations of up to 10 mol m?3 did not overcome this inhibition. Phosphate inhibited the conversion of 14C ACC to ethylene in tomato fruit and vegetative tissue. Enzymatic conversion of ACC to ethylene by pea seedling homogenate was also inhibited by phosphate with a linear concentration dependency. The formation of ACC from S-adenosylmethionine (SAM) by extracts of pink tomatd fruit was slightly, but not significantly, affected by phosphate. However, the SAM to ACC conversion was greater when extracts from tomato fruit were made in phosphate rather than in HEPES-KOH buffer. Non-enzymatic ethylene synthesis from ACC in a model system was stimulated by phosphate. We suggest that phosphate is an inhibitor of ethylene biosynthesis in higher plants and that one site of its control is the conversion of ACC to ethylene.  相似文献   

11.
Reduction of shoot growth, leaf epinasty and chlorosis in young tomato plants (Lycopersicon esculentum Mill. cv. Hellfrucht/Frühstamm) treated hydroponically with 10-7 M of the herbicide quinclorac were partially compensated when the plants were simultaneously sprayed with salicyclic acid or the oxime ether derivative PACME. Since salicyclic acid and PACME are known inhibitors of ethylene biosynthesis, it is suggested that this pathway is implicated in quinclorac action. Further support for this hypothesis was obtained in experiments with transgenic tomato plants containing an antisense gene to 1-aminocyclopropane-1-carboxylic acid (ACC) synthase in ethylene biosynthesis. When quinclorac was applied via the root antisense plants showed reduced phenotypical alterations compared to those of wild-type plants.  相似文献   

12.
Ethylene and fruit ripening   总被引:13,自引:0,他引:13  
The latest advances in our understanding of the relationship between ethylene and fruit ripening are reviewed. Considerable progress has been made in the characterisation of genes encoding the key ethylene biosynthetic enzymes, ACC synthase (ACS) and ACC oxidase (ACO) and in the isolation of genes involved in the ethylene signal transduction pathway, particularly those encoding ethylene receptors ( ETR ). These have allowed the generation of transgenic fruit with reduced ethylene production and the identification of the Nr tomato ripening mutant as an ethylene receptor mutant. Through these tools, a clearer picture of the role of ethylene in fruit ripening is now emerging. In climacteric fruit, the transition to autocatalytic ethylene production appears to result from a series of events where developmentally regulated ACO and ACS gene expression initiates a rise in ethylene production, setting in motion the activation of autocatalytic ethylene production. Differential expression of ACS and ACO gene family members is probably involved in such a transition. Finally, we discuss evidence suggesting that the NR ethylene perception and transduction pathway is specific to a defined set of genes expressed in ripening climacteric fruit and that a distinct ETR pathway regulates other ethylene-regulated genes in both immature and ripening climacteric fruit as well as in non-climacteric fruit. The emerging picture is one where both ethylene-dependent and -independent pathways coexist in both climacteric and non-climacteric fruits. Further work is needed in order to dissect the molecular events involved in individual ripening processes and to understand the regulation of the expression of both ethylene-dependent and -independent genes.  相似文献   

13.
14.
15.
16.
Experiments were carried out to evaluate the effect of glucose on ripening and ethylene biosynthesis in tomato fruit (Lycopersicon esculentum Mill.). Fruit at the light-red stage were vacuum infiltrated with glucose solutions post-harvest and changes in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, ACC, ACC oxidase, and ethylene production monitored over time. ACC oxidase activity was also measured in pericarp discs from the same fruits that were treated either with glucose, fructose, mannose, or galactose. While control fruit displayed a typical peak of ethylene production, fruit treated with glucose did not. Glucose appeared to exert its effect on ethylene biosynthesis by suppressing ACC oxidase activity. Fructose, mannose, and galactose did not inhibit ACC oxidase activity in tomato pericarp discs. Glucose treatment inhibited ripening-associated colour development in whole fruit. The extent of inhibition of colour development was dependent upon the concentration of glucose. These results indicate that glucose may play an important role in ethylene-associated regulation of fruit ripening.  相似文献   

17.
Diazocyclopentadiene (DACP), a competitive ethylene action inhibitor binds irreversibly to the ethylene receptor to reduce tissue responses to ethylene. Tomato fruit (Lycopersicon esculentum Mill cv lsquo;Rondellorsquo;) were treated with DACP at the mature green stage. Ethylene biosynthesis and respiration rate were depressed. Color changes from green to red were delayed. Compared to the control, ACC content increased and ACC oxidase activity in vivo decreased in DACP-treated fruit. Thus, decrease of ethylene production caused by DACP treatment was due to the reduction of ACC oxidase activity. The decline in ripening subsequently recovered after DACP treatment. Results from the Northern analysis for gene expression of ACC synthase and ACC oxidase, showed that expression of both genes declined in DACP-treated fruit, and then recovered. Therefore the recovery of ethylene production was due to the recovery in gene expression and activity of ACC oxidase. We conclude that the effects of DACP on ethylene biosynthesis are on expression of ACC synthase and ACC oxidase genes, and/or regulation of ACC oxidase activity.  相似文献   

18.

The “Nanguo” pear is a typically climacteric fruit and ethylene is the main factor controlling the ripening process of climacteric fruit. Ethylene biosynthesis has been studied clearly and ACC synthase (ACS) is the rate-limited enzyme. ACO (ACC oxidase) is another important enzyme in ethylene biosynthesis. By exploring the pear genome, we identified 13 ACS genes and 11 ACO genes, respectively, and their expression patterns in fruit and other organs were investigated. Among these genes, 11 ACS and 8ACO genes were expressed in pear fruits. What’s more, 4 ACS and 3ACO genes could be induced by Ethephon and inhibited by 1-MCP treatment. This study is the first time to explore ACS and ACO genes at genome-wide level and will provide new data for research on pear fruit ripening.

  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号