首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 710 毫秒
1.
Our laboratory has investigated the role of the neuropeptide galanin in the sympathetic neural control of both the canine endocrine pancreas and liver. Galanin mRNA and peptide were found in the neuronal cell bodies of the celiac ganglion, which projects fibers to both organs. Galanin fibers formed dense networks around the islets. Galanin was released from these nerves and the amount released appeared sufficient to markedly inhibit basal insulin secretion. We therefore propose that galanin is a sympathetic neurotransmitter in canine endocrine pancreas. Galanin was also found in hepatic nerves usually co-localized with tyrosine hydroxylase, a sympathetic marker. Further, intraportal administration of the sympathetic neurotoxin, 6-hydroxydopamine, abolished galanin staining in the hepatic parenchyma. We evaluated the role of galanin in mediating the actions of sympathetic nerves to increase hepatic glucose production and decrease hepatic arterial conductance. Local infusion of synthetic galanin had little effect by itself, but it did potentiate the action of norepinephrine to stimulate hepatic glucose production, demonstrating a neuromodulatory action. In contrast, galanin had no effect on hepatic arterial blood flow. We therefore propose that in the liver galanin functions as a neuromodulator of norepinephrine's metabolic action.  相似文献   

2.
We previously reported that sympathetic nerve-induced vasoconstriction in the intestine resulted in shear stress induced release of nitric oxide (NO) that led to presynaptic inhibition of transmitter release. In contrast, studies in the liver suggested a postsynaptic inhibition of vascular responses, thus leading to the hypothesis tested here that maintained catecholamine release in the liver would result in maintained metabolic catecholamine action in the face of inhibition of vascular responses. In rats, norepinephrine (NE) induced elevations in arterial glucose content were inhibited by NO synthase antagonism (N(omega)-nitro-L-arginine methyl ester (L-NAME), 10 mg/kg, intraportal) but potentiated by NO donor administration (3-morpholinosydnonimine (SIN-1), 0.2 mg/kg, intraportal). The potentiated effect of SIN-1 was abolished by indomethacin (7.5 mg/kg, intraportal). To confirm the hepatic site of metabolic effect, cats were used so that blood flow and hepatic glucose balance could be determined. SIN-1 potentiated NE-induced glucose output from the liver from 5.0 +/- 0.4 to 7.2 +/- 0.6 mg x min(-1) x kg(-1). The potentiation was blocked by methylene blue, a guanylate cyclase inhibitor. Contrary to the glucose response, L-NAME potentiated but SIN-1 attenuated NE-induced portal vasoconstriction. Thus NO is shown to produce differential modulation of vascular and metabolic effects of NE. Vasoconstriction of the hepatic vasculature is inhibited by NO, whereas the glycogenolytic response to NE is potentiated, responses that are probably mediated by prostaglandin.  相似文献   

3.
We examined the contributions of the cotransmitters norepinephrine (NE), ATP, and neuropeptide Y (NPY) to sympathetically evoked vasoconstriction in the rat tail artery in isolated vascular rings by using 1-100 stimulation impulses at 20 Hz. Phentolamine (2 microM), the alpha-adrenoceptor antagonist, markedly reduced responses to all stimuli, although responses to lower impulse numbers were reduced less than responses to longer trains. The purinergic receptor antagonist suramin (100 microM) reduced all responses, but to a much greater extent with few impulse trains. Responses were further reduced or abolished by addition of the second antagonist. Any remaining responses were abolished by the NPY-Y(1) receptor antagonist BIBP-3226 (75 nM). NPY had a direct agonist action and potentiated sympathetically mediated responses. NPY (75 nM) potentiated responses and BIBP-3226 decreased responses to 2- and 20-impulse trains. Both affected responses from 2 impulses to >20 impulses, but there was no preferential effect on purinergic contributions to responses because neurally released NPY potentiated both "pure" NE and ATP responses equally. We conclude that all three cotransmitters contribute significantly to vascular responses and their contribution varies markedly with impulse numbers. There is considerable synergy between cotransmitters, especially with lower impulse numbers where NPY contributions are greater than expected.  相似文献   

4.
The distribution and colocalization of neuropeptides and 5-hydroxytryptamine in the posterior portion of the large intestine of the toad was studied using single- and dual-label immunohistochemistry. Neurons containing colocalized galanin/somatostatin or vasoactive intestinal peptide alone were observed along intramural pelvic nerves. Some of the galanin/somatostatin neurons also contained 5-hydroxytryptamine. Synaptic boutons containing colocalized calcitonin gene-related peptide/vasoactive intestinal peptide were associated with the galanin/somatostatin neurons. The muscle of the large intestine was also innervated by axons containing galamin/somatostatin, vasoactive intestinal peptide/calcitonin gene-related peptide or vasoactive intestinal peptide alone. Nerve fibres containing calcitonin gene-related peptide/substance P, probably representing primary afferent nerves, were also associated with muscle bundles. Submucosal blood vessels carried dense plexuses of fibres containing vasoactive intestinal peptide alone or and calcitonin gene-related peptide/substance P. Adrenergic perivascular nerves also contained galanin and neuropeptide Y.  相似文献   

5.
M. Dey  M. Michalkiewicz  L. Huffman  G.A. Hedge   《Peptides》1993,14(6):1179-1186
Sympathetic nerve fibers to thyroid blood vessels contain both norepinephrine (NE) and neuropeptide Y (NPY). To assess the involvement of endogenous NPY in the sympathetic neural control of thyroid blood flow, appropriate doses of a selective NPY antagonist, -trinositol, and an NPY antiserum (NPY-AS) were used during cervical sympathetic trunk stimulation in anesthetized rats. During all experiments, thyroid blood flow was continuously monitored by laser Doppler blood flowmetry. Neither -trinositol nor NPY-AS blocked the thyroidal vasoconstriction evoked by either the first or second stimulation of the cervical sympathetic trunks. Our results suggest that NPY is not involved either directly or indirectly during acute sympathetic vasoconstriction in the rat thyroid gland.  相似文献   

6.
Hydrocarbon stapling is an effective strategy to stabilize the helical conformation of bioactive peptides. Here we describe application of stapling to anticonvulsant neuropeptides, galanin (GAL) and neuropeptide Y (NPY), that are implicated in modulating seizures in the brain. Dicarba bridges were rationally introduced into minimized analogs of GAL and NPY resulting in increased α-helical content, in vitro metabolic stability and n-octanol/water partitioning coefficient (log D). The stapled analogs retained agonist activities towards their respective receptors and suppressed seizures in a mouse model of epilepsy.  相似文献   

7.
E K Potter  D I McCloskey 《Peptides》1991,12(4):805-808
In anesthetized dogs intravenous injection of neuropeptide Y (NPY) or stimulation of the cardiac sympathetic nerve is followed by a period of attenuation of vagal action at the heart lasting from many minutes to over an hour. Peptide YY (PYY), a related peptide (but one not reported to occur in the heart or its autonomic innervation), also inhibits cardiac vagal action but is more powerful and has a longer duration action. In 5 of 9 dogs, cardiac sympathetic nerve stimulation inhibited vagal action on the heart in control conditions, but relieved preexisting inhibition when repeated in the presence of PYY. In 3 dogs, exogenous NPY inhibited cardiac vagal action in control conditions, but failed to augment preexisting inhibition in the presence of PYY. An explanation offered for these results is that when PYY is occupying receptors on vagal nerve terminals, nerve-released NPY or exogenous NPY is either unable to produce an effect, because it cannot gain access to the receptors, or displaces PYY from at least some receptors and, being less powerful than PYY in its inhibitory action, lessens the preexisting vagal attenuation. The results reported are consistent with the proposal that the factor released from the sympathetic nerves following their stimulation and which is responsible for cardiac vagal inhibition is NPY.  相似文献   

8.
Evidence suggests that the peptides galanin (GAL) and neuropeptide Y (NPY) interact with the amine norepinephrine (NE) in the hypothalamic paraventricular nucleus (PVN) to stimulate feeding behavior. To directly investigate the nature of these interactions, extracellular levels of PVN NE were monitored in freely-moving rats using the microdialysis/HPLC technique. Following PVN administration of GAL (0.3 nmol), NPY (78 pmol) or Ringer's solution, local NE levels were measured at 20-min intervals for 2 hrs postinjection, under two feeding conditions, namely, in the presence or absence of food. The results demonstrate different effects of these peptides on endogenous NE levels. Following GAL administration, PVN NE levels were enhanced by 80 to 90%, up to 40 min postinjection, independent of food availability. In contrast, following NPY injection, NE levels were significantly reduced 20 min postinjection with food absent, and when food was available, NE levels tended to be enhanced. These results, consistent with pharmacological and biochemical studies, reveal different patterns of peptide-amine interactions in the PVN.  相似文献   

9.
The perivascular neuropeptide Y (NPY) innervation and its relation to adrenergic nerves of uterine arteries from non-pregnant and pregnant guinea pigs was analyzed immunocytochemically. The NPY content of the uterine artery was, in addition, measured radioimmunologically (RIA). Vasomotor effects of NPY per se and in combination with other vasoconstrictors were examined using a sensitive in vitro method. Pregnancy did not visibly affect density and distribution of NPY-immunoreactive fibres. The NPY fibres contained in addition immunoreactivity to dopamine-beta-hydroxylase (marker for noradrenergic neurons). RIA revealed a slight decrease of NPY content during pregnancy, probably due to the increased smooth muscle volume of uterine arteries. The contractile effect of NPY on uterine arteries was weak, while vasoconstriction induced by various agonists was potentiated by NPY, particularly during pregnancy. It is concluded that perivascular NPY-containing nerve fibres may be involved in the dramatic blood flow alterations that occur in the uterine circulation in connection with pregnancy and partus.  相似文献   

10.
We studied the effects on plasma LH levels of intracerebroventricular (ICV) administration of neuropeptide Y (NPY), NPY analog (NPY-A), galanin (GAL) and neuropeptide K (NPK) in ovariectomized (ovx) and in ovx rats pretreated with estradiol benzoate (EB) and progesterone (P). Plasma LH levels were estimated in blood drawn from an intrajugular cannula before (0 min) and at 10, 20, 30 and 60 min after the ICV injection of either saline (3 microliter) or one of the neuropeptides in saline. The three classes of peptides elicited different LH responses in the two experimental paradigms. NPY and NPY-A (0.5 or 2 micrograms) decreased LH release in ovx rats and stimulated LH release in EBP ovx rats. However, GAL (0.5, 2 or 10 micrograms) failed to suppress LH release in ovx rats, but it readily increased plasma LH levels in a dose-related fashion in EBP ovx rats. In contrast, NPK readily decreased LH release in ovx rats in a time-related fashion for up to 60 min, but was mildly effective in EBP ovx rats as only a high dose of 10 micrograms produced a small significant increase. Collectively, our results show that (1) NPY can differentially effect LH release in ovx and EBP ovx rats but this property is not equally shared by the neuropeptides that have a similar anatomical disposition in the hypothalamus and (2) the excitatory effects of GAL are demonstrable in the steroid-primed rats and the inhibitory effects of NPK are apparent in the steroid-unprimed ovx rats. Since NPK induced a long-lasting marked suppression with little evidence of LH excitation at low doses, we speculate that either NPK alone or in conjunction with other peptides may mediate the suppression of LH release induced by gonadal steroids.  相似文献   

11.
Denervation degrades normal ligament properties and impairs ligament healing. This suggests that secreted neuromediators, such as neuropeptides, could be modulating cell metabolism in ligament and scar tissue. To test this hypothesis we investigated the effect of exogenous substance P (SP), neuropeptide Y (NPY) or calcitonin gene-related peptide (CGRP) on the mRNA levels for proteins associated with inflammation, angiogenesis, and matrix production in tissue-cultured specimens of normal and injured medial collateral ligament. SP and NPY induced increased mRNA levels for several inflammatory mediators in the 2-week post-injury specimens. All three neuropeptides induced decreases in mRNA levels for healing-associated growth factors and matrix molecules, including basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF) and collagen types I and III. The results indicate that neuropeptides strongly influence the metabolic activity of cells in healing ligament, particularly at early time points after injury.  相似文献   

12.
This study in conscious normotensive rats was performed to assess the effect of the vasoconstrictor peptide, neuropeptide Y (NPY), on blood pressure responsiveness to exogenous norepinephrine in endotoxaemia. NPY and endotoxin were infused at doses which had no effect on blood pressure, whether given alone or in combination. Endotoxin markedly reduced the pressor responses to bolus injections of norepinephrine. However, blood pressure responsiveness could be enhanced by infusing NPY simultaneously with the endotoxin. It is suggested that low dose NPY infusions may be clinically useful in reversing the reduced vascular responsiveness to pressor amines in shock.  相似文献   

13.
Interaction between norepinephrine, NPY and VIP in the ovarian artery.   总被引:2,自引:0,他引:2  
J C J?rgensen 《Peptides》1991,12(4):831-837
The in vitro effect and the interaction between norepinephrine (NE), neuropeptide Y (NPY) and vasoactive intestinal peptide (VIP) were studied in dissected segments of the rabbit ovarian artery. In addition, the structural requirement of the NPY receptor was investigated using NPY peptide analogs. NE induced a dose-dependent vasoconstriction with an Emax of 131.4 +/- 2.9% of K(+)-induced constriction. The vasoconstrictor effect of NPY was less than 5% of K(+)-induced vasoconstriction. Incubation of the artery with 10(-7) M NPY for 4 min induced a significant potentiation of NE-induced contractions. The selective NPY Y1 receptor agonist [Leu31, Pro34]NPY was also able to potentiate the NE response at the half-maximum contraction level, but not NPY(11-36), an NPY peptide fragment predominantly stimulating the NPY Y2 receptor. NPY exerted a dose-dependent vasoconstrictor effect on vessels contracted for 20 min with 10(-6) M NE. VIP induced a dose-dependent relaxation of vessels contracted with 10(-6) M NE. The VIP-induced relaxation could be reversed by NPY. In conclusion, receptors capable of interacting with NPY, presumably of the Y1 type, and VIP are present in the rabbit ovarian artery, and activation of these receptors may profoundly influence the response of the artery to norepinephrine.  相似文献   

14.
The neuropeptides galanin (GAL), neuropeptide Y (NPY) or neurotensin (NT) exhibit anticonvulsant activities mediated by their respective receptors in the brain. To transform these peptides into potential neurotherapeutics, their systemic bioavailability and metabolic stability must be improved. Our recent studies with GAL analogs suggested that an introduction of lipoamino acids in the context of oligo‐Lys residues (lipidization–cationization motif) significantly increases their penetration into the brain, yielding potent antiepileptic compounds. Here, we describe an extension of this strategy to NPY and NT. Rationally designed analogs of NPY and NT containing the lipidization–cationization motif were chemically synthesized and their physicochemical and pharmacological properties were characterized. The analogs NPY‐BBB2 and NT‐BBB1 exhibited increased serum stability, possessed log D > 1.1, retained high affinities toward their native receptors and produced potent antiseizure activities in animal models of epilepsy following intraperitoneal administration. Our results suggest that the combination of lipidization and cationization may be an effective strategy for improving systemic bioavailability and metabolic stability of various neuroactive peptides. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
刘姗姗  张翠珍  彭刚 《遗传》2016,38(9):821-830
脊椎动物下丘脑中的神经肽Y(Neuropeptide Y, NPY)、GALANIN和GMAP蛋白前体(GALANIN and GMAP prepropeptide, GAL)、Agouti相关蛋白(Agouti related neuropeptide, AGRP)和阿片促黑色素原(Proopiomelanocortin, POMC)与摄食密切相关,但在斑马鱼中对这些神经肽与摄食之间关系的研究较少。本文通过原位杂交技术和实时定量PCR方法,观察饥饿1 d、饥饿2 d和饥饿2 d喂食2 d后斑马鱼下丘脑中npy、galanin、agrp和pomca的表达情况。结果显示,饥饿处理之后,agrp和galanin在斑马鱼下丘脑中的表达量显著上升(P<0.05)。与对照组相比,饥饿2 d后斑马鱼下丘脑中pomca表达量显著下降(P<0.05)。饥饿2 d喂食2 d后斑马鱼下丘脑中pomca、agrp和galanin的表达量与对照组相比没有显著性差异。所有实验中npy在斑马鱼下丘脑中的表达没有显著性差异。这表明饥饿处理促使斑马鱼下丘脑中agrp和galanin表达上调,pomca表达下调;及时摄食可以恢复agrp、galanin和pomca在下丘脑中的表达水平。  相似文献   

16.
Sex differences in neuropeptide distribution in the rat brain   总被引:3,自引:0,他引:3  
We have investigated possible sex differences in the regional concentrations of neuropeptides in the rat brain. Immunoreactive neurotensin (NT), neurokinin A (NKA), galanin (GAL), calcitonin gene-related peptide (CGRP), substance P (SP) and neuropeptide Y (NPY) were measured by radioimmunoassay in frontal cortex, occipital cortex, hippocampus, striatum, hypothalamus and pituitary in male and female pre- and postpubertal rats. Sex differences were found for NPY (p < 0.001), NT (p < 0.01) and GAL (p < 0.05), in particular in hippocampus, striatum, hypothalamus and pituitary, but not for CGRP, SP and NKA. Results from analysis of neuropeptides in one sex may not be entirely applicable to the other.  相似文献   

17.
Summary To visualize the localization and potential colocalization of noradrenaline and the putative pancreatic sympathetic neurotransmitters, galanin and neuropeptide Y (NPY), immunofluorescent staining for galanin, NPY and tyrosine hydroxylase (TH) was performed on sections of canine pancreas and celiac ganglion. In the pancreas, galanin-immuno-fluorescent nerve fibers were confirmed as densely and preferentially innervating the islets, whereas numerous NPY-positive nerve fibers were found in the exocrine parenchyma, the surrounding of the blood vessels and within the islets. Double-staining for the peptides and TH indicated that most galaninpositive nerve fibers were adrenergic, most NPY-positive nerve fibers were adrenergic, and many islet nerves contained both galanin and NPY, although some galaninpositive nerve fibers appeared to lack NPY. In the celiac ganglion, virtually all cell bodies were positive for both galanin and TH; a large subpopulation of these cells were also positive for NPY. Radioimmunoassay (RIA) of galanin in extracts of dog celiac ganglion revealed a very high content (256±33 pmol/g wet weight) of galanin-like immunoreactivity (GLIR), consistent with the dense staining observed. This GLIR behaved in a similar manner to synthetic porcine galanin in the RIA. In addition, the majority of the GLIR in ganglion extracts coeluted with the synthetic peptide upon gel filtration, although a minor peak of a larger apparent molecular weight was also observed, observations consistent with the presence of a precursor peptide. These findings suggest that galanin is a sympathetic post-ganglionic neurotransmitter in the canine endocrine pancreas and that NPY might serve a similar function.  相似文献   

18.
The enteric nervous system is of great importance for maintenance and proper function of the gastrointestinal tract. The aim of this study was to quantify myenteric neuronal subpopulations expressing calcitonin gene-related peptide (CGRP), galanin, neuropeptide Y (NPY), somatostatin, vasoactive intestinal peptide (VIP) and nitric oxide synthase (NOS) in rat colon in vivo and after culturing. Further we investigated if culturing in the presence of CGRP, galanin, VIP, S-nitroso-N-acetyl-d,l-penicillamine (SNAP, a NO donor) or N-nitro-l-arginine methyl ester (l-NAME, a NOS inhibitor) affect neuronal survival.

After 4 days of culturing the proportions of neurons expressing CGRP, NPY, somatostatin or VIP increased as compared to in vivo, while the proportions of neurons expressing galanin or NOS did not change. Neuronal survival was unaffected after culturing in media enriched with CGRP, galanin, VIP, SNAP or l-NAME. Neither did addition of CGRP, galanin nor VIP to the cultures affect the relative numbers of neurons expressing CGRP, galanin or VIP respectively. Addition of SNAP or l-NAME did not change the percentage of neurons expressing NOS.

In conclusion, cultured rat colonic myenteric neurons increase their expression of CGRP, NPY, somatostatin and VIP, suggesting that these neuropeptides are of importance for neuronal survival.  相似文献   


19.
In order to study the physiological significance of the coexistence of pancreatic polypeptide and norepinephrine (NE) in peripheral noradrenergic nerves, the effects of pancreatic polypeptides of several species were tested on the isolated rat vas deferens. Neuropeptide Y (NPY) was also studied because of its sequence homology to the pancreatic polypeptides. The contractile responses, which were mediated predominantly by activation of noradrenergic nerves following electrical stimulation, were inhibited by bovine pancreatic polypeptide (BPP), human pancreatic polypeptide (HPP), avian pancreatic polypeptide (APP) and NPY in a dose-dependent manner using a constant flow bath. The decreasing order of the inhibitory responses was as follows: BPP = HPP greater than NPY greater than APP. The inhibitory responses produced by BPP and HPP lasted more than 1 hr and displayed a marked tachyphylaxis. In contrast, the inhibitory effects induced by NPY and APP usually returned to the control level after 20-30 min and had minimal tachyphylaxis. The inhibitory action of NPY was still present during alpha-adrenergic blockade. Contractions produced by a single submaximal dose of exogenous NE or serotonin (5-HT) in unstimulated preparations were not affected by pretreatment with NPY. The amplitude of contractions was partially reduced 1 min after pretreatment with BPP or HPP; recovery occurred about 15 min after peptide pretreatment in a constant flow bath. These results suggest that an NPY receptor exists presynaptically in the rat vas deferens and that stimulation of the receptor by NPY inhibits the release of NE from noradrenergic nerves.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
In the present brief overview we summarize results from several studies focusing on two neuropeptides, galanin and neuropeptide Y (NPY) in discrete neuronal systems, where they coexist with classic transmitters. On the basis of studies in different animal models we propose that these peptides may be involved in regulation of certain CNS functions and that drugs acting on their receptors may be of use in new therapeutic strategies. At the spinal level galanin and NPY are regulated in DRG neurons by nerve injury and in dorsal horn neurons by inflammation. It is possible that this leads to attenuation of pain sensitivity. Moreover, both peptides may exert trophic effects, for example to enhance regeneration. In the hypothalamic arcuate nucleus NPY and its receptors are part of the feeding circuitry, and we suggest that derangement of these NPY neurons may at least in part underlay the lethal phenotype of anorectic mice, which die 22 days postnatally after showing decreased food intake and growth retardation. Expression of NPY and NPY receptors is changed in the hippocampus of mice comparatively early after prion inoculation, indicating that this peptide system is affected in this spongiform degenerative disease in a region of importance for learning and memory. Finally, galanin is co-localized with classic monoamine transmitters in two central systems, the dorsal raphe serotonin neurons and the locus coeruleus noradrenergic neurons. In both cases galanin causes hyperpolarization (at high concentrations) and prolongs monoamine-induced outward currents (at low concentrations), thus modulating activity in two systems of importance for many brain functions including mood regulation. It may therefore be interesting to analyse to what extent drugs affecting galaninergic transmission also may be efficient in the treatment of, for example, depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号